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People ignore design that ignores people 

 

– Frank Chimero 

 

Preface 
“Design” is an interesting word. It is both a noun and a verb. As Coactive 

Design was developed, there was always a question as to which of these senses was 
being referred to. At times it seemed like the noun. Other times it seemed like the 
verb. In the end, I am convinced that both senses apply. 

Design, as a verb, is about process. The purpose of the design process is to find 
solutions. The Coactive Design method prescribes a process to help designers of 
human-machine systems to find solutions. Effective performance is an important 
criterion, so there is a necessarily utilitarian aspect to the design process. The end 
product must do something and, if well designed, it should do it well. The 
development of a method to assure effective human-machine performance was the 
first objective of the work described in this thesis. 

However, “design” is also a noun. Sometimes the word is used in this sense to 
refer to the plan or specification for some result, but it can also connote something 
about the style in which the plan is rendered in the product. Just as you can quickly 
tell whether a painting is in the Impressionist style or whether a building is inspired 
by Baroque, the design reveals something about the aesthetic sense of the designer, 
his culture, and what inspires his passion for the work. 

I hope that those who use the Coactive Design method will not only develop 
their systems according to a particular pattern, but that a characteristic “style” in 
the result will be obvious to the careful observer. That style should be apparent in 
the way people and machines interact as part of the joint human-machine system. If 
the user interface is layered on the machine as an afterthought, the spirit of 
Coactive Design has been lost. If the operator’s role is confined to starting and 
stopping the activity, it does not realize the objective of Coactive Design. 
However, if people are engaged with machines throughout the joint activity, fully 
aware of the status, and able to interject and receive assistance at any point, then it 
begins to look like Coactive Design. If there is a place for human judgment and 
flexibility to support human creativity, then it is Coactive Design. If the system fits 
so well the machine feels not like a distant tool, but an extension of your own 
capabilities then it is truly Coactive Design.   
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The scientist is not a person who gives the right answers, 
 he's one who asks the right questions. 

 
– Claude Lévi-Strauss  

 

1 Executive Summary1 

1.1 Motivation 

This thesis is born of the frustration of designing “autonomous systems” within 
our research team and from observing the “autonomous systems” designed and 
built by others. These systems tend to be frail and have difficulty doing their work 
in real world settings fraught with uncertainty, ambiguity, and surprise. As 
evidence, consider the 2013 United States Department of Defense (DoD) 
Unmanned Systems Integrated Roadmap which states “Nearly all unmanned 
systems require active control of basic vehicle operations and behavior that affects 
communications, manpower, and system effectiveness” (2013, p. 29). The main 
reason for this is identified in the Defense Science Board’s (DSB) assessment of 
the role of autonomy where they state, “the experience with autonomous systems is 
that they are often brittle when used in new ways” (2012, p. 58). What we desire is 
for these systems to be more effective. More specifically, we desire them to be 
resilient. Resilience is not about optimal behavior, it is about survival and mission 
completion. Resilience is the ability to recover from or adjust easily to misfortune 
or change.2 David Woods describes it this way: “Resilience then concerns the 
ability to recognize and adapt to handle unanticipated perturbations that call into 
question the model of competence, and demand a shift of processes, strategies and 
coordination” (2006, p. 22). His description captures the two essential components 
of resilience: recognition of problems and flexible alternatives to address them. So 
how does one design a resilient system? 

The traditional approach to resilience is to improve “autonomy.” For example, 
the DoD Unmanned Systems Roadmap  states “The Department will pursue greater 
autonomy in order to improve the ability of unmanned systems to operate 

                                                 
1 This thesis is based on the following work: 
ESAW workshop - (Johnson et al., 2009) 
COIN workshop - (Johnson et al., 2011) 
IEEE Intelligent Systems - (Johnson et al., 2011) 
IEEE Intelligent Systems - (Johnson et al., 2012) 
IMAV conference - (Johnson et al., 2012) 
JHRI - (Johnson et al., 2014) 
2 "Resilience." http://www.merriam-webster.com/dictionary/resilience (accessed on 1 Feb. 2014). 



Executive Summary 

2 
 

independently, either individually or collaboratively, to execute complex missions 
in a dynamic environment” (2007, p. 1). Engineering better autonomous 
capabilities is undeniably valuable. However, historically autonomy has been bad 
at recognizing problems (Feltovich, Bradshaw, Clancey, Johnson, & Bunch, 2008; 
Woods & Branlat, 2010) and has offered only rigid alternatives to address them 
(Norman, 1990; Woods & Branlat, 2010). Additionally, autonomous capabilities 
are a necessary, but insufficient condition for resilience. This is because “there are 
no fully autonomous systems just as there are no fully autonomous soldiers, sailors, 
airmen or Marines. Perhaps the most important message for commanders is that all 
systems are supervised by humans to some degree, and the best capabilities result 
from the coordination and collaboration of humans and machines” (Defense 
Science Board, 2012, p. 24). We concur with the DSB’s findings and propose 
human-machine teaming as an alternative approach to achieving resilience. 

The view of robots as teammates has grown as the field of robotics has matured. 
The future will belong to collaborative or cooperative systems that do not merely 
do things for people, “autonomously,” but that can also work together with people, 
enhancing human experience and productivity in everyday life (Bradshaw, 
Dignum, Jonker, & Sierhuis, 2012). While working together with people increases 
complexity as compared to standalone systems, it also brings an opportunity for 
extending individual capabilities and increasing resilience through teaming. 
Eduardo Salas et al. (Salas, Cooke, & Rosen, 2008) provide insight into why 
humans work in teams. Some of the reasons they state are that “teams are used 
when errors lead to severe consequences; when the task complexity exceeds the 
capacity of an individual; when the task environment is ill-defined, ambiguous, and 
stressful (2008, p. 540).” These reasons correlate with making a human-human 
team more resilient and have analogies in human-machine teams. “However, 
simply installing a team structure does not automatically ensure it will operate 
effectively. Teamwork is not an automatic consequence of co-locating people” 
(Baker, Day, & Salas, 2006, p. 1579). Similarly, putting a human “in-the-loop” 
does not guarantee effective human-machine teaming. If teaming is to be a viable 
alternative approach to resilience, then it will be important to understand how a 
developer designs a system to work effectively as a teammate. 

Intuitively, effective teamwork implies coordination of activity, cooperation 
among participants and collaboration. However, all these terms are too abstract to 
give direct guidance to human-machine system designers and developers. The 
challenge is to translate high-level concepts such as teamwork and collaboration 
into specific requirements that can be implemented within control algorithms, 
interface elements, and behaviors. While there are plenty of textbooks on how to 
make a robot arm move to a specified position, there is relatively little guidance on 
how a human and machine can work effectively together to complete the same 
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task. It is true that the social sciences and human factors studies have provided 
useful theories on human needs and capabilities. Unfortunately, this guidance often 
does not translate to the kind of specificity needed to engineer the requirements of 
an effective human-machine system (Robert R Hoffman & Deal, 2008).  To 
address this need, we began a process of investigation to develop practical and 
specific guidance for designers. The result of this inquiry is an approach to human-
machine design we call Coactive Design. 

Prior to developing the Coactive Design perspective and methodology, we 
investigated the most popular approaches to human-machine design (Chapter 3.2). 
These approaches take an autonomy-centered perspective — a perspective that was 
pervasive in the training of just about every graduate student in the field. This 
perspective is a limiting one that often results in the kind of frustration captured in 
Bainbridge’s article on the ironies of automation (Bainbridge, 1983). She states 
“the irony that one is not by automating necessarily removing the difficulties, and 
also the possibility that resolving them will require even greater technological 
ingenuity than does classic automation (1983, p. 778).” Contributing to this 
frustration were common misconceptions that inhibit a proper mindset for 
designing human-machine teams. Some misconceptions derive from several 
fallacies associated with autonomy (Chapter 4.3). Others derive from the pervasive 
concept of “levels of autonomy” (Chapter 4.2) which we, along with the DSB 
(2012, p. 23), argue is a construct that has outlived its usefulness. These 
misconceptions underscore the need for new perspectives. 

So, returning to the original question, how does one design a resilient system? 
Coactive Design breaks with traditional approaches by focusing on effective 
management of the interdependencies among human-machine team members 
(Johnson, Bradshaw, Feltovich, Jonker, et al., 2011). Providing support for 
interdependence enables members of a human-machine team to recognize 
problems and adapt. Support for a variety of interdependence relations makes a 
team flexible. Flexibility, in turn, makes the team resilient by providing alternative 
ways to recognize and handle unexpected situations. We now turn to the specific 
contributions of Coactive Design toward design of resilient systems. 

1.2 Contributions 

Coactive Design, as presented in this thesis, makes five major contributions: 1) a 
new design perspective based on interdependence, 2) a richer understanding of 
interdependence, 3) a new model for human-machine systems, 4) a new design 
method, 5) and a new tool, called the Interdependence Analysis Table, to assist the 
designer in system design and analysis. Chapters 5-8 will provide the details 
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necessary for other designers to apply this approach to their own human-machine 
challenges. 

The first contribution of Coactive Design is a change in focus (Chapter 5). 
Focusing on interdependence is a clear break from the autonomy-centered 
perspectives that dominate current research. Coactive Design is focused on systems 
where the human and machine are engaged in teamwork. Besides implying that 
more than one party is involved, the term “coactive” is meant to convey the type of 
involvement. Consider an example of playing the same sheet of music solo versus 
as a duet. Although the music is the same, the processes involved are very different 
(Clark, 1996). The difference is that the process of a duet requires ways to support 
the interdependence among the players. This is a drastic shift for many autonomous 
robots, most of which were designed to do things as independently as possible. The 
term “coactive design” is about designing in a way that enables effective teamwork 
through support for interdependence.  

The second major contribution of this work is a definition of interdependence 
and an understanding of the design implications of this definition (Chapter 6). The 
central role of interdependence demands a rich understanding of interdependence 
itself. In his seminal book, James D. Thompson (1967) recognized the importance 
of interdependence in organizational design, just as we are proposing its 
importance in human-machine systems. The correlation is made clear by 
Thompson’s description of an organization as an “open-system, indeterminate and 
faced with uncertainty” (p. 13). He also noted that there was a lack of 
understanding about interdependence — something still true today. Understanding 
the nature of the interdependence between team members provides insight into the 
kinds of coordination that will be required of them. Indeed, we assert that 
coordination mechanisms in skilled teams arise largely because of such 
interdependencies. For this reason, understanding interdependence is an important 
requirement in designing systems that will work jointly with people. This thesis 
argues that managing interdependencies is the mechanism by which we achieve the 
higher level concepts of coordination, collaboration and teamwork. 

The third major contribution is a new system model for human-machine system 
design (Chapter 7). We have already referred to the need to “manage” 
interdependencies and to “support” interdependent relationships — this chapter 
begins to describe how we think this may be done. Our system model highlights 
three key team capabilities, over and above task capabilities, that are needed for 
effective human-machine collaboration: observability, predictability and 
directability. For team members, these three capabilities enable resilience, allowing 
them to “recognize and adapt to handle unanticipated perturbations” (Woods & 
Hollnagel, 2006, p. 22). From a designer’s perspective, observability, 
predictability, and directability are important because they provide guidance on 
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how to identify design requirements. By determining how these capabilities must 
be supported in order to be capable of understanding and influencing team 
members, designers can create a specification. This design stance necessarily 
shapes not only the “user interface” for the human but also the implementation of a 
robot’s autonomous capabilities. The shaping process is provided by the three team 
capabilities in our system model which capture three of the key elements required 
for effective teamwork. 

The Coactive Design method is the fourth major contribution (Chapter 8). It is a 
method for designers building highly interdependent systems. It provides the first 
step by step procedure for designing interdependent systems, based on the 
perspective provided by Chapter 5, the understanding provided by Chapter 6 and 
the specific support requirements identified in Chapter 7. We present our method 
within the ecology of existing methodologies and describe how it is a bridge to 
design a system to work effectively as a teammate. 

The fifth major contribution of this thesis is the Interdependence Analysis (IA) 
Table (Chapter 8.1). This is a design and analysis tool to be used in conjunction 
with the Coactive Design method. It is a simple, visual way to enumerate the 
alternative ways by which combinations of team members can achieve a goal. If a 
system is to be resilient and deal with a demand for “a shift of processes, strategies 
and coordination” (Woods & Hollnagel, 2006, p. 22), there must be alternative 
processes, strategies and coordination. The IA Table enables designers to discover 
alternatives and understand how to support them in their systems. Based on the 
alternatives the designer chooses to support, the IA Table helps identify the 
independence relationships that must be supported for that relationship to be 
effective. This includes determining specific observability, predictability and 
directability requirements needed to support those relationships. Since design is 
always an iterative process, the IA Table supports this and helps understand the 
impact design changes might have on both individual and team performance. 

Summarizing the contributions we answer our key question. Coactive Design is 
an approach that enables a developer to design a system to work effectively as a 
teammate. By following the Coactive Design method and using the IA Table, 
designers have a way to ground the high-level teamwork concepts into design 
specifications and requirements. These specifications are based on three key team 
capabilities: observability, predictability, and directability. Since the purpose of the 
IA Table is to identify the requirements necessary to support the desired 
interdependent relationships, it guides a designer to find alternatives that provide 
flexibility. This flexibility will add resilience to the final system. 
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1.3 Evaluation 

The development of Coactive Design has matured over several years and 
multiple projects. Three case studies are presented in this thesis (Chapters 9-11). 
They capture the development of these ideas and demonstrate the applicability of 
Coactive Design in a variety of domains. The first case study was a simple 
experimental testbed that uncovered the foundational concepts of Coactive Design. 
The second case study demonstrates how the Coactive Design perspective 
produced a unique solution to a problem — one that has the characteristics of 
effective teamwork. It also helped solidify the method and IA Table design. The 
final case study is an evaluation of the full Coactive Design method in a complex 
real world competition.  

The first case study presented (Chapter 9) is a simulated testbed that was a 
catalyst for maturing both the theory and the analysis technique. Prior to the 
development of the Coactive Design method, the IA Table, or even the definition 
of interdependence, we wanted to understand the problem we were attempting to 
address better. We knew from the literature that there were issues with autonomy 
yielding its expected benefit (e.g., Bainbridge, 1983; Norman, 1990; Woods & 
Sarter, 1997). However, we wanted to uncover what relationships exist between 
autonomous capabilities and performance, as well as any other influencing factors. 
So, we developed a joint activity testbed called Blocks World 4 Teams (BW4T). 
BW4T is a multiplayer game played in simulation. The game allowed for multiple 
human or software players in any combination. The goal of the game was for the 
team to find and deliver a sequence of colored boxes. There were two major results 
from this work. The first is the experimental results, which provide some empirical 
evidence against the long standing view, held by many as noted by Wickens 
(Hancock et al., 2013) and Blackhurst et al. (Blackhurst, Gresham, & Stone, 2011), 
that increased autonomy is a panacea and will improve performance while reducing 
cost and risk (e.g. Dempsey, 2010; Department of Defense, 2007).  The results 
clearly show that failure to support interdependence, through observability, 
predictability and directability can limit the benefits anticipated by increasing 
autonomy. The second result is the progressive development of Coactive Design 
from a perspective to a method. This experiment was the catalyst for the 
development of the IA Table. The initial form of the IA Table was developed to 
understand the results. Though we anticipated the inflection in performance shown 
in the results, it was development of the IA Table that led to an understanding of 
why this change in performance occurred; failure to support interdependence. 
Moreover, the IA Table has proven to be a general tool usable in any domain. It has 
been used both to design new systems as well as analyze existing ones. 

The second case study is a Florida Institute for Human & Machine Cognition 
(IHMC) unmanned aerial vehicle (UAV) project (Chapter 10). This project began 
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early in the genesis of Coactive Design. Its purpose was to demonstrate how a 
system designed from a coactive perspective could be more resilient than a 
traditional one. The overall goal of the system was to demonstrate effective 
navigation through obstacles, which remains a challenging endeavor for current 
systems. This is a task that is difficult for either humans or unmanned vehicles to 
currently complete successfully on their own in situations of any significant 
complexity — harnessing the capabilities of each in effective teamwork is required. 
This was accomplished not by guessing at what widget or feature might be useful, 
but by a methodological approach to support interdependence among the human 
operator and the UAV through mechanisms that allowed the operator to coactively 
navigate. The operator could observe the internal state of the vehicle by the relative 
location of graphical objects. The operator could predict the resulting behavior 
prior to execution by a displayed path or even a virtual “fly through.” Directability 
was supported in a variety of ways from goal specification, to waypoint 
modification, to obstacle correction, to state estimation adjustment. These are just a 
few of the ways interdependent relationships were supported to provide a lot of 
flexibility. The project also highlights new capabilities, impossible with most 
currently deployed systems, but made possible by taking a coactive design 
perspective on the problem. This includes things like flying from a third person 
view and enabling safe flight at angles orthogonal to the camera view. It is 
important to note that the flexibility is not a particular feature, such as allowing for 
graphic overlays. Flexibility is the additional options that a feature affords. The 
features in this UAV system demonstrate the type of flexibility a coactive system 
can provide.  

Shifting from UAVs to complex humanoid robots, we present our third case 
study (Chapter 11). The DARPA Robotics Challenge (DRC) is an international 
competition that is like a robot Olympics. The competition consisted of three 
different tasks providing a broader range of activities than that of just navigation. 
As the design lead for IHMC’s DRC entry, Coactive Design was embraced from 
the beginning. Extensive use of the Coactive Design method and the IA Tables was 
made. The competition afforded a way to evaluate this experimental approach 
against traditional approaches and to evaluate its ability to imbue resilience. The 
team’s entry demonstrated a high level of resilience, placing first with a completion 
percentage of 86 percent; 20 percent higher than the nearest competitor. The results 
of applying our design approach to the DARPA Virtual Robotics Challenge (VRC) 
are presented as an exemplar of large scale implementation of Coactive Design. 
The coactive system developed was quite different from any of the other twenty-six 
entries in the competition. Even when considering aspects that were common 
across most teams, like scripted behavior, the IHMC implementation distinguishes 
itself by the support for interdependence. While many factors went into IHMC’s 
first place finish, we would argue that the Coactive Design approach provided a  
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Figure 1. Coactive Design Concept Map. 
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distinct advantage and contributed to the success. The success was not based on 
flawless performance, but on resilience in the face of uncertainty and misfortune 
and surprise. As one example, consider the hose task from the VRC. The goal of 
the hose task was to pick up a hose from a table and attach it to a spigot. The team 
was required to perform five different hose tasks in which DARPA varied things 
like table height, hose color, and spigot location. During the five hose tasks of the 
VRC an average of ten “autonomous” scripts were used per run. Many teams use 
autonomous scripts, however, IHMC’s scripts are run in a manner that supports 
interdependence. Only fifty percent of these were run without intervention. The 
team averaged nine pauses in script behavior to verify performance (i.e. 
observability and predictability) and seven operator corrections to scripted actions 
per run (i.e., directability). Even with operator intervention, eight of the fifty scripts 
failed to accomplish their purpose. Due to the flexibility in IHMC’s system to 
retry, make adjustments, and use different approaches, the team was successful in 
recovering from all eight failures. This example is but one of many examples of 
resilience from the VRC experience.  

1.4 Overview of Coactive Design 

As a brief overview of Coactive Design and how it fits into the existing ecology 
of research areas, a concept map is provided in Figure 1. Coactive Design is a 
design method based on the concept of interdependence (Chapter 6). It makes use 
of a design tool called the Interdependence Analysis (IA) table (Chapter 8). As a 
design process, Coactive design produces a specification (i.e. the IA table) that 
details human-robot team requirements. These requirements are used to guide the 
implementation which provides the teamwork infrastructure. The sum of the 
capabilities provided by the teamwork infrastructure determines the runtime 
options and runtime options (in addition to how they are employed, the situation, 
and other factors) determine performance. In particular, the flexibility afforded by 
the options contributes to overall resilience of the human-robot system. 

The IA table is a specification of requirements that can be used to guide 
implementation. However, it is unlike a traditional software specification3 in that it 
does not dictate what is required. Instead the IA table is more like a roadmap of 
runtime options, specifically options about how the human and robot might 
interact. The designer is free to choose which options to support based on 
cost/benefit, time, the desire for flexibility or any of a myriad of factors. Each 
option is associated with particular capabilities and related requirements through 
the IA table. These requirements are described in terms of observability,  

                                                 
3 Software specification definition found at http://en.wikipedia.org/wiki/Software_requirements_specification 
(accessed on 05JULY2014). 
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Figure 2. Example scenario of a human-robot team picking up packages together. We 
highlight the interdependencies (colored arrows) and the connection points required to 
support them. We also represent additional functional capabilities needed to support the 
teamwork (dashed boxes) as opposed to the required taskwork (solid boxes). 
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predictability and directability (Chapter 7.2.1); key elements for teamwork. 
Support for these elements through capabilities provides a teamwork infrastructure 
to support interdependent activity between the human and robot. 

So what do we mean by “a teamwork infrastructure to support 
interdependence?” Consider, as an example, a human-robot team whose goal is to 
pick up packages for delivery from different locations. We will use a single robot 
and a single human coordinating through an interface, as shown in Figure 2. The 
illustration extends to multiple robots, multiple humans and interaction that is not 
facilitated through a physical interface (e.g. verbal and non-verbal communication), 
but we will keep it simple for clarity. This example and its details are contrived to 
illustrate our meaning of “teamwork infrastructure.” Basically, we mean code 
modifications to both the algorithms and the interface to support the additional 
connections and additional functional components needed to enable teamwork. 

To properly understand the requirements needed for such an infrastructure, there 
are many factors that must be considered. Human-robot interaction is a multi-
disciplinary area and different areas of research have focused on different aspects 
of the problem (Chapter 3). By focusing on interdependence (Chapter 6), Coactive 
Design sheds some light on how these different research areas overlap and, more 
importantly, how they complement one another. 

Robot Design typically centers on the control architecture. There are many 
variants, but the three most common are deliberative, reactive and a hybrid 
deliberative/reactive architecture (Arkin, 1998). These focus on the task work, 
which are the solid lined boxes inside the robot shown in Figure 2. Many of the 
classic design approaches in robotics (Chapter 3) focus on what to automate 
(Parasuraman, Sheridan, & Wickens, 2000). In other words, they help understand 
what solid lined boxes are needed and when the human should trigger them. Lesser 
used a classical goal tree to help understand distributed problem solving systems 
(Lesser, 1991), which is represented by the tree structures in Figure 2. These types 
of graph structures are commonly employed in design, particularly by those 
interested in teamwork (Kaminka et al., 2004; Sycara & Sukthankar, 2006; Tambe, 
1997). Jennings, whose focus was distributed artificial intelligence, extended 
Lesser’s graph formalism by adding joint goals, which he described as a more 
sophisticated type of coordination than simple task allocation (Jennings, 1996). 
Jennings emphasized the importance of interdependence, but focused on goal and 
resource interdependence, in line with Thompson (Thompson, 1967). In his 
example, if one agent had valuable information that another could use, that agent 
should invoke an information sharing form of cooperation (Jennings, 1996). 
However, neither the information, nor the capability to share information is 
represented on Jennings’ goal tree. There is also no means by which to determine 
that the information was valuable.  
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Coactive Design addresses these limitations by including not only the tasks or 
goals, but also the connections needed to support joint activity and a context to 
evaluate the importance (see IA table in Chapter 8). Coactive Design proposes 
three key types of connections (Chapter 7.2.1); observability, predictability and 
directability (OPD). In Figure 2, task allocation is represented as a form of 
directability. The human directs the robot to pick up the packages for delivery. 
Notice that there are two endpoints, represented by colored circles in Figure 2, 
associated with every interdependent relationship. In this simple case, the human 
needs a mechanism to direct the robot, represented by the start button in the 
interface. The robot must have a means to trigger the appropriate algorithm for 
picking up packages. The connections need to be designed to work together or, as 
we refer to it, they must be complementary (Chapter 6.1.3). Returning to Jennings’ 
example of information sharing, for the task in Figure 2 an example might be that 
the robot’s battery is low. Coactive Design captures this as an observability 
requirement (green circle in the pickup packages behavior in Figure 2) and it would 
be reflected in the IA table. Jennings points out two other important aspects of 
interdependence. The first is that interdependencies can potentially connect any 
goals; whether they are close or distant in the tree. To effectively coordinate 
package pickup, the human could benefit from additional information, deeper than 
surface level task allocation. This means providing “hooks” or connection points 
into the existing capabilities that would not normally be exposed for fully 
autonomous operation. For example, the human might want to know where the 
robot is heading first (i.e. predictability) which requires a connection to the 
“Decide Where to Go” behavior. The human may want to know which route the 
robot will take in order to avoid conflicts (i.e. predictability) which would require a 
hook into the route planning component. Or the human may wish to know the 
current location (i.e. observability) or control the robot’s speed (i.e. directability) 
which would require access to the route execution component. The second aspect 
of interdependence Jennings describes is the difference between strong and weak 
interdependence, which is equivalent to our use of required and optional (Chapter 
6.1.4). Providing the infrastructure to permit low-level access, for example control 
of the robot’s speed, does not mean it is required and will demand the human’s 
attention. It simply provides additional flexibility. 

Though providing connection points is essential to supporting interdependence, 
sometimes additional functionality beyond the original taskwork is required. In 
Jennings’ example it was the ability to share information. In Figure 2, the dashed 
boxes are capabilities not required for fully autonomous operation, but essential to 
supporting interdependence for joint operations. For example, if the person is also 
picking up packages, the robot will need that information to determine what 
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packages remain (i.e. observability) and what package the person is currently 
proceeding toward (i.e. predictability). The person may also have information 
about road status (i.e. observability) that the robot may not have access to, but 
could benefit from if supported. Tambe’s work on STEAM and related extensions 
(Kaminka et al., 2004; Schurr, Okamoto, Maheswaran, Scerri, & Tambe, 2005; 
Tambe, 1997) provide these additional functional capabilities as a generic 
teamwork component. The challenge is in understanding how such rules originate, 
how they map to a specific context, and how the connection points are supported. 
Additionally, these approaches have traditionally focused on multi-agent systems 
and have only been applied to human-robot teams on a few occasions (e.g. Schurr 
et al., 2005). Fong’s work on collaborative control (Fong, 2001) is particularly 
relevant, since it demonstrated precisely the type of additional infrastructure 
needed to support interdependent collaboration for an identification task. In our 
example, consider that the robot may have difficulty confirming it has arrived at 
the correct destination. Maybe the address is not prominently displayed. In Figure 
2, the robot’s “Request Assistance” capability represents an example of new 
functionality that is specific to supporting collaboration.  

So far we have been focused on the robot. However, a significant amount of 
research has focused on the human side of the issue and the role and impact of 
automation. In order to support the robot’s need for assistance in verifying it has 
reached the correct destination, there is a complementary requirement (Chapter 
6.1.3) on the human side for a new role that the human must play; verification of 
arriving at the correct destination. This is also an example of how automation can 
change the nature of the interactions in the system (Christoffersen & Woods, 
2002). In this case, the human would now have an additional role; to be available 
to provide assistance. Though we do not get access to the “code” inside a human, it 
is important to understand the requirements for interdependence that enable the 
human to be an effective part of the system. Areas of research such as human 
factors (e.g. Fitts & Posner, 1967; Fitts, 1951), human-centered computing (e.g. R. 
R Hoffman, Ford, & W, 2000; Kidd, 1992), and cognitive task analysis (e.g. 
Adams et al., 2009; Schraagen, Chipman, & Shalin, 2009) all provide valuable 
insight into these requirements. They help identify the OPD requirements (Chapter 
8), depicted as colored circles inside the head of the human in Figure 2.  

We now turn our attention to the interface in the center of Figure 2. The 
interface facilitates the interdependence relationship between the human and the 
robot. Here we have depicted it as a physical graphical component, but it could be 
accomplished through verbal or non-verbal communication or any other technique. 
The challenge is to take data from both the human and the robot and translate it 
into context relevant information usable by the other. The field of interface design 
provides useful guidance in proper ways to convey information to the human (i.e. 
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the dotted arrows in Figure 2). For example, the GEDIS guidelines have 
demonstrated usefulness in improving UAV displays (Lorite, Muñoz, Tornero, 
Ponsa, & Pastor, 2013; Ponsa & Díaz, 2007). These approaches focus on the 
human factors issues when designing a display. Others have used models of 
cognition to guide interface design (e.g. Goodrich, 2004). The key to successful 
interface design is about understanding both the algorithmic requirements and the 
human requirements, in other words, the connection endpoints in the 
interdependence relationship. It is not enough to know you need, for example, 
video data. It is important to also know that understanding that data benefits from 
additional context (e.g. Cooper, 2007; Drury, Richer, & Rackliffe, 2006).    

Our example was chosen to demonstrate the symmetry of our design process. 
Some research has focused on supplementing robot limitations (e.g. Fong, 2001; 
Michaud et al., 2010), other work focuses on human limitations (e.g. Cooper, 
2007), but both are important. Equally important as their limitations are their 
capabilities. Though people and robots are asymmetric in their capabilities, the 
fundamental mechanisms for coordination are the same. Specifically, they both 
require observability, predictability and directability to work with others 
effectively. Our example includes each party observing one another, each party 
needing to be able to predict some aspect of the other’s action and each party 
directing the other in some manner. Understanding this will help a designer 
maximize the flexibility in their system by considering all the alternatives (e.g. 
Chapter 11). 

In summary, we hope this simple example provides insight into the complexity 
of teamwork. Effective teamwork requires an infrastructure to support 
interdependence; appropriate connection points and additional capability beyond 
taskwork. This infrastructure derives from the OPD requirements of 
interdependence relationships. These relationships must be complementary (i.e. 
matching endpoints). That means the algorithms and the interface cannot be 
designed separately, a sentiment with growing support (Adams et al., 2009; 
Cooper, 2007; J. W. Crandall, Goodrich, Olsen, & Nielsen, 2005; Macbeth, 
Cummings, Bertuccelli, & Surana, 2012). When considering OPD requirements, 
consider both the perspective of the human and the robot. Remember, 
interdependence can be required or optional. At design time, the designer can 
choose which aspects of the potential infrastructure to support, based on an 
assessment of time, effort and utility. At runtime, relationships can be employed as 
needed to accomplish the work. They may be dynamically adjusted to increase 
situation awareness, reduce workload, or increase control as deemed appropriate. 
However, failure to implement support of a given aspect of the infrastructure will 
mean it is not available and will reduce flexibility. The infrastructure we describe 
helps understand how important team behaviors such as monitoring, progress 



Executive Summary 

15 
 

appraisal and requesting assistance (Smith-Jentsch, Zeisig, Acton, & McPherson, 
1998) can be understood in terms of the capabilities of the algorithms, the interface 
and how they relate to the role of the human. 

It is our hope that designers of human-machine systems will find the Coactive 
Design perspective a refreshing one that sheds new light on their design challenges. 
It is also our hope that the methodology and tools we have presented will be 
valuable additions to their design processes. Coactive Design helps translate high-
level teamwork concepts into reusable control algorithms, interface elements, and 
behaviors that enable robots to fulfill their envisioned role as teammates. 
Interdependence is important because it is the basis for understanding complex 
systems. The ways in which a designer supports interdependence in a human-
machine system is the creative medium of the designer and the path by which we 
can add not only capability, but also flexibility and resilience to a system.   
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If we knew what it was we were doing, 
 it would not be called research, would it? 

 
– Albert Einstein  

 

2 Introduction 

2.1 Problem Statement 

Robots hold a special place in the imagination of humankind. The view of a 
personal robotic helper is as old as the concept of a robot itself. For a long time 
though, robots have been relegated to perform repetitive predetermined tasks in 
isolation, separate from both humanity and the real world. Recent successes in 
transitioning robots from their protective settings to the real world come with a 
caveat. These systems tend to be frail and have difficulty doing their work in real 
world settings fraught with uncertainty, ambiguity, and surprise. As evidence, 
consider the 2013 Unmanned Systems Integrated Roadmap which states “Nearly 
all unmanned systems require active control of basic vehicle operations and 
behavior that affects communications, manpower, and system effectiveness” (p. 
29). The main reason for this is identified in the Defense Science Board’s (DSB) 
assessment of the role of autonomy where they state, “the experience with 
autonomous systems is that they are often brittle when used in new ways” (Defense 
Science Board, 2012, p. 58). What we desire is for these systems to be more 
effective. More specifically, we desire them to be resilient. Resilience is the ability 
to recover from or adjust easily to misfortune or change.4 David Woods and Erik 
Hollnagel describe it this way: “Resilience then concerns the ability to recognize 
and adapt to handle unanticipated perturbations that call into question the model of 
competence, and demand a shift of processes, strategies and coordination” (2006, 
p. 22). Their description captures the two essential components of robotic 
resilience: recognition of problems and flexible alternatives to address them. 
Current systems do not exhibit these characteristics, and thus the problem 
addressed in this thesis is: 

 

How does one design a resilient robotic system? 

 

                                                 
4 "Resilience." http://www.merriam-webster.com/dictionary/resilience (accessed 1 Feb. 2014) 
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2.2 Research Claims 

The overall objective of this dissertation is to develop a process by which 
designers can build resilient human-robot systems. Traditional robotics approaches 
take an autonomy-centered perspective, focusing on how and what to automate 
(Parasuraman et al., 2000). Our new approach, called Coactive Design, will shift 
the focus from developing capabilities where machines and humans can work as 
independently as possible, to developing capabilities that allow them to work 
together – coactively. The fundamental principle that serves as the foundation for 
Coactive Design is that the underlying interdependence of participants in joint 
activity is a critical element in the design of human-machine systems. 

There are two primary claims in this thesis. The first is that: 

Interdependence is an effective basis for a design and analysis 
model of human-machine systems. 

This claim is the foundation of the Coactive Design approach. Interdependence is 
the key design element because it is the basis for understanding complex 
distributed systems. In particular, how a human and robot can work together as a 
team. As illustrated in the concept map, shown in Figure 1, interdependence is used 
to derive the system requirements which can be used to design a new system or 
analyze an existing one. Providing an infrastructure that supports interdependence 
is what provides runtime options. The flexibility afforded by the runtime options 
contributes to overall resilience of the human-robot system. The second claim of 
this thesis is that: 

Resilience in human-machine systems benefits from a teamwork 
infrastructure designed to exploit interdependence. 

Support for this claim addresses the problem statement of how one designs a 
resilient system. Designing to exploit interdependence means that appropriate 
connections between algorithms and interface are provided as well as any machine 
intelligence required to leverage these connections, as described in Chapter 1.4. 
This teamwork infrastructure makes the system capable of resilience. However, 
there is still a requirement for intelligent use of the infrastructure by the human 
teammates. Notwithstanding, no amount of intelligence in a human teammate can 
compensate for a lack of supporting teamwork infrastructure designed to exploit 
interdependence. 
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2.3 Research Aim 

In this thesis, we aim to provide a design method and guidance that will be 
helpful to engineers, not merely conceptual designers. Some of the best guidance 
currently available on designing human-robotic systems are suggestions like 
“determine what to automate and to what extent” (Parasuraman, Sheridan, & 
Wickens, 2000, p. 287) and use a “flexible interaction strategy, where each agent 
can contribute to the task what it does best” (Allen, Guinn, & Horvitz, 1999, p. 14). 
This guidance is far from the type of specification desired by an engineer trying to 
implement such systems. Thus our aim is:   

To develop a design process for identifying and exploiting 
interdependence in human-machine systems, in order to provide 
ways to recognize problems and create alternatives to address 
them. 

2.4 Research Approach 

We employed three main methodologies during this investigation: theory 
development, simulated testbed experimentation, and validation through case 
studies on complex real robotics systems. Each method contributed insights and 
there was significant overlap and iteration between the methodologies throughout 
the process of investigation.  

In order to develop a new design theory, a thorough review of existing literature 
was conducted. The purpose of the review was to understand the limitations of 
existing theories to ensure that the theory developed in this thesis is indeed novel 
and that its contribution adds value to the scientific community. With each testbed 
experiment and case study the theory was refined. 

Teamwork is a complex domain and developing a controlled testbed for 
experimentation is challenging. It is particularly difficult to design something 
simple enough to allow a detailed analysis, yet complex enough to demonstrate 
interesting teamwork behavior. The testbed experimentation was used to further the 
theory and partially address the research claims. 

Complex case studies were an essential part of this work. For a design process to 
be of value, it must address the complexities of real world human-machine 
systems. This means an actual person working with a physical robot doing real 
work in a real world environment. While a creative designer could develop a 
“feature” or a “widget” to solve a particular problem, the goal of this work is to 
provide a process by which a designer can address any teamwork challenge.    
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2.5 Scope 

Like all work, this work is scoped to a set of particulars. This thesis is 
specifically focused on teamwork in human-machine systems where: 

 All activity participants, both human and machine, are expected (by 
design) to play the role of team members. We are not focusing on, for 
example, an automated checkout clerk where the human has no 
understanding of the system other than projected human analogies. The 
human is expected to be familiar with the machine and the machine can 
assume a certain competence level from the human. 

 There is an overarching activity (team goal) that makes the work joint. It 
should not be working solely on separate problems in the same location, 
for example, driving in traffic.  

 The activity is long term activity, not brief encounters between a human 
and a machine. The work should be complex with unexpected events. It 
should not be, for example, a short transactional behavior like providing 
correct change or giving directions unless in the context of a broader 
activity. 

 All team members are trying their best. We are specifically not addressing 
motivation of the humans involved and expect best effort. 

When we speak of interdependence, it is specifically in the context of joint 
activity based on these particulars. For more discussion on the specifics of joint 
activity see Klein et al. (Klein, Feltovich, Bradshaw, & Woods, 2005). It is 
expected that some of the results could be applied outside of this scope (e.g. 
human-human teams, competitive instead of cooperative teams, etc.) but this is not 
the focus of this work. We are specifically focusing on collaborative or 
cooperative systems that do not merely do things for people, but also can work 
together with people. 
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If I have seen further it is by standing on the shoulders of Giants 

 

– Isaac Newton 

 

3 Background and Related Work5 
The domain of human-robot systems crosses many disciplines from engineering 

and computer science to cognitive psychology and joint activity theory. Several 
communities have emerged specifically to address the issues of man and machine 
such as human-robot interaction and human-computer interaction. This section will 
present relevant related work and discuss how it influenced this thesis. 

Traditional robotics approaches take an autonomy-centered perspective. Since 
autonomy is such a prevalent part of much of the prior robotics work, an overview 
of different usages of the term autonomy in the agent and robot literature will be 
provided in Section 3.1. We will then present prior work in the field of robotics in 
Section 3.2, explaining our characterization of these systems as autonomy-
centered. This work has been influenced by several fields outside of robotics and so 
in Section 3.3 we provide a discussion of several of these areas and how they were 
influential.  

3.1 Autonomy 

Autonomy has two basic senses in everyday usage. The first sense, self-
sufficiency, is about the degree to which an entity is able to take care of itself. 
Bradshaw (Bradshaw, Feltovich, et al., 2004) refers to this as the descriptive 
dimension of autonomy. Similarly, Castelfranchi (Castelfranchi, 2000) referred to 
this as one of the two aspects of social autonomy that he called independence. 
People usually consider robot autonomy in this sense in relation to a particular task. 
For example, a robot may be able to navigate autonomously, but only in an office 
environment. The second sense refers to the quality of self-directedness, or the 
degree of freedom from outside constraints (whether social or environmental), 
which Bradshaw calls the prescriptive dimension of autonomy. Castelfranchi 
referred to this as autonomy of delegation and considered it another form of social 
autonomy. For robots, this usually means freedom from human input or 
intervention during a particular task. To avoid the ambiguity often found in the 
literature, we will use the terms self-sufficiency and self-directedness in our 
discussion. 

                                                 
5 This chapter is adapted from (Johnson, et al., 2011).  
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3.2 Prior related work in the field of robotics6 

Within the field of robotics, there are several approaches to human-machine 
system design. A historical review of the dominant views of the field is presented 
here, though they all remain pertinent today. In fact, Supervisory Control (Sheridan 
& Verplank, 1978; Sheridan, 1992), one of the earliest approaches, arguably 
remains the most dominant perspective today.  

3.2.1 Function Allocation and Supervisory Control 

The concept of automation—which began with the straightforward objective of 
replacing whenever feasible any task currently performed by a human with a 
machine that could do the same task better, faster, or cheaper—became one of the 
first issues to attract the notice of early human factors researchers. These 
researchers attempted to systematically characterize the general strengths and 
weaknesses of humans and machines (Fitts, 1951). The resulting discipline of 
Function Allocation aimed to provide a rational means of determining which 
system-level functions should be carried out by humans and which by machines. 
Thomas Sheridan and William Verplank proposed the concept of Supervisory 
Control (Sheridan & Verplank, 1978), in which people allocate tasks to one or 
more machines and then monitor their performance. For these types of approaches 
which employ task decomposition and allocation, the designer’s job is to determine 
what needs to be done and then provide the agent or robot the capability (i.e., self-
sufficiency) to do it. One of the challenges of such approaches is that the suitability 
of a particular human or machine to take on a particular task may vary by time and 
over different situations. 

3.2.2 Adaptive, Sliding, or Adjustable Autonomy 

To address requirements for variable task allocation in different situations, there 
has been interest in more dynamic approaches. Gregory Dorais and David 
Kortenkamp (2001) define “adjustable autonomy” as “the ability of autonomous 
systems to operate with dynamically varying levels of independence, intelligence 
and control.” Bernardine Dias et al. (2008) uses a similar definition for the term 
“sliding autonomy.” Kaber and Riley (1999) define adaptive automation as “a form 
of automation that allows for dynamic changes in control function allocations 
between a machine and human operator based on states of the collective human–
machine system.” Sheridan (2011) discusses “adaptive automation,” in which the 
system must decide at runtime which functions to automate and to what extent. We 
will use the term adjustable autonomy as a catch-all to refer to this concept, 
namely, a change in agent autonomy—in this case the self-directedness aspect—to 
some appropriate level, based on the situation. In each case, the system must decide 

                                                 
6 Parts of Section 3.2 are adapted from (Bradshaw, et al. 2004). 
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at runtime which functions to automate and to what level of autonomy 
(Parasuraman et al., 2000). The insight these approaches provide is a need for 
flexibility and adaptability in a system. Our extensive work in this area (Bradshaw, 
Feltovich, et al., 2004; Bradshaw et al., 2005, 2008, 2003; Sierhuis, Bradshaw, 
Acquisti, Hoof, & Jeffers, 2003) has given us a deep understanding of the 
challenges associated with these approaches (Johnson, Bradshaw, et al., 2012). The 
main challenge is identifying what to adjust and when to adjust it. This challenge is 
further complicated by the difficulty of predicting the impact a change may have 
on the system as a whole in a given context. March, Simon, and Guetzkow point 
out that “one peculiar characteristic of the assignment problem…is that, if taken 
literally, problems of coordination are eliminated” (1993, p. 44). This is because 
approaches based on allocation unrealistically tend to ignore what March et al. 
describe as “the contingent character of activities” (1993, p. 46). Any significant 
form of collaboration cannot be fully addressed through mere task decomposition 
and allocation. It is the joint nature of key tasks that defines the heart of 
collaborative activity—and it is the effective management of interdependence that 
makes such work possible. Therefore, effective management of systems with 
autonomy requires an understanding of the impact a change in autonomy may have 
on the interdependence in the human-machine system. 

3.2.3 Mixed-Initiative Interaction 

Though the mixed-initiative interaction approach evolved from the human-
computer interaction and multi-agent systems research community, it has 
permeated into the robotics field because it shares similar ideas and assumptions. 
James Allen defines mixed-initiative as “a flexible interaction strategy, where each 
agent can contribute to the task what it does best” (1999, p. 14). In Allen’s work, 
the system is able to reason about which party should initiate action with respect to 
a given task or communicative exchange. In a similar vein, Karen Myers and David 
Morley (2001) describe a framework called “Taskable Reactive Agent 
Communities that supports the directability of a team of agents by a human 
supervisor by modifying task guidance.” Directability, or more accurately, task 
allocation is once again the central feature of the approach. Robin Murphy et al. 
(2000) also uses the term “mixed-initiative” to describe their attention-directing 
robotic system. The goal of the system was to get the human to assume 
responsibility for a task when a robot fails. Mixed-initiative interaction 
implementations have deviated from the initial goal of a “flexible interaction 
strategy” and tend to focus on task assignment or the authority to act. As such, the 
design challenge is how to vary self-directedness. The original concept of Mixed-
initiative interaction contributes the valuable insight that joint activity is about 
interaction and negotiation, and that dynamic shifts in control may be useful. 
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3.2.4 Shared Control 

An early approach that broke from the traditional task assignment view was 
Shared Control (Sheridan, 1992). Originally it was described as acting as “a 
supervisory with respect to control of some variables and direct controller with 
respect to other variables (Sheridan, 1992, p. 3).” More recently it has been 
described as Blended Shared Control where inputs combined through some 
functional relationship (Enes & Book, 2010). This has been shown to be useful in 
particular domains such as wheelchair control and training in robotic surgery. The 
challenge with this approach is developing the proper blending function. 
Additionally, the assistance is “blind” with neither party privy to the inputs and 
intentions of the other. This can lead to confusion and frustration, which may 
explain why some research in this area has concluded that less is more 
(Chipalkatty, Droge, & Egerstedt, 2013).   

3.2.5 Collaborative Control 

Collaborative Control is an approach proposed by Terry Fong (2001) that uses 
human-robot dialogue (i.e., queries from the robot and the subsequent presence or 
absence of a responses from the human), as the mechanism for adaptation. As Fong 
states, Collaborative Control “allows robots to benefit from human assistance 
during perception and cognition, and not just planning and command generation” 
(2001, p. 3). Collaborative Control distinguishes itself from the other approaches 
we have presented by introducing the idea that both parties may participate 
simultaneously in the same action. Here the ways in which the human operator 
could support the frail autonomy were used to shape the design of autonomous 
capabilities. The robot was designed to enable the human to provide assistance in 
the perceptual and cognitive parts of the task. The robotic assistance is not strictly 
required, so we are not merely talking about self-sufficiency. The key point is that 
the robotic assistance in this case is an integral part of the robot design and 
operation. 

3.3 Prior related work outside the field of robotics 

Many researchers in the field of robotics have reached outside of the robotics 
domain for inspiration. Given the human involvement in robotic systems, the 
natural consequent is to try to draw from the human and social sciences. We briefly 
mentioned some of the human factors work that influenced the early approaches of 
function allocation and supervisory control. Now we will present some additional 
relevant work outside of robotics. 
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3.3.1 Task Analysis 

All of the approaches discussed above provide perspectives and some guidance, 
but none provide a method. The human-computer interaction community is closely 
related and has produced several methodologies. They developed Hierarchical Task 
Analysis (HTA) (Annett, 2003) as a method for identifying and decomposing 
complex tasks. Cognitive Task Analysis (CTA) (B. Crandall & Klein, 2006; 
Schraagen et al., 2009) has extended this methodology to include a representation 
of the knowledge and reasoning required to perform tasks. Goal-Directed Task 
Analysis (GDTA) (M R Endsley, Bolté, & Jones, 2003) is a type of CTA that 
includes situation awareness requirements. These approaches provide useful insight 
into task dependencies and human requirements for those dependencies. However, 
interdependence in a team can be due to more than just the task at hand. As task 
analysis techniques they tend to focus on the requirements for the taskwork and not 
the requirements of the teamwork.  

3.3.2 Teamwork Studies 

The “team” metaphor is often used when describing robotic systems. As such, it 
is logical to try to understand what is involved in human teams. There is an 
extensive body of work focused on understanding human teams. This domain has 
provided many models of teamwork. These models tend to be lists of 
characteristics or properties such as having clearly defined roles and effective 
communication (Larson & LaFasto, 1989; Salas, Dickinson, Converse, & 
Tannenbaum, 1992), or of high-level behaviors such as providing periodic updates 
and monitoring for errors (Smith-Jentsch et al., 1998). Some in the HRI community 
have adopted these models and even implemented them in their robotic or agent 
systems (e.g., Sycara, 2002). 

While these types of informative guidance are of value, they have difficulty 
being embraced by system engineers building human-machine systems because 
they provide little in the way of practical guidance to designers and developers for 
analysis and implementation. The language, concepts, and products of those who 
focus on teamwork theory are often far removed from those who design and 
implement working systems (Robert R Hoffman & Deal, 2008). 

3.3.3 Interdependence Theory 

The critical role of interdependence demands a deep understanding of the 
concept of interdependence. Past research on interdependence in the social sciences 
includes the organizational theory work of James D. Thompson (1967) who 
identified three types of interdependence: pooled, sequential, and reciprocal. These 
types were characterized by the interaction between organizational units, 
specifically, in how the output of one unit may affect another unit (Thompson, 
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1967). These types of interdependence are relevant for human-machine design but 
are insufficient to cover the nuances of close collaboration of human and machine 
working jointly on a task. Other organizational theory work includes Thomas 
Malone and Kevin Crowston’s (1994) interdisciplinary study of coordination. Their 
study provides descriptions of other types of interdependence and provides some 
valuable insight into the purpose of interdependence. However neither Thompson 
nor Malone defines interdependence. 

Shifting to Social Psychology, John Thibaut and Harold Kelly (1959) introduced 
a Theory of Interdependence. It provides a description of interdependence; 
however, the description is limited to how an individual’s behavior affects the 
outcomes of contingent relationships. While this type of interdependence is 
important in human relationships, it is insufficient for designing human-machine 
systems. 

3.3.4 Joint Activity 

Another domain that has relevant theory is that of joint activity theory 
(Bradshaw, Feltovich, & Johnson, 2011; Klein et al., 2005; Klein, Woods, 
Bradshaw, Hoffman, & Feltovich, 2004), which is a generalization of Herbert 
Clark’s (1996) work in linguistics. Our sense of joint activity parallels that of Clark 
(1996), who has described what happens in situations when what one party does 
depends on what another party does (and vice-versa) over a sustained sequence of 
actions. In such joint activity, we say that team members are “interdependent” 
(Feltovich, Bradshaw, Clancey, & Johnson, 2007).  

Some of the ideas from joint activity theory have permeated into the world of 
robotics. For example, Cynthia Breazeal et al.’s (Breazeal, Gray, Hoffman, & 
Berlin, 2004) work is based on the joint activity work of Philip Cohen and Hector 
Levesque (1991). However her work starts with the question “What characteristics 
must a robot have to work effectively with its human collaborator” (Breazeal et al., 
2004, p. 552). While an excellent demonstration of the characteristics, it is unclear 
if these characteristics are required in all systems and in all circumstances.  Similar 
to the teamwork studies, this is not so much a method to follow as an example 
implementation in a specific domain. 

3.3.5 Multi-Agent Systems 

Multi-agent systems (MAS) face many of the challenges as human-machine 
systems. MAS are also related to Distributed Artificial Intelligence (DAI). All of 
these domains need to coordinate multiple parties and deal with decentralized 
control. Nick Jennings (1996) work on DAI is particularly relevant. His central 
hypothesis is “all coordination mechanisms can ultimately be reduced to 
commitments and their associated (social) conventions” (1996, p. 190). This is 
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similar to our focus on interdependence relationships. The main drawback of this 
work is the exclusive focus on goals. Interdependence involves more than goal 
dependencies. Jennings points out future needs that correlate well with the aim of 
this thesis: 

 Produce a finer grain classification of the types of goal interdependency 

 Provide a methodology for designing appropriate conventions and social 
conventions 

Another MAS example is Milind Tambe’s work on STEAM and related extensions 
(Kaminka et al., 2004; Schurr et al., 2005; Tambe, 1997). Tambe referred to 
STEAM as an “implemented model of teamwork” (1997, p.83). The work showed 
the value of separating the teamwork rules from the taskwork by showing reuse of 
teamwork rules in multiple domains. The challenge is in understanding how such 
rules originate, how they map to a specific context, and how the connection points 
are supported, as described in Chapter 1.4. Additionally, these approaches have 
traditionally focused on multi-agent systems and have only been applied to human-
robot teams on a few occasions (e.g. Schurr et al., 2005). 

3.3.6 Human-centered computing 

The principles of human-centered computing (HCC) and the challenges 
identified by that community (Robert R Hoffman, Hayes, Ford, & Bradshaw, 2012) 
are highly relevent to this work and have been very influential. In some sense, 
much of the work in this area has been performing the analysis on existing human-
machine systems. This analysis has highlighted the flaws for current approaches, 
like those in the section on the robotics field. While providing excellent guidance 
to a designer, the work has not provided a methodology that provides specifications 
suitable for building resilient robotic systems. 

3.4 Mapping prior work to Coactive Design 

In reviewing prior work it is not feasible to provide an exhaustive review, 
however we have tried to provide a sufficiently broad view of related work. Within 
each related area of research, we have tried to highlight the insights provided by 
the work as well as any limitations. In Chapter 1.4 we provided an overview of 
Coactive Design and how we see it fitting within the ecology of existing research 
areas. It is important to note that the Coactive Design process is not the only path 
to a good solution. There are many examples across the research areas we have 
covered that have notable successes. Table 1 is a short sample of interesting 
solutions and how they map to our key requirements of observability, predictability 
and directability (Chapter 7.2.1). This table lists some of the many different 
technological features have been tried with varying degrees of success. Examples 
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include using augmented or virtual reality, embedding video in map displays, use 
of the third person perspective, use of physical icons for control, and voice control. 
Goodrich reminds us that “the fundamental purpose of HRI is to allow a human to 
accomplish a task in the world (and not to allow the human to interact with a robot) 
(Goodrich, 2004).” Similarly, any technology feature should be evaluated based on 
this same criteria. How well they support observability, predictability and 
directability is a starting point for this evaluation process. 

 

Table 1 Mapping prior work to key OPD requirements 

Project Feature O P D Reference 
Ground vehicle 
teleoperation 

3D interface and use of 
third person view 

   (Nielsen, Goodrich, & Ricks, 2007) 

Human navigation Augmented Reality 
navigational cues 

   (Reitmayr & Schmalstieg, 2004) 

Airborne search Video embedded in 
virtual map 

   (Drury et al., 2006) 

Ground vehicle 
navigation 

Using augmented reality 
to build topographic map 

   (Giesler, Salb, Steinhaus, & 
Dillmann, 2004) 

Ground vehicle 
navigation 

Blend control via 
algorithmic combination 
of inputs 

   (Enes & Book, 2010) 

Ground vehicle 

navigation 

3D augmented reality 
and embedded video 

   (Michaud et al., 2010) 

Aerial mission 
supervision 

SA display and health 
display that allows user 
to adjust acceptability 
criteria 

   (Macbeth et al., 2012) 

Air vehicle 
mission 

3D Flight simulation to 
understand state 

   (Cervin, Mills, & Wünsche, 2004) 

Air vehicle 
control 

Various techniques 
including mixed-reality, 
voice and physical icons 

   (Quigley, Goodrich, & Beard, 2004) 

Multi-air vehicle 
control 

Overhead view and real-
time mission adjustment 

   (Brisset & Hattenberger, 2008) 
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Almost every significant breakthrough in the field of scientific endeavor is 
first a break with tradition, with old ways of thinking, with old paradigms. 

 

– Stephen R. Covey 

 

4 The Fallacy of Autonomy7 
Many approaches to designing more team-like cooperation between humans and 

machines have been proposed, including function allocation, supervisory control, 
adaptive automation, dynamic task allocation, adjustable autonomy, mixed-
initiative interaction—most recently regrouped under the rubric of cooperative 
robotics. All these approaches rely on the levels of autonomy concept as the 
benchmark for machine performance and the criterion for decisions about human-
machine task allocation and the supervisory control regimen. There are two 
theoretical issues with this concept that must be addressed. First, we argue that the 
concept of levels of autonomy is incomplete and insufficient as a model for 
designing complex human-machine teams, largely because it does not sufficiently 
account for the interdependence among team members. Second, we explore some 
misconceptions surrounding the topic of autonomy itself, which we refer to as 
myths of autonomy.  

4.1 Pervasiveness of the Levels of Autonomy Concept 

The concept of levels of autonomy is usually attributed to the pioneering work of 
Thomas Sheridan and William Verplank (1978). Their ideas were derived from a 
teleoperation study with underwater robots. Although the original 1978 work is 
often cited, the original three page table is usually condensed and simplified as 
shown in Table 2.  

The “levels” were used to describe the space of design options, as they saw 
them. They range from tedious and error-prone manual operation, where humans 
are required to do everything (level 1), to fully autonomous operations, where the 
machine can perform the entire task without assistance or direction (level 10). 
Sheridan and Verplank realized the unlikelihood of achieving a completely 
autonomous solution because they “simply [did] not have available at [that] time 
such devices or the understanding to build such devices” (p. 1-10) for their 
demanding environment. Given this realization, they suggested two things: 

                                                 
7 This chapter is adapted from two papers: (Johnson, et al.,  2011) and (Bradshaw, et al. 2013) 
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 levels of automation as a means to gain some of the 
benefits of autonomy while not requiring a fully 
autonomous solution and 

 supervisory control, in which humans allocate tasks to 
one or more machines and then monitor them. 

 
The classic Sheridan-Verplank levels are widely cited and have had a significant 

impact on the outlook of robot designers. A recent survey of human-robot 
interaction observed that “perhaps the most strongly human-centered application of 
the concept of autonomy is in the notion of level of autonomy” (Goodrich and 
Schultz, 2007, p. 217). This seems counterintuitive. Why should the independence 
of a given robotic partner play a more dominant role in human-centered design of 
joint activity than the interdependence among the set of human-robotic team 
members? 

Table 2. Levels of automation.* 

Level Description 
High 10. The computer decides everything, acts autonomously, ignoring the human. 

  9. The computer informs the human only if it, the computer, decides to. 

  8. The computer informs the human only if asked, or 

  7. The computer executes automatically, then necessarily informs the human, and 

  6. The computer allows the human a restricted time to veto before automatic  
     execution, or 

  5. The computer executes that suggestion if the human approves, or 

  4. The computer suggests one alternative 

  3. The computer narrows the selection down to a few, or 

  2. The computer offers a complete set of decision/action alternatives, or 

Low  1. The computer offers no assistance; the human must take all decisions and 
     actions. 

* Adapted from an earlier work (Parasuraman et al., 2000) 

4.2 Problems with the Levels of Autonomy Concept 

Significant nuances in the original Sheridan-Verplank work have been forgotten 
through frequent use of the simplified list shown in Table 2. As a basis for our 
discussion, Figure 3 illustrates the richer detail in the original work. In this excerpt 
from the complete model, we have altered Sheridan’s level 6 by adding the tell 
functions and associated text from level 8. We did this to incorporate all the basic 
elements in a single level for discussion purposes, but it does not significantly alter 
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the original intention because the original table had a footnote indicating other 
possible variations. 

 
Figure 3.  Altered excerpt of Sheridan-Verplank’s level 6 automation. Our goal was to 
incorporate all the basic elements in a single level for discussion purposes and more clearly 
show that two parties (computer and human) are involved in the activity. The solid arrows 
depict hard constraints that enable or prevent the possibility of an activity. The dashed 
arrow indicates soft interdependence, which includes optional commands. (Adapted from 
Sheridan & Verplank, 1978) 

The first column is the description that corresponds to an item on the simplified 
version of the list from Raja Parasuraman, Thomas Sheridan, and Christopher 
Wickens. The second column represents the human functions in the activity and the 
third represents the functions the computer performs. Interestingly, arrows were 
used between the second and third columns in the original work creating a small 
causal diagrams. This representation more clearly shows that two parties are 
involved in the activity, as opposed to the list in Table 2, which focuses solely on 
the computer. Additionally, these arrows represent a workflow with dependencies 
connecting the functions. Insightfully, Sheridan and Verplank understood that even 
their original richer description had limitations and stated that “as computer control 
and artificial intelligence become more sophisticated, certain human functions in 
teleoperation may be replaced, but greater need and demand will be placed upon 
other human functions, and in these respects the need for improved man-computer 
interaction will increase, not diminish” (1978, p. 1-10).  

With this in mind, we have outlined several problems with the simplified 
concept of levels of autonomy as it is usually formulated. 

4.2.1 Problem 1: Functional Differences Matter 

There are significant differences between performing an action and making a 
decision as well as between different kinds of actions. Sheridan and Verplank’s 
original work provided a table of behavior elements that can be used to 
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characterize a system. Their list included request options, get options, select action, 
approve action, start action, and tell functions. In this regard, the original levels 
model mixes apples and oranges—task work and teamwork. For example, in their 
level 1, the human handles the entire task without automation by performing the 
get options, select action, and start action functions. These are task-work 
components. On the other hand, the request options, approve action, and tell 
elements engage both parties in a simple form of teamwork. 

The model also mixes reasoning (get options), decisions (select action), and 
actions (start action). Moreover, the entire approach reinforces the erroneous notion 
that “automation activities simply can be substituted for human activities without 
otherwise affecting the operation of the system” (Christoffersen and Woods, 2002). 

Parasuraman, Sheridan, and Wickens’ (2000) work attempted to address some of 
these problems by associating activity types with the 10 levels. They proposed four 
types (acquisition, analysis, decision, and action), but this merely highlights the 
importance of functional differences between the elements and ignores the issues 
of interdependence relating to such activities. 

4.2.2 Problem 2: Levels Are Neither Ordinal nor Representative of Value 

Another problem is that the term level implies an ordinal relationship. Authors 
who reproduce the condensed version often add the low and high labels to levels 1 
and 10, respectively, as in our Table 2. These labels imply that the levels are of 
increasing autonomy, but are they really? The get options function seems like a 
lower level of autonomy than the select option. However, if the “getter” of the 
options can filter the options and the receiver has no other means to know what the 
options are, is it really a lower level? Who holds the power in this relationship? 
Which has a higher value: a start action or tell? It probably depends on the 
criticality of what is being started and the importance of what is being told. For 
these and other reasons, it is more productive to think about autonomy in terms of 
multiple task-specific dimensions rather than in terms of a single, unidimensional 
scale (Bradshaw, et al., 2004). 

The perspective in which we view a system can also affect our assessment of 
autonomy. For example, ambiguity about the term autonomy comes into play in 
Figure 3. Because the level shown is six out of 10, we could consider the machine 
semiautonomous—that is, at a mid-level of autonomy. However, with respect to 
the self-sufficiency perspective on autonomy, the machine could be viewed instead 
as fully autonomous because it can perform all aspects of the task work. On the 
other hand, from a self-directedness perspective, a machine functioning at this level 
would have no autonomy since the performance of its task work is completely 
subject to the direction and initiative of the human. 
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Our assessment of a system’s autonomy also depends on the way we define the 
boundaries of its sphere of action. Consider the vehicles that competed in the 
DARPA Urban Challenge, which were designed to find their way over a given 
course in “fully autonomous” fashion. Although fully autonomous with respect to 
this one particular task, they might be far from autonomous with respect to related 
tasks, such as going to the store and getting groceries. 

This also applies in the other direction. Several entries in the Urban Challenge 
were unsuccessful at completing the task but were successful at aspects of the task. 
For example, some could follow the road but not deal with traffic. These might be 
called semiautonomous, but all this term tells us is that the machine could not do 
everything on its own. If we redefine the task as something simpler, such as 
following a road without traffic, then we could once again describe the car as fully 
autonomous. In fact, virtually any machine could be considered fully autonomous 
if we define the grain size of its task to be sufficiently small. These examples make 
it obvious that the property of autonomy is not a mere function of the machine, but 
rather a relationship between the machine and a task in a given situation. 

4.2.3 Problem 3: Autonomy is Relative to the Context of the Activity 

Autonomous capabilities are relative to the context of the task for which they 
were designed. When designers consider what level of autonomy is appropriate, 
they are assuming some level of granularity and using that to define activity 
boundaries. Sheridan and Verplank’s original table title was “Levels of automation 
in man-computer decision making for a single elemental decisive step.” In other 
words, level 10 represents full autonomy relative to the single elemental decisive 
step or activity. Unfortunately, over time researchers have generalized this to all 
activity in complex systems involving teams of humans and machines. This goes 
far beyond the original scope and might explain Sheridan’s comment that 
“surprisingly, the level descriptions as published have been taken more seriously 
than were expected” (2000, p.  206).  

Functions are not automated in isolation from task context. Therefore, when 
system designers automate a subtask, they are really performing a type of task 
distribution and, as such, have introduced novel elements of interdependence 
within the system. This is the lesson to be learned from studies of the substitution 
myth (Christoffersen and Woods, 2002), which states that reducing or expanding 
the role of automation in joint human-automation systems can change the nature of 
interdependent and mutually adapted activities in complex ways. To effectively 
exploit automation’s capabilities (versus merely increasing automation), we must 
coordinate the task work—and the interdependence it induces among players in a 
given situation—as a whole. 
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As an example, consider the major assumption underlying the Sheridan-
Verplank levels that the human, in a supervisory role, is the initiator of the activity 
and has an implied obligation to monitor the activity. Although this is not explicit 
in the model, it can be derived from the fact that the request options action is only 
available to the human and that the tell option is only available to the computer. 
Roles are not simple titles; rather they are mechanisms by which we describe 
capabilities and their interdependence. 

4.2.4 Problem 4: Levels of Autonomy Encourage Reductive Thinking 

Other researchers have raised the issue of “keeping things too simple” in the 
design of cognitive systems (e.g., Feltovich, Hoffman and Woods, 2004). The 
levels of autonomy concept demonstrates several of these oversimplifications. 
Some have already been mentioned, such as ignoring functional differences, which 
could include treating heterogeneous elements as homogeneous and ignoring task 
context. Another problem is the tendency to view activity as sequential when it is 
actually simultaneous. Although task work often entails sequential dependencies 
and can be reasonably decomposed by looking at individual capabilities, we cannot 
uniquely describe or design teamwork in this way. Teamwork is necessarily based 
on the interaction among the participants, whereas a simplifying notion of levels 
treats elements as cleanly separable. 

Using Figure 3 as an example again, there seems to be a sequential ordering of 
the task elements. This might be appropriate for some tasks but not in general. 
Most teamwork occurs concurrently. Looking at the description of level 6 in the 
first column of Figure 3, it includes the phrase “informs the human in plenty of 
time to stop it.” This implies the human is concurrently monitoring and assessing 
the computer’s activity on some level. It would also suggest the need for a stop 
function, although none is included. The simplification here might explain the 
apparent oversight of including a stop behavioral element, and it is indicative of the 
problems faced when using a model with a solitary focus on levels of autonomy. 

4.2.5 Problem 5: The Levels of Autonomy Concept Is Insufficient to Meet 
Future Challenges 

Many of the challenges facing designers are related to teamwork. An example is 
the proposed 10 challenges for making automation a “team player” (Klein, et al., 
204). These challenges include directability, transparency, and predictability. These 
challenges deny the intrinsic validity of any levels of autonomy concept. Each of 
these challenges must be addressed not by making the machines more independent, 
but by making them more capable of supporting system interdependence. 

Many supportive behaviors are what might be called soft system constraints and 
are not essential to task completion—that is, although the performer is, strictly 
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speaking, self-sufficient, it can benefit from support. Joint activity is not 
exclusively about the hard constraints that enable or prevent the possibility of an 
activity, as the solid arrows in Figure 3 depict. Joint activity also includes soft 
interdependence, which includes optional commands, such as the ability to request 
the final status of the action (see the dashed arrow in Figure 3). Soft 
interdependence also includes helpful things that a participant might do to facilitate 
team performance. For example, team members can signal progress appraisals 
(Feltovich, et al., 2007) (“I’m running late”), warnings (“Watch your step”), 
helpful adjuncts (“Do you want me to pick up your prescription when I go by the 
drug store?”), and observations about relevant unexpected events (“It has started to 
rain”). 

Our observations suggest that good teams can be distinguished from great ones 
by how well they support requirements arising from soft interdependence. 
Although social science research on teamwork indicates it as an important factor in 
team performance (Salas, Cooke and Rosen, 2008), interdependence (particularly 
soft interdependence) has not received adequate attention in the research literature 
(Johnson, et al., 2012). 

Consider the hypothetical level 6 in Figure 3. If we consider the interdependence 
in the activity, we can concoct a figure (Figure 4) patterned after the Sheridan-
Verplank levels of automation. We have added some potential interdependence that 
might be appropriate for such an activity. We allow the sequential-work-flow 
assumption to persist only to maintain consistency in the discussion. The focus of 
Figure 4 is the diversity of interdependence among the activities. 

Although we apply this process to a single level within the original Sheridan-
Verplank list here, it can be applied to any of the levels with different results, based 
on the varying interdependence within the activity. If we move beyond the single 
decisive element portrayed by the Sheridan-Verplank list toward activity to support 
the future envisioned roles, the interdependence become much more complex and 
generating such a table becomes even more interesting. Such a construction calls 
out the ways in which changes to the level of autonomy affect interdependence and 
how the interdependence affects the total work system. Levels by themselves do 
not provide this information, which leads to the next problem. 
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Figure 4 Example of an interdependence analysis based on the Figure 3 example with the 
addition of some potential interdependence. The solid arrows depict hard constraints, and 
the dashed arrow indicates soft interdependence. (Adapted from an earlier work Sheridan & 
Verplank, 1978) 

4.2.6 Problem 6: Levels Provide Insufficient Guidance to the Designer 

Levels of autonomy do not provide principles or guidelines for designers as they 
build human-machine systems. Previous articles have discussed the challenge of 
bridging the gap from cognitive engineering products to software engineering 
(Hoofman, 2008). The levels of autonomy concept provides no assistance here. 
Parasuraman, Sheridan, and Wickens (2000) suggested using levels of autonomy in 
combination with human performance as an evaluative criterion for automation 
design. Although we agree that human-performance measures are important and 
useful, it is unclear what value the descriptive levels of autonomy provide other 
than as a labeling mechanism. They provide no assistance to the designer, whose 
only option is to build it and try it, then build something else and compare the 
results. 
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Interdependence, however, affords a great deal of predictive power. It can 
inform the designer of what is and is not needed, what is critical, and what is 
optional. Most importantly, it can indicate how changes in capabilities affect 
relationships. 

This extends the human-centered approaches where designers typically ask, 
“How can we keep the human in the loop?” or “How do we reduce the burden on 
the human?” These types of questions lead designers to focus on usability issues. 
Understanding the interdependence in the human-machine system in the context of 
the anticipated activity can provide a wealth of guidance to a designer. In fact, we 
posit that it is through understanding the dynamic interdependence within the 
macrocognitive work that the system developer can answer such questions as 
“What should be automated?” and “How do we reduce the burden on the human?” 
More importantly, it has the potential to answer richer questions, such as “How 
will this change affect the work system?” 

As an example, consider our level 6 in Figure 3. What is the impact of allowing 
the computer to move from the get options to select action functions without 
requiring the human request function? Making this change might enable a higher 
level of autonomy, but is it better? How does it affect the system? 

Now look at Figure 4. Identifying the interdependence suggests several impacts. 
Not only does allowing the computer to select the action reduce the directability of 
the automation by eliminating the computer’s dependence on the human to initiate 
action selection, it also reduces transparency because the human no longer has 
access to the options. Both of these limit the work system’s ability to leverage the 
human’s ability to improve the overall work system’s effectiveness.   

In summary, these six problems support the claim the concept of levels of 
autonomy is incomplete and insufficient as a model for designing complex human-
machine teams. 

4.3 Myths of Autonomy 

We now explore some misconceptions surrounding the topic of “autonomous 
systems” and bust some "myths" of automation. As designers conceive and 
implement what are commonly (but mistakenly) called autonomous systems, they 
adhere to certain myths of autonomy that are not only damaging in their own right 
but also by their continued propagation, because they engender a host of other 
serious misconceptions and consequences. 
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4.3.1 Myth #1: “Autonomy” is unidimensional. 

There is a myth that autonomy is some single thing and that everyone 
understands what it is. However, it is employed with different meanings and 
intentions (Bradshaw, Feltovich, et al., 2004). Beer, Fisk and Rogers (2012, pp 14-
15) point out the “muddled use of the term.” As an example, consider the self-
sufficiency and self-directedness sense described previously. These two different 
senses affect the way autonomy is conceptualized and influence tacit claims about 
what “autonomous” machines can do. It should be evident that independence from 
outside control does not entail the self-sufficiency of an autonomous machine. Nor 
do a machine’s autonomous capabilities guarantee that it will be allowed to operate 
in a self-directed manner. In fact, human-machine systems involve a dynamic 
balance of self-sufficiency and self-directedness. Capabilities machines have for 
autonomous action interact with the responsibility for outcomes and delegation of 
authority. Only people are held responsible for consequences (i.e., only people can 
act as problem holders) and only people decide on how authority is delegated to 
automata—see (Woods & Hollnagel, 2006, chapter 11)). It is more productive to 
think about autonomy in terms of multiple task-specific dimensions rather than in 
terms of a single, unidimensional scale (Bradshaw, Feltovich, et al., 2004). 

4.3.2 Myth #2. The conceptualization of “levels of autonomy” is a useful 
scientific grounding for the development of autonomous system 
roadmaps. 

A recent survey of Human-Robot Interaction observed that “perhaps the most 
strongly human-centered application of the concept of autonomy is in the notion of 
level of autonomy” (Goodrich & Schultz, 2007, p. 16). The survey highlights the 
proclivity of the concept of levels of autonomy in the HRI domain, but also 
suggests it is incomplete, recommending a different scale to address how the 
human and robot interact. A recent DSB report makes a more striking 
recommendation on the role of autonomy. It recommends that the “DoD should 
abandon the debate over definitions of levels of autonomy” (Defense Science 
Board, 2012, p. 2). The committee received inputs from multiple organizations on 
how some variation of definitions across levels of autonomy could guide new 
designs. The retired flag officers, technologists, and academics on the task force 
overwhelmingly and unanimously found the definitions irrelevant to the real 
problems, cases of success, and missed opportunities for effectively utilizing 
increases in autonomous capabilities for defense missions. This correlates with the 
first argument that the concept of levels of autonomy is incomplete and insufficient 
as a model for designing complex human-machine teams. 
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4.3.3 Myth #3: Autonomy is a widget. 

The Defense Science Board report points to the fallacy of “treating autonomy as 
a widget”: 

The competing definitions for autonomy have led to confusion among 
developers and acquisition officers, as well as among operators and 
commanders. The attempt to define autonomy has resulted in a waste of 
both time and money spent debating and reconciling different terms and 
may be contributing to fears of unbounded autonomy. The definitions have 
been unsatisfactory because they typically try to express autonomy as a 
widget or discrete component, rather than a capability of the larger system 
enabled by the integration of human and machine abilities (p. 23). 

In other words, we might say that autonomy is most usefully viewed as an 
emergent property of a system that functions capably in a given situation, and not 
as a description of the particular technology used to build it. 

The myth of autonomy as a widget engenders the misunderstandings implicit in 
the next myth. 

4.3.4 Myth #4. Autonomous systems are autonomous. 

Strictly speaking, the term “autonomous system” is a misnomer. Autonomy is 
not a property of a system, or a piece of technology, but rather is an idealistic 
characterization of the interactions among the machine, the task, and the situation. 
No entity—and, for that matter, no person—is capable enough to be able to 
perform competently in every task and situation. On the other hand, even the 
simplest machine can seem to function “autonomously” if the task and context are 
sufficiently constrained. A thermostat exercises an admirable degree of self-
sufficiency and self-directedness with respect to the limited tasks it is designed to 
perform through the use of very simple form of automation (at least until it 
becomes miscalibated). 

The Defense Science Board report wisely observes that “... there are no fully 
autonomous systems just as there are no fully autonomous soldiers, sailors, airmen, 
or Marines… Perhaps the most important message for commanders is that all 
machines are supervised by humans to some degree, and the best capabilities result 
from the coordination and collaboration of humans and machines.” (p. 24). 

What is the result of belief in this fourth myth? People in positions of 
responsibility and authority may over focus on autonomy-related problems and 
fixes while failing to understand that self-sufficiency is always relative to a 
situation. In fact, in most cases it is not only relative to a set of predefined tasks 
and goals, it is relative to a set of fixed tasks and goals. A software system might 
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perform gloriously without supervision in circumstances within its competence 
envelope (itself a reflection of the designer’s intent) but fail miserably when the 
context changes to some circumstance that pushes the larger work system beyond 
the edges of its competence envelope (Robert R Hoffman & Woods, 2011).  

4.3.5 Myth #5: Once achieved, full autonomy obviates the need for 
human-machine collaboration. 

Autonomy research has been pursued in a technology-centric fashion, as if full 
autonomy—complete independence and self-sufficiency of each system—were the 
Holy Grail. The slogan in Figure 5 is an example of this sentiment. Wickens 
(Hancock et al., 2013) states that “a long-held conventional wisdom is that a 
greater degree of automation in human-in-the-loop systems produces both costs 
and benefits to performance.” The ostensible reason for the quest is to reduce 
manning needs, since salaries are the largest fraction of the costs of sociotechnical 
systems. Of course, there are situations where the goal of minimizing human 
involvement with autonomous systems can be argued effectively—e.g., some jobs 
in industrial manufacturing. However, it should be noted that virtually all of the 
most challenging deployments of autonomous systems to date—e.g., military 
unmanned air vehicles, NASA rovers, unmanned underwater vehicles, and disaster 
inspection robots—have involved people in crucial roles. Such involvement has not 
been merely to make up for the current limitations on machine capabilities, but also 
because their jointly coordinated efforts with humans were—or should have 
been—intrinsically part of the mission planning and operations itself. 

 

Figure 5 A (presumably) tongue-in-cheek Frisbee from Carnegie Mellon Robotics Institute. 
While humorous, it is the sentiment behind myth #5. 
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What is the result of belief in this myth? Researchers and their sponsors begin to 
assume that “all we need is more autonomy.” This kind of simplistic thinking 
engenders the even more grandiose myth that human factors can be avoided in the 
design and deployment of machines. Beer et al. (2012) observe two dichotomous 
viewpoints: “(1) higher robot autonomy involves lower levels or less frequent HRI; 
and (2) higher robot autonomy requires higher levels or more sophisticated forms 
of HRI.” Careful consideration will reveal that, in addition to more machine 
capabilities for taskwork, there is a need for the kinds of breakthroughs in human-
machine teamwork that would enable autonomous systems not merely to do things 
for people, but also to work together with people and other systems. This capacity 
for teamwork, not merely the potential for expanded taskwork, is the inevitable 
next leap-forward required for more effective design and deployment of 
autonomous systems operating in a world full of people (Bradshaw, Carvalho, et 
al., 2012). 

4.3.6 Myth #6: As machines acquire more autonomy, they will work as 
simple substitutes (or multipliers) of human capability. 

Function allocation is not a simple process of transferring responsibilities from 
one component to another. When a system designer automates a subtask, what he 
or she is really doing is performing a type of task distribution and, as such, has 
introduced novel elements of interdependence within the system (Johnson, 
Bradshaw, Feltovich, Jonker, et al., 2011). This is the lesson to be learned from 
studies of the “substitution myth” (Christoffersen & Woods, 2002) which conclude 
that reducing or expanding the role of automation in joint human-automation 
systems may change the nature of interdependent and mutually-adapted activities 
in complex ways. In order to effectively exploit the capabilities that automation 
provides (versus merely increasing automation), the taskwork—and the 
interdependent teamwork it induces among players in a given situation—must be 
understood and coordinated as a whole. 

What is the result of belief in the myth of machines as simple multipliers of 
human ability? Because design approaches based on this myth do not adequately 
take into consideration the significant ways in which the introduction of 
autonomous capabilities can change the nature of the work itself, they lead to 
“clumsy automation.” And trying to solve this problem by adding more poorly-
designed autonomous capabilities, is, in effect, adding more clumsy automation 
onto clumsy automation, likely exacerbating the problem that the increased 
autonomy was intended to solve. 
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4.3.7 Myth #7: “Full autonomy” is not only possible, but is always 
desirable. 

Ironically, even when technology succeeds in making tasks more efficient, the 
human workload is not reduced accordingly. David Woods and Erik Hollnagel 
(2006) summarized this phenomenon as the law of stretched systems: “every 
system is stretched to operate at its capacity; as soon as there is some improvement, 
for example in the form of new technology, it will be exploited to achieve a new 
intensity and tempo of activity” (2006, p. 18). All useful robotic endeavors, such as 
exploring mars or repairing the underwater oil rig during the gulf oil spill, are 
really human endeavors. As such, humans will always be involved. Striving for full 
autonomy is ignoring the contextual understanding and creativity people bring to a 
problem. 

4.4 Conclusions 

Though continuing research to make machines more active, adaptive, and 
functional is essential, the point of increasing such proficiencies is not merely to 
make the machines more independent during times when unsupervised activity is 
desirable or necessary (i.e., autonomy), but also to make them more capable of 
sophisticated interdependent activity with people and other machines when such is 
required (i.e., teamwork). Research in joint activity highlights the need for 
autonomous systems to support not only fluid orchestration of task handoffs among 
people and machines, but also combined participation on shared tasks requiring 
continuous and close interaction—i.e., coactivity (Johnson, Bradshaw, et al., 2012; 
Klein et al., 2004). Indeed, in situations of simultaneous human-agent collaboration 
on shared tasks, people and machines may be so tightly integrated in the 
performance of their work that interdependence is a continuous phenomenon and 
the very idea of task handoffs is incongruous.  

The points raised focus on how to make effective use of the expanding power of 
machines. The myths we have discussed lead developers to introduce new machine 
capabilities in ways that predictably lead to unintended negative consequences. We 
need to discard the myths and focus on developing coordination and adaptive 
mechanisms that turn platform capabilities into new levels of mission 
effectiveness. In complex domains characterized by uncertainty, machines that are 
merely capable of performing independent work are not enough. Instead, we need 
machines that are also capable of working interdependently (Johnson, Bradshaw, et 
al., 2012).  

For this to happen, we need an understanding of interdependence, system models 
based on interdependence and design methodologies that enable designers to 
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support interdependence in their human-machine systems. This is precisely the 
goal of Coactive Design. 
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Interdependence is and ought to be  
as much the ideal of man as self-sufficiency. 

 

– Mahatma Gandhi 

 

5 Coactive Design8 
We propose Coactive Design as a new approach to address the increasingly 

sophisticated roles that people and robots play as the use of robots expands into 
new, complex domains. These roles involve humans and machines engaged in joint 
activity that can best be described as teamwork.  

We coined the term coactive as a way of characterizing the activity. Besides 
implying more than one party is involved in the activity, the term “coactive” is 
meant to convey the type of involvement. Consider an example of playing the same 
sheet of music as a solo versus a duet. Although the music is the same, the 
processes involved are very different (Clark, 1996). The difference is that the 
process of a duet requires ways to support the interdependence among the players. 
This is a drastic shift for many autonomous robots, most of which were designed to 
do things as independently as possible.  

The process of design is about developing something for an intended purpose. 
The term “coactive design” is about designing in a way that enables effective 
teamwork through support for interdependence. The goal of Coactive Design is to 
help designers identify interdependence relationships in a joint activity. This is so 
they can design, with a purpose, systems that support the relationships deemed 
appropriate. These supporting relationships thus enable designers to achieve the 
objectives of coordination, collaboration, and teamwork. 

5.1 What it means to be coactive 

The dictionary9 gives three meanings to the word “coactive”: 1) Joint action, 2) 
An impelling or restraining force; a compulsion, 3) Ecology; any of the reciprocal 
actions or effects, such as symbiosis, that can occur in a community. These three 
meanings capture the essence of our approach and we translate these below to 
identify the three minimum requirements of a coactive system. Our contention is 
that for an agent to effectively engage in joint activity, it must at a minimum have: 

 

                                                 
8 This chapter is adapted from (Johnson, Bradshaw, Feltovich, Jonker, et al., 2011)  
9 http://www.thefreedictionary.com/coactive (accessed on 16 February, 2014) 
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1) Awareness of interdependence in joint activity 
2) Consideration for interdependence in joint activity 
3) Capability to support interdependence in joint activity 

 
Awareness corresponds to the first definition and is about knowledge of the joint 

action. We are not suggesting that all team members must be fully aware of the 
entire scope of the activity, but they must be aware of the aspects of the activity 
that are interdependent. Consideration for something implies that the thing could 
impel or restrain a decision. As with awareness, all team members do not need to 
be equally capable, but they do need to be capable of supporting their particular 
points of interdependence. The capacity to support interdependence requires 
reciprocal capabilities. We now address each requirement in more detail. 

5.1.1 Awareness of Interdependence in Joint Activity 

In human-machine systems like today’s flight automation systems, there is a 
shared responsibility between the humans and machines, yet the automation is 
completely unaware of the human participants in the activity. Joint activity implies 
mutual engagement in a process extended in space and time (Klein et al., 2005; 
Sierhuis, 2007). Previous work in robotic systems has focused largely on assigning 
or allocating tasks to machines that may know little about the overall goal of the 
activity or about other tasks on which its tasks may be interdependent. This 
approach underpins supervisory control which focuses on “what to automate and to 
what extent (Parasuraman et al., 2000)” and results in approaches that view the role 
of HRI as identifying “appropriate trade-offs in allocating tasks to either a human 
or a robot (Beer et al., 2012).” A recent survey of supervisory control frameworks 
states that a significant fault with these frameworks is that they are “based on a 
hierarchical task decomposition to describe the delegation relationship (Miller, 
2012, p. 186)” and focus “only the act of delegating, not the context in which that 
act occurs (Miller, 2012, p. 186).” Similarly, Cummings et al. note that current 
analysis methods are limited by “focusing on the needs of the individual team 
members, often ignoring the collective decision making and coordination that is 
actually required (Cummings, da Silva, & Scott, 2007, p. 8).” However, the 
increasing sophistication of human-machine systems depends on a mature 
understanding of the requirements of interdependence between team members in 
joint activity. As such, humans should be “integral system components rather than 
system users. (Adams et al., 2009, p. 20)” We are no longer dealing with individual 
autonomous actions but with group participatory actions (Clark, 1996). 

5.1.2 Consideration for Interdependence in Joint Activity 

Awareness of interdependence is only helpful if that awareness has the potential 
to alter decisions. This means that requirements for interdependence must be taken 
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into account in the design of autonomous capabilities. As an example, consider 
playing the same sheet of music as a musical solo versus a duet. Although the 
music is the same, the processes involved are very different. As Clark (1996) 
states, “a person’s processes may be very different in individual and joint actions 
even when they appear identical.” This type of consideration can be found in some 
dialogue systems (e.g. Cantrell, Scheutz, Schermerhorn, & Wu, 2010) where the 
domain forces interdependence to the forefront. It can also be seen in human-
centered design approaches that try to account for the human role and limitations 
by fitting systems to users (e.g. Adams et al., 2009; Cooper, 2007; Goodrich, 2004) 
and systems that aim to supplement limitations in robotic systems via human 
support (e.g. Fong, 2001; Michaud et al., 2010). However, the issue of 
consideration has been noted by several in the HRI community including Macbeth 
et al. who state “typically algorithm designers generate the optimization algorithm 
first, and then the interface designers are left to support the operator with often 
incomplete information because the interface requirements of the human were not 
considered at the time of algorithm generation (Macbeth, Cummings, Bertuccelli, 
& Surana, 2012, p. 2348).” Designing systems, both the autonomy and interface, 
that address the requirements for interdependence is a drastic shift for autonomous 
robots, most of which were designed to do things as independently as possible. 

In addition to the processes involved being different, joint activity is inherently 
more constraining than independent activity. Joint activity may require 
participating parties to assume collective obligations (Diggelen, Bradshaw, 
Johnson, Uszok, & Feltovich, 2009) that come into play even when they are not 
currently “assigned” to an ongoing task. These obligations may require the 
performance of certain duties that facilitate good teamwork or they may limit our 
individual actions for the good of the whole. For example, we may be compelled to 
provide help in certain situations, while at the same time being prevented from 
hogging more than our share of limited resources. In joint activity, individual 
participants share an obligation to coordinate; sacrificing to a degree their 
individual autonomy in the service of progress toward group goals. These 
obligations should not be viewed as only a burden. While it is true they usually 
have a cost, they also provide an opportunity. Ensley (1999, p. 490) notes that 
“implementation strategies that provide assistance with the manual workload 
associated with a task while still keeping the operator involved in current 
operations appears to be optimal.” 

5.1.3 Capability to Support Interdependence in Joint Activity 

While consideration is about the deliberative or cognitive processes, there is also 
an essential functional requirement, referred to as teamwork infrastructure in 
Chapter 1.4. We have described self-sufficiency as the capability to take care of 
one’s self. Here we are talking about the capability to support interdependence. 
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This means the capability to assist another or be assisted by another. The coactive 
nature of joint activity means that there is a reciprocal requirement in order for 
interdependence to be supported, or to put it another way, there is the need for 
complementary capabilities of those engaged in a participatory action. For 
example, if I need to know your status, you must be able to provide status updates. 
If you can help me make navigation decisions, my navigation algorithm must allow 
for outside guidance. Simply stated, one can only give if the others can take and 
vice versa. Similar observations have been made by others. Beer et al. states that 
“the proper match between the level of robot autonomy and the method of control 
is essential. (2012, p. 61)” Crandall et al. pragmatically note “Because both robot 
autonomy and the interface dictate the human–robot interactions, they should be 
designed together. (J. W. Crandall, Goodrich, Olsen, & Nielsen, 2005, p. 438)” The 
abilities required for good teamwork require complementary abilities from the 
participating team members. 

5.2 The Fundamental Principle of Coactive Design 

The fundamental principle of Coactive Design is that interdependence must 
shape autonomy. Certainly joint activity of any consequence requires a measure of 
autonomy (both self-sufficiency and self-directedness) of its participants. Without a 
minimum level of autonomy, an agent will simply be a burden on a team, as noted 
by Stubbs (2007). However, it can be shown that in some situations simply adding 
more autonomy can hinder rather than help team performance. The means by 
which that agent realizes the necessary capabilities of self-sufficiency and self-
directedness must be guided by an understanding of the interdependence between 
team members in the types of joint activity in which it will be involved. This 
understanding of interdependence can be used to shape the design and 
implementation of the agent’s autonomous capabilities, thus enabling appropriate 
interaction with people and other agents. 

In contrast to autonomous systems designed to take humans out of the loop, we 
are specifically designing systems to address requirements that allow close and 
continuous interaction with people. This is important because of trends observable 
in technology development. Consider the history of research and development in 
unmanned aerial vehicles (UAVs), depicted in Figure 6. The first goal in its 
development was a standard engineering challenge to make the UAV self-sufficient 
for some tasks (e.g., stable flight, waypoint following). As the capabilities and 
robustness increased, the focus shifted to the problem of self-directedness (e.g., 
what am I willing to let the UAV do autonomously). The future directions of 
UAVs indicate a another shift, as discussed in the Unmanned Systems Roadmap 
(Department of Defense, 2007) which states that unmanned systems “will quickly 
evolve to the point where various classes of unmanned systems operate together in 
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a cooperative and collaborative manner…” This suggests a need to focus on 
interdependence (e.g., how can I get multiple UAVs to work effectively as a team 
with their operators?). This pattern of development is a natural maturation process 
that applies to any form of sophisticated automation. As we try to design more 
sophisticated systems, we move along a maturity continuum10 from dependence to 
independence to interdependence (Figure 6). The process is a continuum because a 
small level of independence of machines through autonomy is a prerequisite for 
interdependence. However, independence is not the supreme achievement in 
human-human interaction (Covey, 1989), nor should it be in human-machine 
systems. This can be seen historically in the developmental trends of robotic 
systems. Future robots are intended for more sophisticated tasks that have a 
potentially high degree of interdependence. While awareness of interdependence 
may not critical to the initial stages of system development, it becomes an essential 
factor in the realization of a system’s full potential. 

 

Figure 6 The natural maturation process of technology — from dependence to 
independence to interdependence. While awareness of interdependence may not critical to 
the initial stages of system development, it becomes an essential factor in the realization of 
a system’s full potential. 

5.3 A New Perspective 

The perspective afforded by Coactive Design helps understand the challenges of 
current approaches and suggests new ways to address those challenges. First, 
consider the main questions plaguing roboticists. These questions are shown on the 
left hand side of Table 3 and include questions like “what is the robot doing?” and 
“what is it going to do next?” The underlying issues for each of these questions are 
listed in the middle column of Table 3 and include things like transparency and 
predictability. These issues are issues of supporting interdependence, not issues of 

                                                 
10 This is adapted from Stephen Covey’s maturity continuum for personal effectiveness. We have extended this to 
an observed pattern we have noticed in the development of technology.  
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autonomy. To highlight the complementary nature of interdependence, we also 
included the robot needs or challenges. These are shown in the right most column 
of Table 3 and include things like understanding the intent of the human and 
knowing if the human can provide assistance. These needs correlate with the 
human needs and are also addressed through support for interdependence.   

Table 3 Common robot questions (left). The underlying issues (middle) are all about 
interdependence, not autonomy. The robot has needs (right) that correlate with the human 
questions and are also addressed through interdependence. 

 

 Another way to visualize how the Coactive Design perspective aligns with 
current perspectives is to understand the challenges faced by autonomy-centered 
approaches. The two senses of autonomy are shown as a graph in Figure 7. Since 
the capability to perform a task and the authority to perform a task are orthogonal 
concepts, we separate these two dimensions onto separate axes. Together these two 
axes represent an autonomy-centered plane of robotic capabilities. The self-
sufficiency axis represents the degree to which a robot can perform a task by itself. 
“Low” indicates that the robot is not capable of performing the task without 
significant help. “High” indicates that the robot can perform the task reliably 
without assistance. The self-directedness axis is about freedom from outside 
control. Though a robot may be sufficiently competent to perform a range of 
actions, it may be constrained from doing so by a variety of social and 
environmental factors. “Low” indicates that, although possibly capable of 
performing the task, the robot is not permitted to do so. “High” indicates the robot 
has the authority over its own actions, though it does not necessarily imply 
sufficient competence. 
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Figure 7 Common system issues mapped against an autonomy-centered plane. 

Direct teleoperation, in which both self-sufficiency and self-directedness are 
absent, corresponds to the region labeled Burden. By burden, we are referring to 
the workload imposed on the operator by the high robot attention demand (Olsen & 
Goodrich, 2003) and the human performance issues associated with remote 
operation (Chen, Haas, & Barnes, 2007). These combine to consume the operator’s 
attention with attending to the robot and leave little remaining attention to be 
directed toward the mission (Burke, Murphy, Coovert, & Riddle, 2004). Increasing 
the self-directedness without a corresponding level of self-sufficiency will result in 
a system that is over-trusted, as shown in the upper left of the figure. Over-trust is 
also a generalization that is meant to include any time automation is relied upon 
and permitted to exceed its own capabilities. A significant amount of research has 
focused on understanding the perils of introducing automation into the aviation 
domain (Kaber, Riley, Tan, & Endsley, 2001; McCarley & Wickens, 2005; 
Norman, 1990; Sarter & Woods, 1995; Woods & Sarter, 1997) as well as many 
other complex domains (Bainbridge, 1983; Blackhurst, Gresham, & Stone, 2011; 
Klein, Woods, Bradshaw, Hoffman, & Feltovich, 2004; Perrow, 1984; Woods & 
Branlat, 2010). When autonomous capabilities are seen as insufficient, particularly 
in situations where the consequences of robot error may be disastrous, it is 
common for self-directedness to be limited. When the system self-directedness is 
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reduced significantly below the potential of its capabilities the result is an 
underutilized system, as shown in the lower right corner of the figure. An example 
of this would be the first generations of Mars rovers which, due to the high cost of 
failure, were not trusted with autonomous action, but rather were subject to the 
decisions of a sizable team of NASA engineers. Here is the key point, however: 

Even when self-directedness and self-sufficiency are reliable, matched 
appropriately to each other, and sufficient for the performance of the 
robot’s individual tasks, human-robot teams engaged in consequential 
joint activity frequently encounter the potentially debilitating problem of 
opacity, meaning the inability for team members to maintain sufficient 
awareness of the state and actions of others to maintain effective team 
performance. 

The problem of opacity in robotics was highlighted recently by Stubbs (2007) 
but had been previously identified as a general challenge more than two decades 
ago by Norman (1990). Norman cites numerous examples of opacity, most of 
which come from aviation where silent (opaque) automation has led to major 
accidents. This opacity often leads to what Woods (1997) calls “automation 
surprises” that may result in catastrophe. An example is an autopilot that silently 
compensates for ice build-up on the airplane wings, while pilots remain unaware. 
Then, when the limits of control authority are reached and it can no longer 
compensate for extreme conditions, the automation simply turns off, forcing the 
pilots to try to recover from a very dangerous situation. It is important to recognize 
that the challenges go far beyond simply not being able to see needed information. 
They can also involve predictability, directability or other challenges that must be 
addressed in order to turn autonomous systems into team players (Klein et al., 
2004). 

So how does the coactive design perspective change the way we see the design 
problem? So far, we have depicted the two senses of autonomy on two orthogonal 
axes representing an autonomy-centered plane of agent capabilities. Coactive 
Design adds a third orthogonal dimension of agent capability: support for 
interdependence (Figure 8). 

The support for interdependence axis characterizes an agent in terms of its 
capability to depend on others or be depended on by others in any of the 
dimensions of autonomy. This axis is specifically about the capability to be 
interdependent, not the need or requirement to be dependent which are captured by 
the other axes. Although we are showing a single set of axes for simplicity, there 
are many dimensions to autonomy (Bradshaw et al., 2004). 
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As we look at the challenges faced by current autonomous systems from a 
Coactive Design perspective, we see not only the constraints imposed by 
interdependence in the system, but also as a tremendous opportunity. Instead of 
considering the activity an independent one we can think about it as a participatory 
one (Clark, 1996). Both the human and the machine are typically engaged in the 
same activity. There may be domains where we would like a robot to go on its 
mission and simply return with a result, but most domains are not like this. We 
need the agent to have some self-sufficiency and self-directedness, but we remain 
interdependent as the participatory task unfolds. Supporting this need provides an 
opportunity to address some of the current challenges. Figure 8 lists just a few such 
opportunities. For example, over-trusted robots can be supplemented with human 
assistance and opaque systems can provide feedback and transparency. In fact, 
many of the ten challenges (Klein et al., 2004) of automation, such as predictability 
and directability apply to this new dimension, as do all of the issues in Table 3. 

 
Figure 8 Support for interdependence as an orthogonal dimension to autonomy and some 

opportunities this dimension offers 
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We can now map examples of prior work in autonomy onto this space (Table 4). 
In the Related Work section, we described how previous work was focused on self-
sufficiency and self-directedness. Coactive Design presents the unique perspective 
of the support for interdependence dimension which is captured in the two 
rightmost columns of Table 4: the ability to depend on others and the ability to be 
depended on by others. The most important innovation of the Collaborative Control 
(Fong, 2001) approach was in accommodating a role for the human in providing 
assistance to the robot at the perceptual and cognitive levels. In other words, the 
robot had the ability to depend on the human for assistance in perception. The key 
insight of Collaborative Control was that tasks may sometimes be done more 
effectively if performed jointly. Coactive Design extends this perspective by 
providing a complement of this type of interdependence, accommodating the 
possibility of machines assisting people. 

 

Table 4  Scope of concerns addressed by different approaches. 

Approach 

Autonomy-Centered 
Teamwork-Centered 

(Support for 
Interdependence) 

Self-
sufficiency 

Self-
directedness

Ability to 
depend on 

others 

Ability to 
be 

depended 
on  

Teleoperation     
Functional Allocation     
Supervisory Control     

Adjustable Autonomy     
Sliding Autonomy     

Adaptive Autonomy     
Flexible Autonomy     

Mixed Initiative 
Interaction

    

Shared Control     
Collaborative Control     

Coactive Design     



 

53 
 

Interdependence is a higher value than independence. 

 

– Stephen R. Covey 

 

6 Interdependence11 
Coactive Design takes interdependence as the central organizing principle 

among people and agents working together in joint activity. Our sense of joint 
activity parallels that of Clark (1996), who has described what happens in 
situations when what one party does depends on what another party does (and vice-
versa) over a sustained sequence of actions. In such joint activity, we say that team 
members are “interdependent” (Feltovich et al., 2007).  In his seminal book, James 
D. Thompson (1967) recognized the importance of interdependence in 
organizational design. Similarly, we feel that understanding interdependence is 
critical to the design of human-machine systems. The reason it is so important in 
all of these domains is because interdependence is the basis for understanding 
complex systems.  

Thompson (1967) also noted that there was a lack of understanding about 
interdependence, which is still true today. Much work being done in this area 
focuses on teams of people (e.g. Cohen & Levesque, 1991; Fiore, 2008; Saavedra, 
Earley, & Van Dyne, 1993; Salas, Bowers, & Edens, 2001; Salas et al., 2008; Salas 
& Fiore, 2004) though there has been an effort to bridge these conceptual 
understandings to human-robot, human-agent and agent-agent systems (e.g. 
Breazeal et al., 2004; Cuevas, Fiore, Caldwell, & Strater, 2007; Jonker, Van 
Riemsdijk, & Vermeulen, 2011; Sierhuis et al., 2003; Sycara & Sukthankar, 2006; 
Sycara, 2002; Tambe, 1997). Understanding the nature of the interdependencies 
among groups of humans and machines provides insight into the kinds of 
coordination that will be required. Indeed, we assert that coordination mechanisms 
in skilled teams arise largely because of such interdependencies (Johnson et al., 
2011). For this reason, understanding interdependence is an important requirement 
in designing machines that will be required to work as part of human-machine 
systems engaged in teamwork. 

This thesis puts forth the concept that managing interdependent activities is the 
key design element for developing collaborative systems. This is because 
managing interdependencies is the mechanism by which we achieve the higher 
level concepts of coordination, collaboration and teamwork. As the mechanism, it 
provides a way to ground the conceptual into specific implementations. 

                                                 
11 This chapter is adapted from: (Johnson et al., 2014) 
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6.1 What It Means To Be Interdependent 

Many misunderstandings in science come from assigning different meanings to 
terms. With respect to the topic at hand, the terms “interdependence” and 
“dependence” are used in a range of ways with varied meaning—sometimes even 
as synonyms as in Malone and Crowston’s (1994) work 12 . In order to avoid 
confusion, we will clarify our interpretation of these terms by providing 
definitions. This is done with the understanding that others may hold different 
views on the meaning of the terms but can interpret our results through the lens we 
have provided. 

Interdependence is often simply equated to mutual dependence13. However, this 
definition of the concept is too simplistic to capture the kinds of nuances we have 
observed in interdependence relationships among humans and machines engaged in 
joint activity. Thompson’s (1967) famous Organizational Theory work on 
interdependence states: 

It appears that if we wish to understand organization structure, we must 
consider what is meant by interdependence and by coordination, and we 
must consider the various types of these. (p. 54)  

Thompson’s work provided insight into coordination mechanisms and outlined 
three types of interdependence, but did not provide a definition of interdependence 
itself. From the perspective of social psychology, Thibaut and Kelly’s (1959) 
Theory of Interdependence describe interdependence in the following way: 

In any dyad both members are dependent upon the relationship to some 
degree, so we speak of their being interdependent. This means that each 
one has some power over the other which places limits on the extent to 
which each may with impunity exercise his power over his colleague. The 
pattern of interdependency which characterizes a relationship also affects 
the kinds of process agreements the pair must achieve if their relationship 
is to be maximally satisfactory. (p.124) 

This description suggests that interdependence is about relationships, which we 
feel is an important insight because it breaks the “black-box” mentality commonly 
found in robotics. Autonomy-centered perspectives can lead to a design process 
that is focused on building “black-boxes” that provide an algorithm to perform an 
action. By focusing on interdependence relationships it becomes clear that “both 
robot autonomy and the interface dictate the human–robot interactions, they should 
be designed together (J. W. Crandall et al., 2005)” which is a sentiment being 

                                                 
12

 Malone uses dependencies instead of interdependencies, but then states, “if there is no interdependence, there is 
nothing to coordinate.” This implies that he considers the two terms to be synonymous. 
13 

http://dictionary.reference.com/browse/interdependent?s=t (accessed 17 November 2013). 
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echoed by an increasing number of researchers (e.g. Adams et al., 2009; Cooper, 
2007; Johnson, Bradshaw, Feltovich, Jonker, et al., 2011; Macbeth et al., 2012). 
Thibaut and Kelly’s description, however, is limited to one type of 
interdependence, specifically how an individual’s behavior affects the outcomes of 
contingent relationships. Descriptions of other types of interdependence are 
provided by Malone and Crowston’s (1994) interdisciplinary study of coordination: 

Coordination means “managing dependencies between activities.” 
Therefore, since activities must, in some sense, be performed by “actors,” 
the definition implies that all instances of coordination include actors 
performing activities that are interdependent. (p. 101) 

From this, we glean that the purpose of these relationships is to manage 
dependencies, in this case interdependence among activities. Dependencies among 
agents have been an important theme in Distributed Artificial Intelligence research. 
For example, Jennings (1996) states: 

The nature of the inter-agent dependencies is the critical determinant of the 
type of coordination which will take place. (p. 5) 

This statement emphasizes the importance of the concept of interdependence, but 
provides no definition of the term. More recently, these concepts have begun to 
make their way into the HRI domain, as evidenced by Murphy and Burke’s (2008) 
comment: 

An examination of team processes is useful because it identifies the 
dependencies between the agents in the system and how the agents are 
coordinated. This is key to designing systems that facilitate coordination. 
(p. 2) 

This comment highlights the importance of identifying dependencies between 
agents for facilitating coordination. Again, however, the concept remains 
undefined. 

Our definition of interdependence builds on the idea that interdependence is 
about relationships. It includes the purpose of these relationships which is to 
manage dependencies in joint activity. We emphasize that some dependencies are 
“hard” (absolutely necessary for carrying out the joint activity) while others are 
“soft” (defining possible opportunities for improving joint activity). In light of 
these considerations, we define interdependence in the context of joint activity as 
follows: 
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“Interdependence” describes the set of complementary relationships that 
two or more parties rely on to manage required (hard) or opportunistic 
(soft) dependencies in joint activity. 

In the next section, we decompose our definition of interdependence, 
expounding the key notions in this definition. We begin with the term 
“dependence.” 

6.1.1 Dependence Is About Capacity 

In order to define dependence, we introduce the notion of capacity. Consider a 
robot that exists in some world environment and can sense and act on the world. A 
robot may require various things such as knowledge, skills, abilities, or resources 
to perform an activity. We define capacity as an encompassing term: 

Capacity is the total set of inherent things (e.g., knowledge, skills, abilities, 
and resources) that an entity requires to competently perform an activity 
individually. 

All aspects of capacity are determined by the interaction between a robot and its 
environment. It concerns the inherent capabilities of an entity and can be associated 
with the descriptive dimension of autonomy (Bradshaw et al., 2004). Consider the 
example of a robot that can deliver a soda. The most prominent aspects of capacity 
are the skills and knowledge to perform a task. This task requires skills such as 
planning a path to the refrigerator, moving to the refrigerator and avoiding 
obstacles along the way, opening the refrigerator, and picking up the soda can. It 
also requires knowledge of the refrigerator containing soda, where it is located, 
where the robot is relative to the refrigerator, and how to identify the desired can of 
soda. Capacity also includes accounting for resources such as energy and time. A 
robot may have the ability to get a soda, but its remaining battery life may not be 
sufficient. Similarly, it may be able to get a soda, but its maximum speed might 
hinder accomplishing this in under 30 seconds. Based on this view of capacity, we 
define dependence and its complement independence: 

Dependence exists when an entity lacks a required capacity to competently 
perform an activity in a given context. 

Independence exists when an entity possesses the required capacity to 
competently perform an activity in a given context. 

Both dependence and independence can be interpreted using the concept of a 
control loop. Much of robotics is built on the concept of a control loop. Even 
Sheridan’s (2011) latest work uses the control loop as the basis for comparing 
several common concepts and model frameworks of human–machine interaction. 
In some sense, being independent can be thought of as an agent having the capacity 
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to close the behavioral sense-act loop, visualized as a complete green oval in 
Figure 9. In the dependence example, the sense-act loop was incomplete due to 
some lack of capacity, as shown by the red oval interrupted by the lacking capacity 
in Figure 9.  

 

Figure 9 Dependence and Independence interpreted as control loops 

Indigenous capabilities of an agent are multi-faceted and not a unitary 
component, indicated by the multiple boxes inside of the agent in Figure 9. An 
agent’s capacity is comprised of multiple types of knowledge, skills and abilities 
and these determine what the agent is capable of accomplishing independently. 
This means an agent can be independent in some cases and dependent in others, as 
shown in Figure 9. It can be useful to think of the multiple facets of dependence 
metaphorically as a jigsaw puzzle piece. The structure indicates areas of 
independence and the voids in the piece indicate areas of dependence, as shown in 
Figure 10. 
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Figure 10 Puzzle piece metaphor for capacity 

Besides being multi-faceted, capacity is also complicated because it is context 
dependent. An agent’s capacity is typically described abstractly (e.g. the robot can 
pick up blocks). This is represented by the base capacity of the agent, shown as a 
blue puzzle piece in Figure 11. As capacity is applied in a concrete instance of an 
activity, context can inhibit or enhance the abstract capacity (e.g. I cannot lift 
blocks weighing over 100lbs.). This is represented by the yellow activity section of 
Figure 11 and the associated yellow context overlay on the blue puzzle piece 
indicating areas of the abstract capacity which are still viable in the context of the 
specific activity. Context can come from a variety of sources besides the activity, 
which we label the situation in Figure 11. This includes the environment, the 
weather, the history, and anything else that might affect abstract capacity (e.g. I can 
lift blocks weighing over 100lbs if they are under water). The surrounding green 
context in Figure 11 has an associated green puzzle piece overlay indicating how 
context inhibits or enhances capacity. 
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Figure 11 Capacity and the importance of context 

In summary, dependence with respect to capacity is important to robot designers, 
as the goal of making a robot more autonomous requires designers to develop the 
necessary capacity for independence. However, designing for teamwork requires 
designing for interdependence, not just independence. 

6.1.2 Interdependence Is About Relationships 

In our treatment, the concept of dependence with respect to capacity does not 
include other agents or their abilities, nor does it include interactions with other 
agents. These interactions or relationships are commonly described as one being 
“dependent on another.” This sense of dependence can be associated with the 
prescriptive dimension of autonomy (Bradshaw et al., 2004). Examples include 
synchronized movements, delegations, and authority structures to, for example, 
permit or prohibit various actions. These all play the role of external regulatory 
systems, by which we mean any set of devices that serves to constrain or promote 
behavior in some direction (Feltovich et al., 2007). While it is perfectly fine 
linguistically and otherwise to use dependence to describe both senses of 
dependence, we will refer to this second sense of dependence with respect to 
regulatory relationships as interdependence. 

Both senses of dependence provide reasons for establishing a relationship. 
However, a fully defined interdependence relationship includes both the reason for 
it (i.e., what is it trying to address) and the remedy (i.e., how is it going to be 
addressed). The reason for the relationship can include a capacity limitation or a 
regulatory relationship. The remedy is provided by creating mechanisms that 
support an interdependent relationship and these mechanisms are the creative 
medium of the designer. It is these mechanisms that compose the teamwork 
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infrastructure (Figure 2) by which we can add not only capability, but also 
flexibility and resilience to a system. 

The main issue that complicates understanding the concepts of dependence and 
interdependence is the cascading nature of the two concepts. Dependence with 
respect to capacity is managed by establishing supporting interdependent 
relationships. Conversely, establishing an interdependent relationship can impose 
new dependencies, as shown in Figure 2. These can cascade as the designer makes 
choices, so that a dependency inspires an interdependent relationship, which 
creates other dependencies, requiring additional interdependent relationships and 
so on. 

As a simple example of cascading requirements, consider a blind person and a 
guide dog. There is an initial dependence with respect to capacity: The person lacks 
the ability to see. This is the reason for the dependence. The remedy is to establish 
a relationship with a guide dog to provide navigation support. This relationship, in 
turn, creates a new dependency based on the need to control where the dog guides 
the person. The first dependency, needing navigation support, is based on capacity 
(i.e., the person not being able to see) and was inherent in the problem. The second 
dependency, needing control guidance, is based on obligations incurred by 
establishing an interdependent relationship (i.e., the dog will guide the person). 
Notice that the second dependency did not exist until we established the 
interdependent relationship and it would cease to exist if the dog were no longer 
needed for guidance. The second dependency is a product of the remedy. 

6.1.3 Interdependence Relationships Must Be Complementary 

To be a complement means to complete something14. There are two different 
ways interdependence can relate to being complementary; the connections and the 
capabilities. 

In order to support an interdependent relationship the connections, as described 
in Chapter 1.4, need to be designed to work together. We refer to this as the 
endpoints being complementary. Using a train coupling shown in Figure 12 as a 
metaphor, each car must have a coupling that is designed to fit into the other 
properly, perform the function of holding the two cars together and both must be 
able to support the weight. In other words, the complete coupling is composed of 
the two endpoints. Sometimes designing a connection that is complementary is 
trivial. From the example in Chapter 1.4, providing a start button that allows the 
human task the robot and an algorithm to trigger when that button is pushed is 
indeed trivial. Other times, ensuring a complementary relationship is not so clear. 
How do you convey the amount of uncertainty a control algorithm has and when is 

                                                 
14 Definition from http://www.thefreedictionary.com/complement (accessed on 05JULY2014). 
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it relevant to the human? How do you provide an appropriate appraisal of current 
robot status if the robot has no sensors to measure status? How do you provide the 
intent of the human to an algorithm? These are more challenging interdependencies 
to support. Regardless of the complexity, the connections of interdependent 
relationships must be complementary.      

For capabilities, the requirement is not as stringent. There are cases where 
capabilities of the human and robot overlap completely and either can do the task 
without requiring the other. However, some cases rely on the paring of capabilities 
and the relationship must be complementary capabilities. As a simple example, 
imagine a train engine pulling a cargo car (as depicted in Figure 12). This situation 
would commonly be described as the cargo car being dependent on the engine to 
move. Based on our definitions, the car is indeed dependent (i.e., lacking capacity) 
and the two parties are interdependent (i.e., there is a relationship). This 
relationship is not as simple as the engine providing power for the car. The engine 
relies on the car to provide the cargo capacity. Note that this example relies on 
there being a joint activity of the train (consisting of cargo car and engine) to move 
some cargo from A to B. If there would not be such a joint activity, the engine 
could just move without the car. Therefore, joint activity is the assumption under 
which interdependence is defined, and as a result, interdependence must be 
complementary in this case. 

 

 
Figure 12 Two train analogies describing the complementary nature of interdependence. 
The coupling is a complementary connection. The car and engine are complementary 
capabilities. 
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6.1.4 Interdependence Concerns Both Required (Hard) and Opportunistic 
(Soft) Relationships 

Much of the robotics work today is about required (i.e., hard) interdependence 
relationships that stem from lack of capacity, e.g., the train analogy depicted on the 
left side of Figure 13. However, it is our view that to achieve true teamwork, 
interdependence should also include opportunistic (i.e., soft) interdependence 
relationships. Soft interdependence does not stem from a lack of capacity. It arises 
from recognizing opportunities to be more effective, more efficient, or more robust 
by working jointly, as depicted on the right side of Figure 13. 

 
Figure 13 Hard (required) versus soft (opportunistic) interdependence relationships. 

Soft interdependence is optional and opportunistic rather than strictly required. It 
includes a wide range of helpful things that a participant may do to facilitate team 
performance. Examples include progress appraisals (“I’m running late”), warnings 
(“Watch your step”), helpful adjuncts (“Do you want me to pick up your 
prescription when I go by the drug store?”), and observations about relevant 
unexpected events (“It has started to rain”). The importance of these different types 
of monitoring and feedback are well documented in human team literature (Guzzo 
& Salas, 1995; Larson & LaFasto, 1989; McIntyre & Salas, 1995; Smith-Jentsch, 
Baker, Salas, & Cannon-Bowers, 2001). All of these examples and many others 
reinforce the need to consider all internal cognitive processes of the parties 
involved, not just the interactive ones supporting hard constraints such as a lack of 
capacity. “It is not sufficient that members be technical experts – they must also be 
experts in the social interactions that lead to adaptive coordination action (i.e. 
teamwork)(Salas et al., 2006).” 

Many aspects of teamwork are best described as soft interdependencies, which 
suggest the importance of designing mechanisms to support them. In studying 
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expert performance in human teams, Salas et al. observed that “Expert teams create 
mechanisms for cooperation and coordination (Salas et al., 2006).” This is 
consistent with our observations to date which suggest that good teams can often 
be distinguished from great ones by how well they manage soft interdependencies. 

6.1.5 Interdependence Recasts Context and Determines How Common 
Ground Can Be Reached 

Context matters and interdependent relationships in support of joint activity 
recast context. Instead of single agents in the context of individual activities, in 
teamwork all parties involved will be in the context of the same joint activity. In 
addition to each agent having its own situation, there is now a need to be aware of 
the situation enveloping all parties, as depicted in Figure 15. Consider an example 
of playing the same sheet of music as a solo versus a duet. Clark (1996) observes 
that “a person’s processes may be very different in individual and joint actions, 
even when they appear identical.” The difference is that the process of a duet 
requires ways to support the interdependence among the players, hence the 
interdependent relationship of playing as a duet recasts the context in which the 
sheet of music is played. 

With new context comes a new definition of what is pertinent. Clark states that 
“all collective actions are built on common ground (Clark & Brennan, 1991).” 
Common Ground refers to the pertinent mutual knowledge, mutual beliefs and 
mutual assumptions that support interdependent actions in some joint activity 
(Clark & Brennan, 1991; Klein et al., 2004). The challenge with common ground is 
that it requires a grounding process (Brennan, 1998; Klein et al., 2005) to establish 
and maintain it. People develop the capabilities to support this process through 
social engagements throughout their life, but robots require support mechanisms to 
be designed into them. A field study by Stubbs et al. state that “users collaborating 
with the remote robot showed differences in how the users reached common 
ground with the robot in terms of an accurate, shared understanding of the robot’s 
context, planning, and actions (Stubbs et al., 2007).” This is consistent with the 
three key interdependence relationships (observability, predictability and 
directability discussed in the next chapter) we have identified as key to reach 
common ground.  
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Figure 14 Context recast by interdependence 

In summary, interdependence is the set of relationships used to manage 
dependencies. These relationships must be complementary among the parties 
involved. The relationships can be required or opportunistic. By engaging in such 
relationships, the context of the activity now encompasses all parties involved as a 
single joint system and these relationships then determine the available pathways to 
reach common ground. Our definition identifies the reasons for interdependent 
relationships and points to support for interdependent relationships as the remedy. 
However, this alone is not enough to provide the sufficiently detailed requirements 
necessary for implementation. Our system model will provide this missing link. 
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Everything must be made as simple as possible. But not simpler. 

 

– Albert Einstein  

 

7 Coactive System Model15 
System models can be useful tools if they guide the designer to the most relevant 

issues to be addressed in designing a system, help to define appropriate 
specifications, and aid in comparing and contrasting alternatives. We will explain 
how our model provides simple guidelines for determining interdependence 
requirements. Specifically, we will describe how we propose to “manage” 
interdependencies and “support” interdependent relationships. In this section, we 
first discuss Fong’s (2001) collaborative control system model, which we view as 
one of the best existing models of human-machine collaboration. We then propose 
a new coactive system model and explain how it extends Fong’s model to facilitate 
specification of interdependence requirements.  

7.1 Fong’s Collaborative Control System Model 

Fong’s (2001) collaborative control model is one of the more descriptive models 
in the literature. In his thesis work, Fong (2001) presents a collaborative control 
system model, as shown in Figure 15. The role of the human in this thesis is to 
provide assistance to a robot that is trying to navigate (Fong, 2001). Basically, the 
human supplements the robot’s limited perceptual and cognitive capacity. Fong’s 
(2001) model depicts perceptual and cognitive information being provided to the 
human through a user interface (UI). It also depicts control input back to the 
perceptual and cognitive components (Fong, 2001). Fong’s (2001) innovation was 
to suggest the human be allowed to “close-the-loop” for both perception and 
cognition. By “close-the-loop,” he was referring to the making of either a 
perceptual or cognitive decision for a robot (Fong, 2001). An example of a 
perceptual decision from Fong’s (2001) thesis work was answering the question, 
“Are these rocks?” and a cognitive decision example was answering the question, 
“Can I drive through?” If the questions were not answered in a timely manner, the 
robot would make the decision, thus this model allowed for opportunistic support, 
indicated by the dashed arrows for “closing-the-loop” (Fong, 2001). What enabled 
the distinction in Fong’s system model was consideration for the internal processes 
of the robot, in other words, not modeling the robot as a black box. If the 

                                                 
15 This chapter is adapted from  (Johnson et al., 2014) 
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perceptual and cognitive components were not modeled, there would be no way to 
vary the interaction with them. 

 

 
Figure 15 Fong’s Collaborative Control System Model from (Fong, 2001). 

7.2 Coactive System Model 

What distinguishes joint activity from individual activity? Consider an example 
of playing the same sheet of music as a solo versus a duet. Clark (1996) observes 
that “a person’s processes may be very different in individual and joint actions, 
even when they appear identical.” The difference is that the process of a duet 
requires ways to support the interdependence among the players. From a designer’s 
perspective, this means participants in a joint activity have additional requirements 
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beyond the taskwork requirements. Where do these requirements stem from? They 
derive from interdependence and the need to understand and influence those 
engaged in the joint activity. In our framework, these requirements concern 
observability, predictability, and directability (OPD). The core of our system model 
is an abstracted interface, depicted in the middle of Figure 16. The interface 
captures the requirements for supporting interdependence and should shape the 
design of both the UI of a human operator and the robot’s autonomous capabilities. 
We will first explain OPD and then describe the rest of the model by explaining 
how it extends Fong’s (2001) collaborative control system model. 

 

 
Figure 16 Coactive System Model based on observability, predictability, and directability 

(OPD)16. 
 

                                                 
16 Note that we are not advocating a particular internal model for either the robot or the human. We are simply 
highlighting the importance of internal processes as in Clark’s (1996) participatory actions and Fong’s (2001) 
system model. 
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7.2.1 Observability, Predictability, and Directability 

Observability means making pertinent aspects of one’s status, as well as one’s 
knowledge of the team, task, and environment observable to others. Since 
interdependence is about complementary relations, observability also involves the 
ability to observe and interpret pertinent signals. This correlates with Clark’s 
(1996) statement that communicative acts are joint actions and his concept of joint 
action ladders. Though not called “observability” in the 10 challenges17 (Klein et 
al., 2004), this concept aligns with Challenge 5, revealing status and intentions, and 
Challenge 6, interpreting signals. It also aligns with Challenge 9, attention 
management, which is part of Clark’s joint action ladder is attention management. 
Observability is also consistent with work in the HRI domain (Sycara & 
Sukthankar, 2006), which lists team knowledge as an important facet of human-
agent interaction. Observability plays a role in many teamwork patterns e.g., 
monitoring progress and providing backup behavior. 

Predictability means one’s actions should be predictable enough that others can 
reasonably rely on them when considering their own actions. The complementary 
relationship is considering others’ actions when developing one’s own. Mutual 
predictability is Challenge 3 of the 10 challenges (Klein et al., 2004) and is also 
listed as one of the three important facets of human-agent interaction (Sycara & 
Sukthankar, 2006). Dragan, Lee, and Srinivasa (2013) makes an interesting 
distinction between predictability and legibility, but for simplicity we will use 
predictability to capture both matching expectation and inference from action. 
Predictability may involve the use of a priori agreements, e.g., Challenge 1 of the 
10 challenges (Klein et al., 2004), or it may involve the use of models, e.g., 
Challenge 2 of the 10 challenges (Klein et al., 2004). Challenge 2 refers to 
adequate models, which allows for the use of complex formal models or much 
simpler mechanisms, such as interface elements, which may be learned through 
training. Predictability is also essential to many teamwork patterns such as 
synchronizing actions and achieving efficiency in team performance. 

Directability means one’s ability to direct the behavior of others and 
complementarily be directed by others. Directability includes explicit commands 
such as task allocation and role assignment as well as subtler influences, such as 
providing guidance or suggestions or even providing salient information that is 
anticipated to alter behavior, such as a warning. Directability is Challenge 4 of the 
10 challenges, although it is only described as agents being directable and does not 

                                                 
17 Below we discuss all but 2 of the 10 challenges. Challenge 8, relating to a collaborative approach to teamwork 
and autonomy, is pervasive in coactive design and did not need special mention. Challenge 10, controlling the 
costs of joint activity, is not directly addressed in this paper we note that interdependence analysis helps designers 
to focus their attention and resources on the problems and opportunities where performance payoffs are most 
likely to occur. 
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include the complement. Challenge 7, goal negotiation, could be viewed as a type 
of mutual directability. Directability is also one of the important facets in human-
agent interaction (Sycara & Sukthankar, 2006), although only role assignment was 
considered. Teamwork patterns that involve directability include such things as 
requesting assistance and querying for input during decision making. 

Others in the HRI community have also identified OPD as critical issues. A 
notable example is Stubbs, Hinds, and Wettergreen’s (2007) field study of HRI; 
they do not use the same terminology we do, but the correlation is evident. They 
state that “had the science team been able to observe the robot executing 
commands in the desert, they would have had enough contextual information to 
disambiguate problems” (Stubbs et al., 2007, p. 45). This is akin to observability in 
our model. They also state, “we noticed that issues arose around why the robot 
made certain decisions” (Stubbs et al., 2007, p. 47). This is an issue of predicting 
the robot’s behavior. The system was assumed to have no directability since “only 
the robot could perform certain actions, and the science team couldn’t exert 
authority in those situations” (Stubbs et al., 2007, p. 49). However, it is not hard to 
imagine how better support for directability would have been beneficial in the 
system being studied. 

By using the OPD framework as a guide, a designer can identify the 
requirements for teamwork based on which interdependence relationships the 
designer chooses to support. The framework can help a designer answer questions 
such as “What information needs to be shared,” “Who needs to share with whom,” 
and “When is it relevant.” It is important to remember that it is not just about what 
information you share, but also about what you do not share. Sometimes too much 
information can be just as big a problem. The goal of a designer is not to maximize 
or minimize OPD. It is to attain sufficient OPD to support the necessary 
interdependent relationships. 

7.2.2 How the Coactive System Model Extends Collaborative Control 

Based on our definition of interdependence, we extend Fong’s insightful model 
in several ways. The first extension is to include the human as an actor in the 
system model. Fong’s (2001) system model is not alone in depicting the connection 
to a human as input and an output (e.g. control and display) and excluding the 
internal processes of the human (Cervin, Mills, & Wünsche, 2004; Ding, Powers, 
Egerstedt, Young, & Balch, 2009; Enes & Book, 2010; Fong, 2001; Michaud et al., 
2010). To design for collaboration, it is essential to understand what the input and 
output arrows between the human and the rest of the system represent, as is the 
case in Figure 2. However, Fong does provide additional insight the others do not 
by connecting the user interface to specific internal components of the robot, 
specifically the perceptual and cognitive components. This implies the type of 
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input and output that might be necessary. When we include the human in our 
model, it is not just as a black box or an endpoint. The human is a full actor, 
making coactive design considerations between partners symmetric, although the 
capabilities of each may not be. This means the machine could potentially “close-
the-loop” for the human at any of the dimensions that compose the human’s 
internal processes, as shown by the bi-directional arrows in Figure 16. This is more 
in line with the original interpretation of mixed-initiative interaction (Allen et al., 
1999) than with collaborative control, which focused on a human supplementing a 
robot’s deficiencies. This extension also means the human’s potential to sense and 
act on the environment directly is modeled, in addition to acting through the robot, 
which may be appropriate for some systems. The composition of the human’s 
internal model and that of the robot are not important to the coactive system model; 
composition can vary based on the designer’s preference. In Figure 16, we are not 
advocating any particular internal models, merely providing examples to highlight 
the importance of internal processes as Clark (1996) points out with his duet 
example. Incorporating them explicitly in the model allows for inclusion in design 
considerations, as Fong (2001) did to enable the human to better support the robot. 

The second extension to Fong’s model is to include any and all relevant 
processes of the participant’s internal model. Perception and cognition are just two 
of the processes that may be involved, but all processes can potentially benefit 
from support. It may seem odd to “close-the-loop” on sensing and acting, but 
people do this every day. A sensing example of support could be one person 
informing another about something they have noticed (e.g., “I saw the book you are 
looking for in my local bookstore”). An example of providing support for acting 
could be holding the door open for somebody, so they do not have to do it 
themselves. This extension also includes allowing for any permutation of “closing-
the-loop.” For example, sensing input is not limited to “closing-the-loop” on 
sensing, but may affect planning, decision making, or even the action. The plan 
may affect the decision or the interpretation of the new data. Fong’s (2001) model 
could potentially mislead a designer that the cognitive processes are simple and 
sequential, when most activity of any complexity involves iterative framing and 
reframing of the problem. Our model makes no assumptions about the order of 
operations. 

There is one more extension to the system model that fundamentally 
distinguishes the Coactive system model. Our model shifts the focus from 
individual functional components, based on supplementing capacity, to team 
functional components based on supporting interdependence. In essence, we 
decouple the individual taskwork from the teamwork. We do this by using the 
interface as a layer of abstraction that represents the mechanisms required to 
support interdependence. Here we are using interface in its general sense of a 
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boundary between systems, as opposed to the typically graphical component for 
input and output commonly called the user interface. This allows different internal 
models of robots and humans to co-exist in the same model of the human-machine 
team. For example, Figure 16 shows a derivation of a standard Sense-Plan-Act 
model for a robot combined with a derivation of a Belief-Desire-Intention model 
for the human. Notice that the arrows from, for example, observability do not 
connect to particular parts of the robot’s or the human’s internal model. This is 
because observability may be needed to support any of the processes, such as 
interpretation, planning, or decision making. We show different example internal 
models for the robot and the human to emphasize that our model is not dependent 
on the underlying implementation. 

In summary, this chapter describes how we “manage” interdependencies and 
“support” interdependent relationships. Our system model highlights three key 
team capabilities, over and above task capabilities, that are needed for effective 
human-machine collaboration: observability, predictability and directability. For 
team members, these three capabilities enable resilience, allowing them to 
“recognize and adapt to handle unanticipated perturbations” (Woods & Hollnagel, 
2006). From a designer’s perspective, observability, predictability, and directability 
are important because they provide guidance on how to identify design 
requirements. By determining how these capabilities must be supported in order to 
be capable of understanding and influencing team members, designers can create a 
specification. This design stance necessarily shapes not only the “user interface” 
for the human but also the implementation of a robot’s autonomous capabilities. 
The shaping process is provided by the three team capabilities in our system model 
which capture three of the key elements required for effective teamwork. 
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It is common sense to take a method and try it. If it fails, 
 admit it frankly and try another. But above all, try something. 

 
– Franklin D. Roosevelt 

 

8 Coactive Design Method18 

Intuitively, effective teamwork implies coordination of activity, cooperation 
among participants and collaboration. However, all these terms are too 
abstract to give direct guidance to human-machine system designers and 
developers. The challenge is to translate high-level concepts such as 
teamwork and collaboration into specific requirements that can be 
implemented within control algorithms, interface elements, and behaviors. 
The result of this gap between high-level concepts and implementation is 
what we will call the Gulf of Implementation. This is similar to the issues 
between the user and the technology, which Norman refers to as the Gulf of 
Evaluation and the Gulf of Execution (Norman, 1988)19  except it is a gap 
between high level concepts like teamwork and collaboration and low level 
implementations of such behavior. 

 
Figure 17 The Gulf of Implementation is a gap between high level concepts like teamwork 

and collaboration and low level implementations of such behavior. 

                                                 
18 This chapter is adapted from  (Johnson et al., 2014) 
19 The gulf of execution is the degree to which the interaction possibilities of an artifact, a computer system or 
likewise correspond to the intentions of the person and what that person perceives is possible to do with the 
artifact/application/etc. In other words, the gulf of execution is the difference between the intentions of the users 
and what the system allows them to do or how well the system supports those actions (Norman, 1988). 
The gulf of evaluation is the degree to which the system/artifact provide representations that can be directly 
perceived and interpreted in terms of the expectations and intentions of the user (Norman 1988). Or put differently, 
the gulf of evaluation is the difficulty of assessing the state of the system and how well the artifact supports the 
discovery and interpretation of that state (Norman, 1991). "The gulf is small when the system provides information 
about its state in a form that is easy to get, is easy to interpret, and matches the way the person thinks of the 
system" (Norman, 1988, p. 51). 
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Figure 18 The Coactive Design Method 
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The thesis puts forth the concept that managing interdependent activity is the 
key design element for developing collaborative systems. It is through 
understanding and modeling interdependence in a human-machine system that we 
can provide the specification necessary to bridge the Gulf of Implementation. We 
further suggest that systems designed to support interdependence more effectively 
will also be better at bridging the Gulf of Evaluation and the Gulf of Execution 
(Norman, 1988) enabling improved performance. 

With an understanding of interdependence and our system model, we can now 
present the general method for Coactive Design, as shown in Figure 18. There are 
three main processes involved in the Coactive Design method: an identification 
process, a selection and implementation process, and an evaluation of change 
process. Similar to most design processes, these will typically be iterative 
processes that involve feedback and refinement. 

8.1 The Identification Process 

To assist in the identification process, we propose an analysis tool that we call the 
Interdependence Analysis (IA) table, as shown in Figure 19. It is similar to 
traditional task analysis techniques (Annett, 2003; B. Crandall & Klein, 2006; M R 
Endsley et al., 2003; Schraagen et al., 2009), but we extend these types of analysis 
tools to support designing for interdependence by: 

 Allowing for more types of interdependence than just task dependency 
 Representing other participants in the activity by name or by role 
 Allowing for assessment of capacity to perform 
 Allowing for assessment of capacity to support 
 Allowing for soft constraints 
 Allowing for consideration of role permutations 
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Figure 19 Explanation of the different areas of the Interdependence Analysis (IA) table 

8.1.1 Identifying Required Capacities for Tasks 

The identification process requires a traditional task analysis as an input, as well 
as knowledge of the team members, their capabilities, and the anticipated situation 
(e.g., environment). The Left-most columns of the IA table are a traditional HTA 
(Annett, 2003), decomposing the task to an appropriate level of granularity. 
Following the HTA, we add a required capacities column to capture requirements 
in a manner similar to CTA (Schraagen et al., 2009) or GDTA (M R Endsley et al., 
2003). However, we do not limit this to informational needs and include 
knowledge, skills, and abilities such as sensing needs, perception needs, decision 
needs, and action needs. This enables consideration for supplementing team 
members with any required capacity. Just as tasks may have multiple subtasks, 
subtasks may have multiple capacity requirements. 

8.1.2 Enumerating Viable Team Role Alternatives 

The remaining columns are the heart of the IA. These columns enumerate the team 
role alternatives. They can be thought of as the adjustment options in Adjustable 
Autonomy or the initiative options in Mixed-Initiative. However, what they really 
are is an enumeration of the possible ways a team can achieve the task. A given 
alternative is represented by a set of columns. The first column in the set represents 
the primary individual performing the task. The remaining columns represent the 
other participants in the joint activity playing a supporting role. The columns can 
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be specific individuals, categories, or even roles. Multiple alternatives should be 
analyzed by changing the performer in each alternative, as shown in Figure 19. 

8.1.3 Assessing Capacity to Perform and Capacity to Support 

After the team alternatives are determined, the next step is the assessment. We are 
not looking at interdependence yet. We are just trying to understand the capacity of 
individual team members. To do so, we assess the individual in the column 
header’s ability to provide the required capacity as the “performer” or to support 
the performer in providing the required capacity. In order to aide future analysis, 
the assessment process uses a color coding scheme, as shown in Figure 20. The 
color scheme is dependent on the type of column being assessed. The categories 
were chosen to help identify important system characteristics which will be 
discussed in the next section.  

 
Figure 20 Interdependence Analysis Color Scheme. Note that the "Performer" column has a 

different meaning than the "Supporting Team Member" column. 

Under the “performer” columns, the colors are used to assess the individual’s 
capacity to do the task. The color green in the “performer” column indicates that 
the performer can do the task. For example, a robot may have the capacity to 
navigate around an office without any assistance. Yellow indicates less than perfect 
reliability. For example, a robot may not be able to reliably recognize a coffee mug 
all the time. Orange indicates some capacity, but not enough for the task. For 
example, a robot may have a 50 pound lifting capacity, but would need assistance 
lifting anything over 50 pounds. The color red indicates no capacity, for example, a 
robot may have no means to open a door. 

Under the “supporting team member” columns, the colors are an assessment of 
that team member’s potential to support the performer. The color red indicates no 
potential for interdependence, thus independent operation is the only viable option 
for the task. Orange indicates a hard constraint, such as providing supplemental 
lifting capacity when objects are too heavy. Yellow is used to represent 
improvements to reliability. For example, a human could provide recognition 
assistance to a robot and increase the reliability in identifying coffee mugs. Green 
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is used to indicate assistance that may improve efficiency. For example, a robot 
may be able to determine the shortest route much faster than a human. 

8.1.4 Identifying Potential Interdependence Relationships 

Once the assessment process is finished, the color pattern can be analyzed. The 
color coding scheme in Figure 20 was chosen because it provides the designer 
some insight in the characteristics of the system and the potential interdependence 
relationships. Figure 21 is not an assessment of any particular task, but a list of 
feasible color combinations based on our color scheme in Figure 20. Figure 21 also 
provides a general interpretation of the color combination. For example, if the 
performer is 100 percent reliable (green) and the supporting team member is not 
capable of providing assistance (red) then the interpretation is that the performer 
must meet the required capacity, whatever it may be, independently. If the 
supporting team member is capable of assisting (green or yellow), it might still be 
worth supporting, because it provides an alternative method for meeting the 
required capacity. 

Overall, the colors in the first column provide an understanding of how the 
performer would fare if required to meet the capacity requirement “autonomously.” 
Green in the “performer: column means an autonomous approach would be fine. 
Colors other than green in the “performer” column indicate some limitation of the 
performer, such as potential brittleness due to reliability (yellow), hard 
interdependency due to lack of capacity (orange), or just a complete lack of 
capacity (red). 

The “supporting team member” columns provide an understanding of what type of 
interdependence relationships could potentially be supported. The color red in 
these columns indicates that there is no chance for assistance. This makes the 
performer a single point of failure. If the performer is less than 100 percent 
reliable, you will have a brittle system. However, if you can provide support for 
interdependence then you can avoid the single point of failure. Colors other than 
red in the “supporting team member” columns indicate potential required (orange) 
or opportunistic (yellow and green) interdependence relationships between team 
members. The hard interdependencies are usually easy to identify because you 
cannot complete the task without it. Soft interdependencies tend to be more subtle, 
but provide valuable opportunities for teamwork and alternative pathways to a 
solution. Though it is not always possible to support every possible 
interdependence relationship, it is usually beneficial to support as much as time and 
money will allow because each provides some flexibility in the system.  

These patterns suggest three guidelines for identifying interdependence 
relationships. The first is looking for team members who lack capacity and those 
that can provide it. The second is looking for team members whose capacity is not 
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100 percent reliable and team members that can supplement it. The third is looking 
for opportunistic relationships based on capacity overlap between team members. 

 

 

Figure 21 Feasible interdependence combinations based on the IA table color scheme. The 
areas in the “supporting team member” columns that are not red indicate potential required 
(orange) or opportunistic (yellow and green) interdependence relationships between team 
members. 

8.1.5 Determining OPD Requirements 

To determine the specific OPD requirements, the IA table is used to help provide 
a detailed specification based on who needs to observe what from whom, who 
needs to be able to predict what, and how members need to be able to direct each 
other. As an example, we have created a small IA table based on Fong’s (2001) 
Collaborative Control work, as shown in Figure 22. In this case, the robot is 
capable of performing obstacle avoidance; however, it is less than 100 percent 
reliable in interpreting if an obstacle is passable. In Fong’s (2001) example, the 
human was capable of providing assistance, thus increasing the reliability of the 
robot in this task. The requirements can be derived from analyzing the IA table in 
Figure 22. First we identify the alternatives we wish to support; in this case it is the 
human assisting with interpretation of obstacles. Next, we consider the relevant 
interdependence relationships. Note that task dependencies can play a role here. 
The human’s ability to interpret depends on being able to sense the obstacle, so 
there is an observability requirement. Once the human has interpreted if the 
obstacle is passable, this information must have a way to alter the robot’s behavior, 
so there is a directability requirement. Implied in all of this is a predictability 
requirement that the robot will notify the human when assistance is needed before 
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proceeding. These particular OPD requirements are based on the desire to support a 
particular interdependence relationship: the human assisting in interpretation of 
whether an obstacle is passable. This example demonstrates how OPD 
requirements derive from the role alternatives the designer chooses to support, their 
associated interdependence relationships, and the required capacities. 

 

 
Figure 22 Interdependence analysis example from Fong's (2001) Collaborative Control 
work, showing observability and directability requirements based on choosing to allow the 
human to provide interpretation assistance to the robot during navigation. 

8.2 The Selection and Implementation Process 

The selection and implementation process takes the set of relationships from the 
identification process and determines mechanisms that are capable of meeting the 
requirements. There are almost always multiple ways to address a requirement. 
This is a creative process that will likely remain more of an art than a science, but 
the OPD framework does provide evaluation criterion. The main criterion for 
selection is sufficiency: Does it meet the OPD requirements specified in the IA 
table? Other possible criteria include leveraging mechanisms across multiple 
relationships. For example, periodic progress updates could fill the requirement for 
relationships requiring knowledge of current status as well as ones requiring 
completion notification. 

Using Fong’s (2001) navigation example again, the requirements were for the 
robot to predictably request assistance, for the human to be able to observe the 
obstacle, and for the human interpretation of whether the obstacle was passable to 
direct the robot’s behavior. His solution (Fong, 2001) was a PDA interface that 
would present the human with an image of the obstacle and a yes-or-no dialogue 
whenever there was uncertainty about an obstacle. The response in the dialogue 
would determine the subsequent behavior. This is clearly a sufficient solution, 
although one could imagine alternative solutions that still meet the requirements. 
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8.3 The Evaluation of Change Process 

The evaluation of change process, in Figure 18, is critical because the choice of 
mechanism can change the required OPD on other relationships as well as add, 
remove, or alter existing interdependence relationships, thus affecting 
performance. This is a restatement of the “substitution myth” (Christoffersen & 
Woods, 2002), tailored to understanding the impact of design choices. The 
“substitution myth” concluded that reducing or expanding the role of automation in 
joint human-automation systems may change the nature of interdependent and 
mutually-adapted activities in complex ways. Our previous work demonstrated 
experimentally how design choices can affect performance (Johnson et al., 2012). 
Understanding the ways in which design choices affect the interdependent 
relationships is an important skill for any designer of a human-machine system 
engaged in joint activity. As each mechanism is implemented, it must be evaluated 
in the context of the entire system. This can lead to iterating through both the 
identification process and/or the selection and implementation process. Once an 
acceptable solution is reached from an interdependence standpoint, the design is 
ready to undergo more traditional evaluations using human factors and 
performance analysis. 

The Coactive Design method is a starting point for designers interested in 
building highly interdependent systems. It was designed to be simple to follow, so 
it does not enumerate every caveat and nuance of the process. In future work we 
will provide a set of coactive design principles to aide in interpreting the method 
and to help avoiding pitfalls in trying to follow it. 
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Simplicity is the ultimate sophistication. 

 

– Leonardo Da Vinci 

 

9 Joint Activity Testbed20 
Having presented the theory, the system model and the method, we turn to 

application of the ideas. The first application presented is a simulated testbed that 
was a catalyst for maturing both the theory and the analysis technique. Prior to the 
development of the Coactive Design method, the IA Table, or even the definition 
of interdependence, we wanted to understand the problem we were attempting to 
address better. We knew from the literature that there were issues with autonomy 
yielding its expected benefit (e.g., (Bainbridge, 1983; Norman, 1990; Woods & 
Sarter, 1997)). However, we wanted to uncover what relationships exist between 
autonomous capabilities and performance, as well as any other influencing factors. 
The challenge was finding an effective way to perform a controlled test in the 
complex domain of teamwork. We desired a type of interaction that was 
sophisticated enough to be interesting, yet simple enough to be clearly analyzed in 
great detail. So, we developed a joint activity testbed called Blocks World for 
Teams (BW4T). BW4T is a multiplayer game played in simulation. The game 
allowed for multiple human or software players in any combination. The goal of 
the game was for the team to find and deliver a sequence of colored boxes. This 
chapter presents the details of the testbed and the experimental results obtained 
from the testbed. 

9.1 Introduction 

It is commonly believed that increasing the autonomy of certain classes of 
systems will improve their performance. For example, the United States 
Department of Defense Unmanned Systems Roadmap (Department of Defense, 
2007) states “The Department will pursue greater autonomy in order to improve the 
ability of unmanned systems to operate independently, either individually or 
collaboratively, to execute complex missions in a dynamic environment (pg. 1).” In 
the context of a report on a Gulf oil spill, a recent IEEE article suggested 
“Automation techniques will improve not only the time that it takes to do these 
tasks but also the quality of the results" (Bleicher, 2010). 

                                                 
20 This chapter is adapted from (Johnson et al., 2012) 
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General conclusions of this sort can be misleading for a variety of reasons. 
Endsley’s work (Mica R Endsley, 1999) demonstrated that failures at “higher 
levels of autonomy” had a worse impact and that keeping the operator involved 
appeared to be optimal. Enes notes that providing feedback (i.e. supporting 
interdependence) yielded better performance than the same control algorithm 
without such feedback (Enes & Book, 2010). Cuevas notes opaque indications of 
automation’s status and behavior as a problem (Cuevas et al., 2007) and Brookshire 
demonstrates full autonomy as performing worse than all other conditions 
(Brookshire, Singh, & Simmons, 2004). In this chapter, we try to unify these issues 
and all issues where autonomy fails to deliver on its promise of improved 
performance as issues of managing interdependence. In complex joint activity 
involving mixed teams of humans and robots, increases in autonomy may 
eventually lead to degradations in performance if sufficient teamwork 
infrastructure to manage interdependence is not provided. 

More effective management of interdependence in joint activity will become 
increasingly important in the coming years. The sophisticated robots envisioned for 
the future will be increasingly collaborative in nature, not merely doing things for 
people, but also working together with people and intelligent systems. Though 
continuing research is needed to make agents and robots more independent during 
times when unsupervised activity is desirable or necessary (i.e., autonomy), they 
must also be more capable of sophisticated interdependent joint activity when such 
is required (i.e., coactivity). The mention of joint activity highlights the need for 
coactive human-agent-robot systems to support not only fluid orchestration of task 
handoffs among different people and machines, but also combined participation on 
shared tasks requiring continuous and close interaction. There are examples where 
this type of interaction is supported and cited as being critical. Some work focused 
on providing observability (Drury et al., 2006; Michaud et al., 2010), other work 
demonstrated success by additionally including predictability (Cooper, 2007; 
Cuevas et al., 2007; Nielsen et al., 2007) and others included directability 
alternatives (Humphrey, Motter, Adams, & Gonyea, 2009; Quigley et al., 2004). 
Because the capabilities for coactivity interact with autonomy algorithms at a deep 
level, they must be embedded in system design from the beginning, not layered on 
with a thin veneer after the fact, as is sometimes attempted. 

Based on this premise, we explore how changes in autonomy can affect various 
dimensions of performance when interdependence is neglected. Although our 
experimental results stem from a simple task domain performed in a simulation 
environment, both our findings in the literature on human teamwork and our 
experience in a variety of human-agent-robot teamwork experiments and field 
exercises give us reason to believe that these results eventually can be generalized. 
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9.2 Background 

In Section 3.2, we described the problems of what we refer to as "autonomy-
centered approaches." We conclude that: 

Even when self-directedness and self-sufficiency are reliable, matched 
appropriately to each other, and sufficient for the performance of the 
robot’s individual tasks, human-robot teams engaged in consequential 
joint activity frequently encounter the potentially debilitating problem of 
opacity, meaning the inability for team members to maintain sufficient 
awareness of the state and actions of others to maintain effective team 
performance. 

Many examples supporting this conclusion can be found in the literature. For 
example, Stubbs (2007) recently noted lack of transparency as a problem in 
human-robot interaction. More generally, this issue was identified more than two 
decades ago by Norman (1990) as "silent automation", and subsequently by Woods 
(1997) as "automation surprises." We will use the term "opacity" to highlight 
similar problems stemming from a lack of transparency in human-automation 
interaction. However, it is important to recognize that the challenges go far beyond 
simply not being able to see needed information. They can also involve 
predictability, directability or other challenges that must be addressed in order to 
turn autonomous systems into team players (Klein et al., 2004). 

9.3 The Experiment 

Our goal was to demonstrate that in human-robot systems engaged in joint 
activity, increasing autonomy without addressing interdependence may lead to 
suboptimal performance. All players participated by driving around a robot in a 
simulated world. There were two types of players. Human players manually drove 
(teleoperated) a robot themselves to participate as a player. We also had software 
agent players that could drive the robots around and provided some autonomous 
capabilities. The human players interacted with the artificial players through the 
software agent, but in general were not aware of the distinction and just thought of 
it as interacting with a robot. We will use the term agent player to refer to the 
robots controlled by software agents and which had some autonomous capability. 

We attempted to rule out over-trust in automation as a failure factor by ensuring 
that the agent players never made mistakes and that they exhibited reasonably 
intelligent behavior. We also attempted to ensure that the interaction between the 
human and the agent could be at a relatively high level of abstraction—i.e., that the 
agent’s capabilities for autonomy were not under-utilized. We did not want an 
agent capable of completing the mission autonomously managed at a low level akin 



Joint Activity Testbed 

84 
 

to teleoperation. To this end, we provided an interface appropriate to agents' 
capabilities. These elements of our experimental design are illustrated in Figure 23 
(A). 

Figure 23 (B) illustrates the general trends we expected to find in our results. We 
anticipated that the management burden the agent player imposed on the human 
player would decrease as agent autonomy increased. Such a finding would be no 
surprise, since reduction in human workload is both the common expectation and 
the major motivation for automation. However, we also anticipated that, without 
support for managing interdependence issues, the opacity of the work system to 
task participants would grow with increasing autonomy. Due to these competing 
factors of burden and opacity, we expected an inflection point in team 
performance, where the benefits of increasing autonomy eventually would be 
completely offset by the negative side effects of opacity. In other words, we 
predicted that the highest level of autonomy would not demonstrate the highest 
level of team performance, consistent with the general shape of the notional bar 
graph shown in Figure 23 (C). 

 

Figure 23 A) Illustration of our experimental design approach. B) Expected effects of 
increasing autonomy on the burden of managing the agent and the opacity of the agent to 
other task participants. C) Expected performance under treatment conditions of increasing 
autonomy, due to the competing factors of agent management burden and agent opacity. 

9.3.1 The Experimental Domain 

Our domain for this experiment is Blocks World for Teams (BW4T) (Johnson, 
Jonker, Riemsdijk, Feltovich, & Bradshaw, 2009). Similar in spirit to Winograd’s 
classic AI planning problem of Blocks World, the goal of BW4T is to “stack” 
colored blocks in a particular order. The task environment (Figure 24) is composed 
of nine rooms containing a random assortment of blocks and a drop off area for the 
goal. Each player controls an avatar in the game. This avatar can be moved 
between rooms to pick up and drop off blocks. For this experiment, teams were 
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composed of two players—a human and a software agent. The two players work 
toward the shared team goal, which is to deliver the colored blocks to the drop zone 
in a specified order. Players are limited in their awareness of the situation: they 
cannot see each other and they can only see blocks that are in their current room. 
Human players control their own avatar in order to find and deliver blocks. They 
also command their agent partner through an appropriate interface. Variations on 
the basic game, and different experimental manipulations, can be easily 
programmed into the environment. 

 

 

Figure 24 Example Blocks World for Teams (BW4T) interface 



Joint Activity Testbed 

86 
 

 

Figure 25 Defining Autonomy Treatments for BW4T 

9.3.2 Defining the Agent Teammate 

The algorithm chosen as the basis for the agent behavior reflects the most 
common approach we observed for human players of the game. This algorithm was 
chosen because we felt it would be easily understandable and predictable for most 
human players. The algorithmic solution is shown on the left side of Figure 25. The 
main goal (a color sequence) is composed of several subgoals (individual colors). 
To achieve any given subgoal, one simply finds the block of the appropriate color 
and delivers it. Note that these tasks need not be performed in sequence or by the 
same player. For example, a player could first find all the blocks and then deliver 
them. Alternatively, one player could find a block and another could deliver it. The 
overall task can be thought of as being composed of several find tasks and several 
deliver tasks, which are themselves composed of some decision and action 
primitives. The action primitives include going to a room, entering the room, going 
to a block, picking up a block, and putting down a block. The two main decisions 
are: 1) whether to look for a block or to deliver a block, and 2) which room to go to 
in order to look for a block. The agent player is designed to perform its task 



Joint Activity Testbed 

87 
 

“perfectly,” meaning it will perform any assigned task efficiently and will make 
rational decisions based on a complete and accurate recollection of where it has 
been and what it has seen in the past. It will also report when a task is completed. 
To be consistent across treatments, it only reports the completion status when an 
assigned task is completed, and does not provide any additional information. 

9.3.3 Defining the Autonomy Treatments 

In order to compare the effects of changing autonomy, we defined different 
experimental conditions or “autonomy treatments.” Additionally, we needed some 
way to rank the treatments ordinally in terms of their relative degree of autonomy. 
For this purpose we applied the concepts of levels of autonomy, proposed by 
Sheridan and Verplank (1978), and the neglect tolerance metric, proposed by Olsen 
and Goodrich (2003). Neglect Tolerance is a metric based on the amount of time a 
human can ignore a given robot performing a given task before the robot becomes 
unproductive. 

Treatment 1 requires the human player to direct the agent player using only the 
action primitives. The vertical black lines or bands in Figure 25 are used to indicate 
the portion of the algorithm that is performed autonomously by the agent player. 
During the time it spends in the black band, the agent can be considered as 
functioning at Sheridan’s highest level of autonomy, since the agent will perform 
on its own everything necessary to complete the task specified by the band. Outside 
the band, the agent is at the lowest level of autonomy and is completely reliant on 
the human for all decisions and actions. The behavior associated with each band is 
always initiated by the human teammate. The neglect tolerance correlates to the 
length of the band, though the band covers a portion of the algorithm and does not 
directly correspond to length of time, since some tasks take longer than others. 
However, longer bands cover more sections of the algorithm; thus, in general they 
entail more autonomy. The bands in treatment 1 are the shortest, requiring more 
direction from their human teammate and therefore have the lowest neglect 
tolerance. 

In Treatment 2, we combine several action primitives into a single action. For 
example, with a single command the agent can now be ordered to go to and enter a 
room. To inhibit under-utilization, the command set available to the human player 
was restricted to the new “higher-level” commands listed under treatment 2 in 
Figure 25. We are only combining action primitives, so Sheridan’s scale does not 
provide much guidance, but it is clear that agent neglect tolerance increases and, 
thus, this treatment has more autonomy for the agent than the first. 

Treatment 3 extends Treatment 2, further combining activities and provides the 
ability to command the agent to find a color. This new command delegates the 
decision on where to search to the agent, who is now required to provide its own 
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search algorithm and only reports when a color is found. This was implemented as 
a nearest-unsearched room algorithm. Prior to this experiment we ran some human-
human teams to better understand the requirements for designing our software 
agent players. The nearest-unsearched room algorithm was chosen because it was 
the most common approach for human players. Again, the human player was 
restricted to the commands that are listed under treatment 3 in Figure 25. 
Consistent with Sheridan’s specification for levels of autonomy, this is a higher 
level of autonomy than the previous treatment, since the agent can now make its 
own decision on how to achieve the find task. The level of neglect tolerance is also 
higher. 

Treatment 4 extends Treatment 3, combining all activity allowing the agent to 
choose whether to look for a block or deliver a block. This enabled the agent player 
to be able to complete the entire task without any assistance from the human 
player. This competence level equates to Sheridan’s highest level of autonomy and 
an infinite tolerance for neglect. The only required command by the human player 
is to tell the agent to achieve the goal. As in Sheridan and Verplank’s level ten, the 
agent “decides everything, acts autonomously, ignoring the human” (Parasuraman 
et al., 2000). 

We have intentionally left out any support for managing interdependence, except 
for communicating task completion status. There is neither communication about 
world state nor coordination of task activity. While this may seem extreme in this 
simple domain with obvious coordination needs, we believe it is not unrealistic 
given the prevalence of similarly opaque systems (Norman, 1990; Stubbs et al., 
2007; Woods & Sarter, 1997). By this means, we hoped to explore the relationship 
between autonomy and interdependence. 

9.3.4 Experimental Design 

24 participants (17 male and 7 female) were selected from a student population 
at TU Delft, with an age range of 19-39. We employed a complete randomized 
block design based on the autonomy treatment, with each participant performing 
each treatment once. The data are cross-classified by k = 4 autonomy treatments 
and b = 24 blocks, consisting of the individual participants. All participants 
received a demographic survey. They were trained on the game until they 
demonstrated proficiency by completing a simplified version of the task. Next they 
performed a series of trials, one for each treatment. The participant filled out a brief 
survey at the end of the experiment, evaluating team burden, opacity, performance, 
and preference in each treatment. 
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9.4 Results 

Our results include quantitative numeric data as well as subjective ranking data. 
For the former, we use standard approaches for normal data. For the ranked data, 
we used the nonparametric Friedman test. Based on our design, and using the   = 

0.05 level of significance, the critical value is 
 


.95,3
2

 = 7.815. 

9.4.1 Assessing Burden 

Our hypothesis predicted a decrease in agent management burden as autonomy 
increased from treatments 1 to 4. This is depicted in Figure 26(A). We asked the 
participants to rank how demanding it was to work with the agent in each 
condition, on a scale of 1 (least demanding) to 4 (most demanding). The results, 

shown in Figure 26 (B), indicate a very clear (
 


.95,3
2

 = 34.225) decrease in burden 

as autonomy increased. As a second, independent measure of burden, we also 
counted the number of commands the human player had to give to the agent 
teammate in each condition. Figure 26 (C) shows the results, which correlate with 
the subjective assessment. 

 

Figure 26 (A) Expected change in burden as autonomy increases (B) Subject ranking of 
agent management workload (burden) as autonomy increases across experimental 
treatments. (C) Average number of commands (Burden) as autonomy increases. 

9.4.2 Assessing Opacity 

Our hypothesis predicted an increased subject perception of opacity with 
increasing autonomy across the experimental conditions. This is depicted in Figure 
27 (A). We expected this to be reflected in reports of subjects having more 
difficulty in understanding what was happening and in anticipating the agent’s 
behavior as autonomy increased. An exit survey was used where subject were 
asked to rank their ongoing sense of awareness of current and future agent actions 
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in the different conditions on a scale of 1 (most aware) to 4 (least aware). The 
results in Figure 27 (B) show opacity increasing with increasing autonomy as 

predicted (
 


.95,3
2  = 49.700). This confirms our prediction about opacity in this 

experimental setting, and validates the general expectation. 

 

 

Figure 27 (A) Expected change in opacity as autonomy increases (B) Average subjective 
ranking of awareness (opacity) as autonomy increases across experimental treatments.  

9.4.3 Quantitative Performance Assessment 

We performed three different quantitative performance assessments: time to 
complete task, idle time, and error rate. 

9.4.3.1 Time to complete task 

The simplest performance metric is time to completion—i.e., delivering all the 
required blocks in the requested order. Figure 28 shows the results. At first glance, 
the results appear promising. We can clearly see the inflection point where 
performance begins to degrade rather than improve under conditions of increasing 
autonomy, consistent with the prediction of Figure 23 (C). The differences, 
however, were not statistically significant (p = 0.20). We believe that this is best 
explained by the fact that the task itself has a large amount of variance from run to 
run, and the penalty incurred by errors is less than the variance between runs. We 
note, however, that in 83% of the participants, the highest-autonomy condition 
(Treatment 4) was not the highest-performing condition by the time-to-completion 
criterion. 
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Figure 28 Time-to-completion as autonomy increases across treatments. 

9.4.3.2 Idle Time 

Another important performance measure is idle time (or wait time (J. W. 
Crandall & Cummings, 2007)). In the BW4T task, the agent player will be in near 
constant motion once a task has been assigned to it by its human teammate. Any 
idle time is indicative of inefficient use of the agent player (e.g., while it awaits the 
next command). Figure 29 (A) shows the results of average idle time for the agent 
player. There is a clear and significant decrease in idle time from treatment 1 to 4. 
On the surface, this could be taken as indicating more effective use of the agent 
player by the human, and thus suggesting improved performance. However, this is 
not borne out by the time-to-completion results (Figure 28). Additionally, we note 
that the amount of work done is fairly consistent across treatments. For example, 
the number of rooms entered and the number of boxes delivered does not change 
much across treatments. This also makes sense when one looks at the human 
player’s idle time, shown in Figure 29 (B). There is a slight decrease in idle time as 
the burden is reduced, but not much, and certainly not on the order of the change 
seen in the agent player. This indicates that the interaction efficiency (J. W. 
Crandall & Cummings, 2007) is not that significant. This could be due to an 
effective interface, but it also can be due to the ability to multi-task and complete 
interactions concurrent with motion. The interesting takeaway lesson from this 
result is that “keeping your agent busy” does not equate to improved performance. 
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Figure 29 (A) Average agent player idle time across treatment conditions. (B) Average 
human player idle time. 

9.4.3.3 Error Rate 

For some kinds of tasks, error rate can be a good way to compare performance. 
We measured this in three ways. Our first was the amount of time that both players 
spent holding the same color block (Figure 30 (A)). Since, for this experiment, the 
goals were composed of unique colors (no repeats), this represented a measure of 
some fraction of overall redundant activity or inefficiency in task performance. 
This type of error, for the most part, only occurred in treatment 4 and is a side 
effect of the high opacity of the highest-autonomy condition. These results are no 
surprise, since this is the only treatment in which the agent player can make its own 
decision about which block to pick up. However, this does emphasize that 
functional differences matter when automating tasks (Johnson, Bradshaw, 
Feltovich, Hoffman, et al., 2011). 
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Figure 30 (A) Average time holding the same color (inefficiency) (B) Number of lost boxes 
(C) Number of times a human player was blocked by their agent partner while trying to 
enter a room. 

A second measure of error is the number boxes lost—i.e., dropped in the 
hallway or placed in the drop zone erroneously. Since BW4T is very simple, there 
were not many mistakes made by the human players, but of the ten lost boxes, 50% 
of them occurred in treatment 4 and 30% occurred in treatment 1, as shown in 
Figure 30 (B). The boxes lost in treatment 1 were most likely due to the high 
workload imposed by the minimal amount of autonomy. However, treatment 4 
does not have the obvious workload challenges of treatment 1. In fact, it was 
clearly ranked as the least burdensome, so why would it have the highest 
occurrences of errors? We believe the high error rate is a side effect of the high 
opacity of the highest-autonomy condition. 

Our third measure of error was the number of times a player was blocked while 
entering a room. This measure is indirect because it is possible that the most 
efficient act would be to wait outside a blocked door, but in general it indicates 
poor coordination. As shown in Figure 30 (C), the human player was blocked in 
treatment 4 much more often, indicating significantly more coordination 
breakdowns than any other treatment. 

9.4.4 Subjective Performance Assessment 

9.4.4.1 User Performance Assessment 

We asked the subjects to identify which team they felt performed best. 
Treatment 3 was the clear winner, with 63% of the participants selecting it as the 
best performing treatment (Figure 31(A)). Only 17% of the subjects choose 
treatment 4 as the best performing. 
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Figure 31 (A) User Assessment of Performance vs. Autonomy (B) User Preference vs. 
Autonomy. 

9.4.4.2 User Treatment Preference 

Human acceptance is an important component of overall system performance in 
tasks like ours. We asked the participants to rank the agents in each experimental 
condition with respect to their preference as to which one they would like to play 
with again, on a scale of 1 (most like to play with again) to 4 (least like to play with 
again).  

Figure 31 (B) shows the results. Treatment 3 was preferred with statistical 

significance (
 


.95,3
2

 = 22.150). This result also demonstrates the inflection point 

anticipated by the increasing opacity in the system from Figure 23 (C). We suspect 
this is because in treatment 3 the human holds the overall plan, most of the context, 
and exercises the greatest degree of creativity. In this context, transparency and 
control (directability) may be more important than autonomy (independent 
operation), especially in light of the particulars of the autonomous task. 

We asked participants about the reasons for their rankings, and the responses 
were enlightening. Reasons for preferring Treatment 3 included: 

• Shared information 
• Able to anticipate 
• Predictable 
• Low burden 
• Cleverest 
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• Automatic, but still have control 

The first three reasons correlate with our predictions about opacity. The 
comment about low burden is interesting, because treatment 4 was objectively less 
burdensome. This comment suggests that there may be other types of burden 
besides the manual workload of tasking the agent. The comment about treatment 3 
being cleverest is also interesting, because treatment 4 is objectively the most 
capable (clever) based on what the agent can do on its own (Figure 25). Perhaps 
this suggests that sometimes being more independent may not necessarily lead to 
being viewed as more clever. The final reason is also important because it relates to 
the broader issue. We focused on opacity in order to keep the experiment simple, 
but predictability, directability and other challenges in making automation a team 
player (Klein et al., 2004) are no doubt also affected by increased autonomy. 

9.5 Conclusions 

The results of our initial limited evaluation support our claim that increasing 
autonomy does not always improve performance of the human-machine system. In 
our example, increasing autonomy improved performance up to a point, but then 
there was an inflection point where performance decreased, depicted in Figure 32. 
We saw performance inflections in time, in error rates, and in user rankings. We 
propose that systems that fail to address interdependence adequate with have 
similar inflection points in performance. In the BW4T domain, this was principally 
due to opacity in the system, derived from increasing autonomy without accounting 
for the interdependence of the actions and decisions of the players and the 
coordination challenges this creates. Additionally, we showed how keeping an 
agent busy does not equate to improved performance, how human error rates are 
not only due to workload but can also be affected by opacity, and how user 
preference is not necessarily driven by reduced burden when other factors such as 
transparency, predictability and directability are relevant to the task. A key point to 
take away is that the ability to work with others becomes increasingly important as 
interdependence in the joint activity grows. It is possible that in complex and 
uncertain domains, this may be more valuable than the ability to work 
independently. 
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Figure 32 Performance inflection point demonstrated by results 

It is obvious why opacity has such an effect on the system in the BW4T domain. 
The greater the autonomy of players, the greater the opacity, and hence the more 
room for coordination breakdowns. The independent activity in treatment 4 
inhibited the team’s ability to engage in what most people would consider “natural” 
coordination, resulting in a breakdown of common ground (Klein et al., 2005) and 
reduction in each player’s individual situation awareness. This then caused 
suboptimal decisions and errors. While obvious in this simple, abstract domain, the 
problem remains prevalent in many systems today, as noted by several researchers 
(Norman, 1990; Stubbs et al., 2007; Woods & Sarter, 1997). Understanding the 
relationship of autonomy to interdependence is one step toward addressing the 
challenges facing future systems. We believe that consideration for 
interdependence while designing the autonomous capabilities of an agent can 
mitigate the effects demonstrated and will enable future systems to achieve greater 
potential.  
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Design is the application of intent –  
the opposite of happenstance, and an antidote to accident 

 
– Robert L. Peters 

 

10 Applying Coactive Design to UAV Navigation21 
Early in the genesis of Coactive Design we began an unmanned aerial vehicle 

(UAV) project. Its purpose was to demonstrate how a system designed from a 
coactive perspective could be more successful than a traditional one. The overall 
goal was to demonstrate effective navigation through obstacles, which remains a 
challenging endeavor for current systems. This is a task that is difficult for either 
humans or unmanned vehicles to currently complete successfully on their own in 
situations of any significant complexity — harnessing the capabilities of each in 
effective teamwork is required. This was accomplished not by guessing at what 
widget or feature might be useful, but by an intentional approach to support 
interdependence among the human operator and the UAV through mechanisms that 
allowed the operator to coactively participate in navigation.  

10.1 Introduction 

The Unmanned Systems Roadmap (Department of Defense, 2007) stated that 
“The single most important near-term technical challenge facing unmanned 
systems is to develop an autonomous capability to assess and respond appropriately 
to near-field objects in their path of travel.” In other words, obstacle avoidance is a 
critical problem for unmanned systems. Micro Aerial Vehicles, or MAVs, 
exacerbate this challenge because they are likely to be deployed in environments 
where obstacle-free flight paths can no longer be assumed. This poses a 
tremendous navigation challenge to such small platforms that have limited payload 
and sensing capability.  

Teleoperation is a common mode of operation for unmanned systems, but is 
challenging for a variety of reasons including the limited field of view, poor 
situation awareness and the high operator workload. Autonomy has its own 
challenges in developing robust sensing, perception and decision making 
algorithms. Higher levels of autonomy are being vigorously pursued, but 
paradoxically, it is also suggested that these systems be increasingly 
“collaborative” or “cooperative” (Department of Defense, 2007). These terms are 
difficult to define—and even more challenging to map to engineering guidelines. 

                                                 
21 This chapter is adapted from  (Johnson, Carff, et al., 2012) 
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So, we come to the question: exactly what makes a collaborative or cooperative 
system? We suggest that support for interdependence is the distinguishing feature 
of collaborative systems and that effectively managing interdependence between 
team members is how teams gain the most benefit from teamwork.  

The basic premise of our approach is that the underlying interdependence of the 
joint activity is the critical design feature, and is used to guide the design of the 
autonomy and the interface. To demonstrate Coactive Design for human-MAV 
team navigation we used the ArDrone, shown in Figure 33, as our example MAV. 
The ArDrone is an inexpensive commercial vehicle. It has a low resolution 
(640x480) forward facing camera with a 93 degree field of view, an onboard inertia 
measurement unit and a sonar altimeter. It also has downward facing camera that it 
uses for optical flow to determine velocity and localize itself. While there are more 
capable platforms available, we chose this one to highlight the effectiveness of our 
approach even when using a platform with limited sensing and autonomous 
capabilities and we feel it is representative of the type of systems in use today. 

 

 
Figure 33 ArDrone 

 
The environment was designed to mimic challenges expected in urban 

environments and included features similar to windows and doors, as well as 
obstacles such as walls, boxes, power lines, overhangs, etc., as would be found in 
typical urban areas. Figure 34 is an example of several obstructions that must be 
navigated and a window that must be entered. 
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Figure 34 Example of obstacles used to evaluate the system. The obstacles would be 
arranged to create different challenges for the operator. Passing safely through a particular 

window was a typical navigation goal.   
 

We employed our Coactive Design approach to develop a human-MAV team 
system capable of navigation and obstacle avoidance in complex environments. We 
present this system and demonstrate its unique capabilities. 

10.2 State of the Art 

Today’s deployed UAVs do not have obstacle avoidance capability (Department 
of Defense, 2007) and this prevents their use in many important areas. The 
standard control station for small UAVs is composed of a video display and some 
joysticks for teleoperation, similar to the one shown in Figure 35. These interfaces 
place a high burden on the operator. 
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Figure 35 Teleoperation interface from IMAV 2011 competition 
 

Systems that rely on autonomy typically only provide an overhead map view. 
The ground control interface provided by Paparazzi (Brisset & Hattenberger, 
2008), shown in Figure 36, is a popular example and was used in the International 
Micro-Aerial Vehicle (IMAV) competition in 2011. 

 

 
 

Figure 36 Paparazzi Ground Control Interface (Brisset & Hattenberger, 2008) 
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In some systems the two approaches are combined in a display that presents a 
2D overhead map and a live video feed. However, there is no connection between 
the video and the map and the operator is required to perform the cognitive 
association between the two displays, which makes context switching difficult and 
error prone. 

Even more important, the operation of the vehicle is viewed as a binary decision: 
either the vehicle is autonomous or the operator is flying. This is commonly 
accomplished by literally flipping a switch on a controller similar to the one in 
Figure 35. The transition between the two modes is often chaotic and a high risk 
activity. There is no collaboration. Neither the human or machine can assist the 
other in any way.  

Each of the approaches described above has its own challenges and limitations. 
Many researchers have been investigating interesting ways to overcome these 
limitations. Some have investigated better ways to present video and map 
information (Cervin et al., 2004; Cooper, 2007; Drury et al., 2006; Lorite et al., 
2013) others have investigated better control methodologies (Quigley et al., 2004) 
and others have proposed design approaches aimed at targeting these types of 
issues (Adams et al., 2009; Cooper, 2007; Cummings et al., 2007; Goodrich, 2004). 
We leverage this work and extend it to include the additional challenge of avoiding 
obstacles. 

10.3 Our Approach 

Our approach is about designing a human-machine system that allows the two to 
perform as a team, collaboratively assisting one another. We do not try to simply 
allocate the task of navigating to the human or the machine, but involve both in the 
entire process. As such, there are no modes and therefore there is no transition or 
handoff between the human and machine. 

The basic premise of our approach is that the underlying interdependence of the 
joint activity is the critical design feature, and is used to guide the design of the 
autonomy and the interface. Anybody who has developed or worked with a robotic 
system has at one time or another asked questions like “What is the robot doing?”, 
“What is it going to do next?”, or “How can I get it to do what I need?” These 
questions highlight underlying issues of observability, predictability and 
directability which are consistent with the ten challenges of making automation a 
team player (Klein et al., 2004).  Interestingly, addressing these issues is much 
more about addressing interdependence then it is about advancing autonomy. From 
this perspective, the design of the autonomous capabilities and the design of the 
interface should be guided by an understanding of the interdependence in the 
domain of operation. This understanding is then used to shape implementation of 
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the system, thus enabling appropriate coordination with the operator. We no longer 
look at the problem as simply trying to make MAVs more autonomous, but, in 
addition, we strive to make them more capable of being interdependent. So how 
does this apply to MAV operations in complex environments? 

Instead of taking an autonomy-centered approach and asking how to make a 
MAV that can meet this challenge autonomously, we consider the human-machine 
team and ask how the system as a whole can meet this challenge. More 
specifically, how we can meet the challenge while minimizing the burden on the 
human. When thought of as a joint task, we have a lot more options. We still have 
the options of “full” autonomy and complete teleoperation, but these are not as 
attractive as the middle ground. This is evidenced by the large body of work on 
various forms of adjustable autonomy and mixed initiative interaction (Allen et al., 
1999; Bradshaw, Feltovich, et al., 2004; J. W. Crandall & Goodrich, 2002; Dias et 
al., 2008; Kortenkamp, 2001; R. Murphy et al., 2000) including the Technology 
Horizon’s report (United States Air Force, 2010) which calls for “flexible” 
autonomy. While it is important for the autonomy to be flexible, we feel it is even 
more important to take a teamwork-centered (Bradshaw et al., 2004) approach. 
Coactive Design is such an approach. 

10.4 Interdependence in the Navigation Domain 

Interdependence in the navigation task can be understood in the context of the 
abilities required to successfully navigate. Figure 37 is an Interdependence 
Analysis (IA) table for the activity.  

 
Figure 37. UAV navigation Interdependence Analysis table.  
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Using the IA table it is straight forward to identify challenges from both the 
human and machine perspective. These challenges are listed in the second column 
of Table 4. 

Table 5 Some of the remote navigation challenges for both teleoperation and full autonomy 
and the opportunities that are possible by taking a Coactive Design perspective.  

 

 
 

Sensing involves the acquisition of data about the environment. For remote 
operation, the human is limited by the available sensors presented in the interface. 
Typically this is a video, with a limited field of view. Often operators refer to 
remote operation as “looking through a soda straw.” In a standard interface the 
human operator is restricted to this single point of view and must maintain a 
cognitive model of the environment in order to reason about things outside of this 
limited field of view.  The MAV is also limited by the accuracy of its knowledge. 
All vehicles have onboard sensing error, so the data it senses will be subject to this 
error. 

Interpretation of video scenes remains an open challenge for autonomous 
vehicles. While some successes have been made, these systems remain very fragile 
and highly domain dependent. The human ability to interpret video is quite 
amazing, but the operator must cognitively interpret vehicle size and handling 
quality as well as other important things such as proximity to obstacles. 
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Planning is something machines do well, but the plans are only as good as the 
context in which they are made. Great planning ability is useless without accurate 
and complete sensing and interpretation. Machines also lack the judgment faculties 
of a human. While humans can also plan well, the plans tend to be imprecise. 

Machine execution is generally better than human execution for well-defined 
static environments. Machines are more precise and their performance is highly 
repeatable. However, they are limited by all the preceding abilities, such as 
onboard sensing error and poor perceptual abilities. Human operators are limited 
by their skill level and the interface provided.  

While each of the challenges listed in the second column suggest difficulty for 
either a teleoperated solution or an autonomous solution, they also suggest 
opportunities, listed in column three of Using the IA table it is straight forward to 
identify challenges from both the human and machine perspective. These 
challenges are listed in the second column of Table 4. 

Table 5. The Coactive Design approach takes advantage of the opportunities by 
viewing the navigation task as a participatory (Clark, 1996) one for both the human 
and machine. Individual strengths are not an indication of who to allocate the task 
to, but an opportunity to assist the team by providing an appropriate teamwork 
infrastructure. Weaknesses no longer rule out participation, but suggest an interface 
that supports assistance to enable all parties to contribute.  

10.5 Our Interface 

To address the observability requirements identified in Figure 37 we developed 
an interface to assist the human’s situation awareness. Our interface, shown in 
Figure 38, is composed of a 3D world and two views into that world. The left view 
is the view into that world from the perspective of the MAVs camera. The right 
view is an adjustable perspective with viewpoint navigational controls similar to 
Google Earth. Similar use of 3D style interfaces has proven to be effective, 
particularly in the navigation domain (Michaud et al., 2010; Nielsen et al., 2007). 
We provide a few control buttons and a battery level, but in general our interface is 
devoid of gauges and dials that typically clutter unmanned system interfaces.  
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Figure 38 Human-MAV Team Navigation Interface. A common frame of reference is used 
for both the live video perspective (left) and the 3D world model (right). 

 
The left view may seem similar to the normal camera view that might be 

presented to a teleoperator, but there is a significant difference. This video is 
embedded in a 3D world model. This provides several advantages. First, it provides 
a common frame of reference for interaction. This is critical to enabling joint 
activity between the human and the machine. This allows the creation and 
manipulation of objects in 3D space in a manner compatible to both the human and 
machine. Second, the field of view can extend beyond the limits of the camera. 
Notice how some of the objects project outside the video in Figure 38. The 
operator is also not limited by the bounds of the video for object creation, which 
can be very useful in tight spaces. 

The right view can provide an overhead view common in many systems, but it is 
not limited to this perspective. The viewpoint is navigable to an infinite number of 
possible perspectives to suit the needs of the operator. 

To meet the directability requirements of Figure 37, the operator interacts with 
the system by an intuitive click-and-drag method common to many 3D modeling 
tools. The mathematics behind the interface our presented in our previous work 
with ground vehicles (Carff, Johnson, El-Sheikh, & Pratt, 2009). The operator can 
create walls and obstacles to limit where the vehicle can go. The operator can also 
create doors and windows to indicate where the vehicle can go. Figure 39 shows 
some example objects. Objects can be stacked to create complex structures. These 
simple tools allow the operator to effectively model the environment. Our current 
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system provides no autonomous perception of objects, but by designing it as we 
have, we can incorporate such input in the future. The main difference would be 
that our interface ensures the operator can not only see the results of the 
autonomous perception, but also have the ability to correct, modify and add to 
those results as a team member.  

 
 

Figure 39 Examples of objects created by an operator. 
 

Paths are generated autonomously by clicking on a location or by choosing an 
object, such as a door or window. The path is displayed for the operator to see prior 
to execution, as shown in Figure 40. They can be modified as necessary using a 
variety of ways provided by our interface to influence the path of the vehicle. 
Multiple paths can be combined to create complex maneuvers.  

 
 

Figure 40 Autonomously generated path (green balls) displayed in both the live video and 
the 3D world model. 
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10.6 System Features 

Our system allows collaboration throughout the navigation task including during 
perception of obstacles and entryways, during decision making about path selection 
and during judgment about standoff ranges. As such, our unique approach affords 
the operator the ability to do things that are not possible with conventional video 
and overhead map interfaces. 

10.6.1 Onboard sensing error observation and correction 

By providing a common frame of reference we can make the internal status of 
the vehicle apparent to the operator. Figure 41 shows a typical situation in which 
the onboard sensing has accumulated some error over time. This error is 
manifested as an offset between the virtual objects and their real world counterparts 
in the live video. This provides a very intuitive way for the operator to understand 
how well the vehicle is doing. Not only can the operator see the problem 
(observability), but we also provide a mechanism to fix it (directability), directly 
addressing two key issues in Figure 37. The operator can simply click-and-drag the 
virtual object to the correct location and this will update the vehicle’s localization 
solution.  

 
 
Figure 41 Onboard sensing error visualized through our interface. The difference between 
the real window and the virtual window is an accurate measure of the MAV’s onboard 
sensing error due to drift in the MAV’s position estimate. The operator can click-and-drag 
the virtual window to correct this error for the robot. 
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10.6.2 Preview 

We can provide the operator a virtual preview of the flight before committing to 
it (predictability). Cooper notes the importance of predictability and the advantages 
it provides a system (Cooper, 2007). Once a path is chosen, the operator simply 
requests a preview and a virtual drone will fly the selected path, as shown in Figure 
42. The virtual drone is visible on both the live video and the 3D world model, 
allowing the operator to have multiple perspectives of the flight. By displaying a 
full size model, the operator can see the flight in context of the vehicle size in order 
to better judge obstacle clearance, meeting another requirement in Figure 37. The 
operator can try out alternative solutions before committing to the best one for 
execution. 

 

 
 
Figure 42 A preview of a flight displayed in both the live camera view and the 3D world 
model view. Prior to execution of the flight path, the operator can request a preview to see 
the path in the context of the vehicle size. The virtual MAV is a prediction about MAV 
behavior during execution. 

10.6.3 Third Person View 

Another ability of our system is a third person perspective that allows the 
operator to view the vehicle from behind; enhancing situation awareness about the 
proximity to nearby obstacles outside the field of view of the onboard camera. The 
value of this type of approach has been shown to improve navigation performance 
(Michaud et al., 2010; Nielsen et al., 2007). We use historical images and a virtual 
MAV to enable the operator to see the vehicle from a third person perspective. For 
example, it would be difficult to fly exactly to the corner of the wall in Figure 43 
since the corner would be outside the field of view before the vehicle was in 
position. It would also be difficult to judge proximity to the wall, particularly once 
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it leaves the field of view. Our third person view lets the operator accurately judge 
proximity and maintain a highly accurate position relative to the corner even when 
outside of the normal camera field of view. It is important to note that the common 
reference frame makes the multiple perspectives useful, instead of it being an 
additional burden to the operator. 

   
 
Figure 43 Example of third person view. The virtual MAV in both views represents the 
actual position of the real MAV. The left view lets the operator watch the MAV from 
behind. The right view is currently oriented to let the operator watch the vehicle from 
above.  

10.6.4 Support for Operator Preference 

Engineers love to design optimal solutions, however, human operators rarely 
agree about what is optimal. Should it be the fastest route, the safest route, or 
something else? Our system allows human adjustment to tune system behavior in a 
manner that is compatible with the operator’s personal assessment of optimal. For 
example, we provide an adjustable buffer zone, shown in Figure 44, which can be 
used by the operator to vary the standoff range from obstacles during planning and 
execution. This buffer zone could be used to provide additional clearance around a 
fragile object or it could be used to provide a safety buffer for a vehicle that is 
experiencing navigational error. This type of interaction can help improve operator 
acceptance of the system, by calibrating system performance to the operator’s 
comfort level.  
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Figure 44 Example of adjustable buffer zone around obstacle 

10.6.5 Enabling Creative Solutions 

Since our interface treats the operator as an equal partner in the navigation 
solution, we do not limit the operator to solutions generated by autonomous 
algorithms. The operator has the freedom to apply their creativity to the solution. 
Some examples that permit creativity include how to model the environment, 
simplification of maneuvers and flexibility with vehicle orientation. 

There is often little need to accurately model everything in the environment in 
order to achieve a goal. Human judgment about relevance can simplify the 
problem, making it only as complex as needed. Consider our cluttered environment 
in Figure 34. Do we need to model everything in view as shown in Figure 45? This 
is probably not the case for most situations. One could just model the nearest 
obstacles to the flight path of interest, as shown in Figure 46. Instead of modeling 
obstacles, an alternative approach is to model the solution by using doors and 
windows as “gateways” connecting zones of safe passage, as shown in Figure 47. 
This type of interaction can result in a more robust system, by leveraging the 
creativity of the operator to overcome circumstances unforeseen by the system’s 
designers. 
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Figure 45 Example of unnecessary modeling of all objects. 
 

 
 

Figure 46 Example of modeling only the objects nearest the intended path. 
 

 
 

Figure 47 Example of modeling "gateways" of safe passage using doors and windows. 
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Some maneuvers are more challenging than others. Our interface provides the 
opportunity to reduce the complexity of some maneuvers, particularly in confined 
spaces. Consider the task of flying into a narrow corridor, observing something on 
a wall and exiting the corridor. Turning around is a very challenging teleoperation 
task, since the operator has a limited field of view and tight spaces offer limited 
visual cues. Our interface affords a creative solution to the challenge. The operator 
can rotate the vehicle prior to entering the space, since our alternative perspectives, 
such as the one shown in Figure 48, allow navigation without requiring the use of 
the camera view. With this, the maneuver is reduced to a basic lateral translation 
into and out of the space, which is a much easier maneuver than a rotation while 
inside the confined space.  

 
 
Figure 48 Simplified navigation in confined spaces. By using the overhead view, the 
operator is not reliant on the forward facing camera view to navigate, allowing a lateral 
translation into the confined space rather than a more difficult rotation while inside the 
confined space. 
 

Our interface affords some unique possibilities by not having to rely on the 
camera view at all times. It enables the potential for obstacle avoidance even when 
the vehicle is not oriented toward the direction of motion. This allows the vehicle 
to keep the camera on a point of interest while still avoiding previously annotated 
obstacles. 

These are a few of the creative solutions possible with our unique approach. 
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10.7 Results 

With our human-MAV team navigation system we were able to successfully 
navigate through a variety of obstacles and negotiate tight spaces. The system is 
designed to be used online during the flight. It takes approximately 3-5 seconds to 
mark up a typical obstacle. Occasionally maneuvering is required to see all the 
relevant objects and it typically takes 15-30 seconds to mark up a scene. Once 
marked up, our typical flight took approximately 15-30 seconds to navigate the 
obstacles and reach the goal. While our system basically doubles the flight time, 
one must consider that the resulting flight is a single continuous movement through 
the environment. Normal teleoperation would typically involve some pausing and 
orientation during the traversal, resulting in a slower flight time. Future work will 
involve experimental evaluation of these rough estimates and verification of the 
performance measures of the system.   

10.8 Conclusion 

This project has demonstrated the unique type of human-machine system that 
can be developed when interdependence is given proper consideration in the design 
process. The operator could observe the internal state of the vehicle by the relative 
location of graphical objects. The operator could predict the resulting behavior 
prior to execution by a displayed path or even a virtual “fly through.” Directability 
was supported in a variety of ways from goal specification, to waypoint 
modification, to obstacle correction, to state estimation adjustment. These are just a 
few of the ways interdependent relationships were supported to provide a lot of 
flexibility. We feel our interface provides a truly collaborative experience, allowing 
the human to participate in sensing, perception, planning and judgment. The project 
also highlights new capabilities, impossible with most current systems, but made 
possible by taking a coactive design perspective on the problem. This includes 
things like flying from a third person view and enabling safe flight at angles 
orthogonal to the camera view. It is important to note that the flexibility is not a 
particular feature, such as allowing for graphic overlays. Flexibility is the 
additional options that a feature affords. The features in this UAV system 
demonstrate the type of flexibility a coactive system can provide. 
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We are stuck with technology 
when what we really want is just stuff that works. 

 

– Douglas Adams  

 

11 Applying Coactive Design in the DARPA Virtual Robotics 
Challenge22 

Coactive Design was developed specifically to address the increasingly 
sophisticated roles that people and robots play as the use of robots expands into 
new, complex domains. DARPA recently hosted a competition, called the DARPA 
Robotics Challenge (DRC) that is an example of the type of new and complex 
domain to which we refer. We participated in the competition as part of the IHMC 
team. The competition afforded a way to evaluate the Coactive Design approach 
against traditional approaches. The coactive system we developed was quite 
different from any of the other twenty-six entries in the competition. It also 
afforded an opportunity to evaluate the ability of the Coactive Design approach to 
imbue resilience. The results of the first phase of the competition, the Virtual 
Robotics Challenge (VRC), are presented as an exemplar of large scale 
implementation of Coactive Design.  

We used the Coactive Design approach as the basis for our overall system design 
for the DRC. We made extensive use of the Coactive Design method and the IA 
Tables. We will use this domain as an example of how the Coactive Design method 
can be operationalized. This includes demonstrating how analyzing 
interdependence helps enumerate the potential design options. We will also show 
how it can help identify constraints and requirements. We provide specific 
examples of how our method led to a specification sufficiently detailed to guide 
implementation. Finally, we show how the analysis also aides in understanding the 
impact of design choices. 

11.1 The DARPA Robotics Challenge 

The DRC was created to spur development of advanced robots that can assist 
humans in mitigating and recovering from future natural and man-made disasters. 
The VRC was the first phase of the DRC. It was a software competition carried out 
in a virtual environment that looked like an obstacle course set in a suburban area. 
The competition involved remotely operating a simulated Atlas humanoid robot. 

                                                 
22 This chapter is adapted from  (Johnson et al., 2014) 
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The robot has 28 actuated degrees of freedom, a stereo camera, and a laser range 
finder. There were three tasks to complete, as shown in Figure 49. The first was 
navigating complex terrain that included mud, hills, and debris. The second task 
was picking up a hose, attaching it to a spigot, and turning a valve. The third task 
required entering a vehicle, driving on a road with turns and obstacles, and getting 
out of the vehicle. While some parts of these tasks have been demonstrated by 
various researchers, the scope and breath of these challenges raises the bar for 
humanoid capabilities. 

 
Figure 49 DARPA Virtual Robotics Challenge tasks. They included walking through mud, 
walking over hills, walking through debris, entering a vehicle, driving along a road, 
avoiding obstacles while driving, exiting a vehicle, picking up a hose, attaching the hose to 
a spigot, and turning on a valve. 

The competition took place over a grueling 56-hour period. Each team needed to 
complete five examples of each of the three tasks. The five examples were created 
by DARPA, and information about the examples was withheld from the teams 
prior to the competition. Each example had some variability, such as the position of 
objects, the color of objects, the location of obstacles, and even damping values on 
the valve and the mud. Teams were allotted 30 minutes for each attempt, which 
meant there was a possibility of up to 7.5 hours of operation time. The simulations 
ran “in the cloud,” and a minimum 500ms of network latency was imposed on all 
teams. Teams were ranked based on the number of tasks successfully completed 
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(points), the time to complete the tasks, and the amount of bandwidth used. After 
initial entries from 126 23  potential competitors, 26 teams from eight countries 
qualified to compete in the VRC. The top nine teams were listed in the final results 
of the competition, as shown in Table 6. 

Table 6 DARPA Virtual Robotics Challenge (VRC) Results. Score equates to number of 
tasks successfully completed. Falls is the number of times the robot fell. Banked up bits is a 
measure of bandwidth usage (higher is better). Banked time is a measure of task completion 
speed (higher is better). 

Rank Team Score Falls 

Banked 

Up Bits 

Banked 

Time 

1 Institute for Human and Machine Cognition (IHMC) 52 12 95 13,813 

2 Worcester Polytechnic Institute (WPI) 39 12 99 13,545 

3 Massachusetts Institute of Technology (MIT) 34 20 77 6,829 

4 TRACLabs 30 19 98 16,171 

5 NASA JPL/UCSB/Caltech 29 22 98 13,209 

6 TORC/TU Darmstadt/Virginia Tech 27 25 85 13,421 

7 Team K (Japan) 25 16 84 10,442 

8 TROOPER (Lockheed Martin/University of 
Pennsylvania/Rensselaer Polytechnic Institute 

24 27 76 13,927 

9 Case Western University 23 29 81 10,951 

11.2 Applying Coactive Design in the VRC 

The first way Coactive Design impacted our design decisions in the VRC was to 
shift our engineering focus from developing autonomy to developing a human-
machine team. This was important, especially given that DARPA introduced 
bandwidth limitations with the stated purpose of encouraging autonomous 
solutions. We were willing to accept the bandwidth penalty (i.e., coordination cost) 
to gain the benefits of teamwork. For our purposes, we considered the team to 
consist of the Atlas humanoid robot and an operator. The Atlas robot operated 
within a Gazebo physics simulator (Koenig & Howard, 2004). The human operator 
was remote and could sense the world only through the data presented on the 
operator interface. We will focus on one subtask from the VRC to demonstrate how 
Coactive Design was operationalized in our VRC entry. Following the Coactive 
Design method from Figure 18, an IA table for the subtask of picking up the hose 
was constructed in accordance with the chapter 8.1 on the identification process. 
The resulting IA table is shown in Figure 50. 

                                                 
23 

http://www.darpa.mil/NewsEvents/Releases/2013/06/27.aspx (Accessed 2013-11-19 0900CST). 
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Figure 50 Interdependence analysis for VRC subtask of picking up the hose. 

11.2.1 Identification Process 

The task decomposition and required capacities were determined by careful 
consideration of the taskwork. We had only two team role alternatives for the 
VRC, as seen in Figure 50. The capacity assessment is from a particular point in 
development. It is important to realize that the IA table needs to evolve with the 
design. As an example, the human is remote and has no way to sense the hose 
without some interface providing sensor data. Figure 50 was generated after a basic 
operator interface was developed to provide video to the operator, so Figure 50 
shows that the human has the capacity. From this we can generate a set of 
interdependence relationships and their associated observability, predictability and 
directability (OPD) requirements, as shown in Figure 51. 

The identification process does not dictate what needs to be done. Instead it 
helps identify the available options. Sometimes there is only one option. Footstep 
execution is such a case, since the operator can contribute little to dynamic 
balancing when there is 500 ms of network latency. This indicates a critical path in 
the design and resulted in our focusing a large amount of effort to ensure reliability 
of our walking algorithm. Other times there are multiple options, but one is the 
clear choice. Recognizing the hose is an easy task for the operator. We could have 
expended resources developing an autonomous hose recognition algorithm, but it 
would never be as reliable as the human. Occasionally the choice is not clear. For 
example, either the robot or the operator could position the hand for grasping, but 
neither was 100% reliable. In these cases it is often beneficial to support both 
approaches, which adds flexibility to the system. If the robot fails to position the 
hand correctly, then the operator can also try. There are actually more than two 
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options in positioning hands for grasping. Besides allowing either the robot or the 
human to attempt the action, there are the additional potential interdependence 
relationships. These are indicated by the yellow capacity to support for each team 
member. The yellow also means they are optional alternatives, not required ones. 
For example, the human could provide updated information about the position of 
the hose in order to improve the robot positioning of the hand or the interface could 
provide more intuitive mechanisms for positioning control of the six degrees of 
freedom in each arm. 

The end result of the identification process is a set of interdependence 
relationships and associated OPD requirements, such as those shown in Figure 51. 
These are used as criteria to determine if a particular mechanism we developed to 
support these requirements are sufficient as well as in the process of evaluating the 
effects of a change. 

 
Figure 51 VRC hose task interdependence relationships and OPD requirements. 

11.2.2 Selection and Implementation Process 

Verification of the grasp is a critical task that requires excellent awareness of the 
hand position and the object being grasped. Spatial awareness is a recurring issue 
in remote operation and was essential to all of the VRC tasks. As such, we 



Applying Coactive Design in the DARPA Virtual Robotics Challenge 

119 
 

developed an interface (shown in Figure 52) based on 3D world model that is 
updated by state estimation from the robot. The left side provides a live video 
stream embedded in a 3D world model fixed to the first-person perspective. The 
right side is a navigable third-person view of the same 3D world model, allowing 
the operator to take any perspective. The third-person view proved invaluable with 
the operator spending the majority of time focused on this perspective. Without it, 
there would be no way to verify the grasp, since the hand covers the hose when 
grasping from a table. During the five hose tasks of the VRC, the operator made an 
average of 34 perspective changes in the third-person view, indicating how often 
this view was relied upon for situation awareness. Additionally, of the commands 
issued through the 2 views, 87 percent were issued through the third-person view. 

 
 

Figure 52 IHMC's VRC operator interface. The foundation of the interface is a 3D world 
model that is updated by state estimation from the robot. The left side provides a live video 
stream embedded in a 3D world model fixed to the first-person perspective. The right side 
is a navigable third-person view of the same 3D world model, allowing the operator to take 
any perspective. 

Our robot did not have the ability to recognize the hose, so in order for the robot 
to participate in “walking up to the hose” or “grasping the hose,” it needed to be 
made aware of the position and orientation of the hose. Since we developed 
graphical 3D world model, we decided manipulables would be a good way to meet 
this requirement. Manipulables are visual representation of things that we needed 
to communicate about, such as the hose, which can be placed into the 3D world 
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model or on the live video and be repositioned as desired using simple click-and-
drag techniques common in computer-aided design (CAD) programs. Figure 53 
shows the hose manipulable. Since our model is driven by the state estimation of 
the robot, the onboard error is visually represented by drift of the manipulable (i.e., 
observability into the robot’s state estimation). The use of manipulables provides a 
means to correct the error by simply dragging the manipulable to align with the 
sensor data (i.e., directability into the robot’s state estimation). We also used this 
manipulable as a reference for where to stand and as input to planning algorithms 
when generating footsteps for the “walking up to the hose” task. Manipulables 
proved so valuable that they were consistently used in all five hose task runs of the 
VRC. More telling of their value is the thirty-four adjustments made after their 
initial placement to correct for deviations. Failure to account for these deviations 
could easily have caused an error or even prevented us from successfully 
completing the task. 

 
 

Figure 53 Hose manipulable (yellow) shown as a virtual object on both the live video (left 
side) and the 3D world model (right side). 

A key aspect of the human being able to participate in the task was assisting the 
human in understanding the workspace of the robot’s six degrees of freedom arm. 
Inverse kinematics is the mathematical way the robot solves this, so we made 
virtual arms that displayed the inverse kinematic solution to the operator prior to 
any execution (i.e., predictability). This made arm limitations observable to the 
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operator. It also provided predictability by changing the color from green (valid) to 
red (invalid), as shown in Figure 54. This ensured the operator was aware that the 
arm could not achieve invalid solutions. The virtual arms were also manipulables 
that provided a much easier way to position the hands (i.e., directability) than 
trying to control all six degrees of freedom individually. In fact, the virtual arm 
manipulable was used in 99% of all arm commands during the five hose task runs 
of the VRC. Even though the virtual arms were extremely effective, we maintained 
support for other interdependence alternatives. This was important, because 
without supporting the one percent by maintaining support for joint level control, 
we would have failed three out of the five runs that required it. 

 
Figure 54 Inverse kinematics visuals inform the operator of valid (left side - green) and 

invalid (right side - red) solutions. 

In support of the requirement for easier and more accurate hand positioning for 
grasping, we developed a graphical element representing the valid grasp region of 
the hand. Robot hands are not as compliant as human hands and only similar in a 
very limited number of ways. One limitation is reflected in the effective grasp 
region. We made this region visible, as shown in Figure 55. This location is not a 
joint, but using the manipulable allowed the operator to control the hand around 
this point if desired. By enabling this, the operator could to do things such as 
rotating the hand around the object being grasped in order to grasp from a different 
direction. The feature was used in both the hose task and during car entry and exit 
where the robot needed to grasp the roll cage of the car. 
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Figure 55 Grasp region visual element used to assist with easier control of hand position. 

These are a few examples of mechanisms we developed to meet OPD 
requirements in support of interdependence relationships. While a creative designer 
could have developed these without Coactive Design, our approach provides both a 
repeatable methodology, a reasonable set of evaluation criteria, and a way to 
evaluate change. 

11.2.3 Evaluation of change 

Evaluation is an important part of the design process. It is important to not only 
validate that mechanisms selected and implemented meet requirements, but to 
assess their impact on the rest of the system. Some of our decisions had a positive 
impact across multiple tasks, such as the use of a third-person perspective. Other 
choices only impacted the specific requirement they were targeting, such as the 
grasp region. However, other choices had the potential to have a negative impact 
by impeding OPD requirements or altering interdependence relationships. An 
excellent example from our VRC work is the use of scripting. 

Given the fairly limited scope of the hose task in Figure 50, it is conceivable that 
the entire process could be automated. Our team attempted to automate just the 
grasping and lifting of the hose portion. Our approach was to generate a script, or 
sequence of actions, that recorded the successful execution of the task. The script 
could then be played back in order to automate the process. This choice of 
implementation for the automation process eliminated any potential support for 
interdependence. The IA in Figure 50 provides indication of what might (and did) 
go wrong. First, there was no capacity for the robot to verify its own grasp. By 
automating the process, we removed the opportunity for the operator to verify that 
things were going well. After many frustrating failures, the evaluation determined 
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that this approach was too brittle, so we enabled step-by-step playback of the script 
with supporting visuals to make the upcoming action observable and predictable. 
This afforded the operator a chance to verify the grasp. Evaluation of this approach 
was also deemed insufficient, because failure meant aborting the process and 
rescripting. The main issue was the robot’s reliability in positioning the hand for 
grasping was less than 100 percent (yellow). The solution was to include 
directability, allowing the operator not just to see the upcoming action but also to 
modify it if necessary, or replay it, or even skip it if desired. 

The coactive solution to scripting proved a flexible and resilient one. During the 
five hose tasks of the VRC an average of 10 scripts were used per run. Only 50 
percent of these were run without intervention. We averaged nine pauses in script 
behavior to verify performance and seven operator corrections to scripted actions 
per run. Even with operator intervention, 8 of the 50 scripts failed to accomplish 
their purpose. Due to the flexibility in our system to retry, make adjustments, and 
use different approaches, we were successful in recovering from all eight failures. 

In the end, the IA provided insight into how design decisions, such as 
automating a task, might impact the overall system. Our resulting solution allows 
for autonomous behavior but with appropriate support for interdependence, i.e., the 
human can participate in the activity in a collaborative manner.  

11.3 Advantages of Using the Coactive Design Approach in the VRC 

Our approach to the hose task illustrates only a few of many ways we designed 
and built the system to support interdependence. Designing for interdependence 
provided our team several advantages. 

The first advantage is flexibility. We could perform the same task in many 
different ways. Our approach to scripting the hose task is an example of how 
including support for interdependence can provide flexibility. Flexibility was 
important in other tasks as well. For example, different walking challenges (e.g., 
mud, hills, debris, and flat open ground) made some approaches more attractive 
than others in a given instance. The operator was relatively unburdened in handling 
walks over flat, open ground because the system could be allowed to work more or 
less “autonomously.” However, when the robot was walking over more difficult 
terrain, operators could seamlessly increase their involvement in the task with no 
need for a major mode switch. Flexibility was also important because we were not 
privy to the specifics of each task a priori and had to deal with uncertainty. 

Resilience was a second advantage. If we encountered an unexpected problem—
whether it was related to the unforeseen challenges of the task or difficulty in 
achieving the expected system response—our flexibility allowed us to try different 
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approaches. Benjamin Franklin is often cited as saying, “If you fail to plan, you 
plan to fail.” In robotics, if you do not plan to fail, you are failing to plan. 
Uncertainty and unexpected events are part of robotics and designing resilience 
into a system is how to address this reality. A good example of this occurred during 
one of our driving tasks. The car went off the edge of the road during a sharp turn 
and required us to back it up to avoid a building. We had an “autonomous” method 
of switching the car into reverse, but it failed because the robot had been jostled as 
the vehicle left the road and was no longer in the correct position. The 
observability we had built into the system allowed the operator to correctly assess 
the problem and the additional directability options we provided enabled 
engagement of reverse by alternative means. The score in Table 6 is a measure of 
completion. We successfully completed 52 out of a possible 60 points (86.7 
percent). This is not because we performed flawlessly. We fell 12 times and 
encountered numerous unanticipated circumstances. Our score reflects our 
system’s resilience to recover from these challenges and adapt to overcome them. 

A final advantage we will highlight here is development efficiency. The VRC 
competition was a complex design challenge with an unbelievably short time 
period. Teams had nine months to prepare. This forced a lot of tradeoffs in our 
design considerations. The Coactive Design approach provided an excellent way to 
perform a cost-benefit analysis of design choices. An example from the hose task 
was the decision not to pursue autonomous hose recognition. Similarly, 
“autonomous” obstacle avoidance for walking relies heavily on perception and was 
likely to be frail in the end. Our team saved a lot of time by not investing in 
complex perception and planning while instead focusing our resources on enabling 
the human to be an effective teammate. By strategically ruling out the 100 percent 
solution (i.e., full autonomy or full teleoperation) we could deftly avoid the hardest 
problems. Our Coactive Design approach led to a system that could exploit synergy 
between the machine and the human—in essence, allowing us to work as a team. 

11.4 Conclusion 

We demonstrated how Coactive Design was operationalized by the IHMC team 
during the DARRA VRC. Our success was not based on flawless performance, but 
on resilience in the face of uncertainty and misfortune and surprise. We propose 
that it is through understanding and modeling interdependence in a human-machine 
system that Coactive Design can play a role in enabling robots to fulfill their 
envisioned role as teammates.  
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We shall not cease from exploration 
And the end of all our exploring 
Will be to arrive where we started 
And know the place for the first time. 
 

– T. S. Eliot 

 

12 Conclusion 
The journey of this research has been challenging and enlightening. Looking 

back at our starting point, the original kernel of inquiry remains, but the 
surrounding context looks very different. The T. S. Eliot quote at the head of this 
chapter captures this sentiment. While the work itself is of value, it is the new 
understanding that we carry forward into future work that will have a lasting 
impact. 

Here, it is appropriate to return to the primary question addressed in this thesis: 
How does one design a resilient system? We have argued that resilience is 
achieved through designing for flexibility. Specifically, by providing alternative 
ways to recognize and handle unexpected situations. Flexibility of a team is 
enabled by a teamwork infrastructure that supports a variety of interdependence 
relations. These relationships allow members of a human-machine team to 
recognize problems and adapt, thus benefitting resilience. Coactive Design breaks 
with traditional approaches by focusing on effective management of the 
interdependencies instead of focusing on autonomy. 

Our research aim was to provide a design method for identifying and exploiting 
interdependence in human-machine systems, in order to provide ways to recognize 
problems and create alternatives to address them. The method we developed is 
called the Coactive Design method. The method is supported by a tool called the 
Interdependence Analysis Table which helps identifying and exploiting 
interdependence in human-machine systems.  

This thesis centers around two primary research claims. The first is: 
Interdependence is an effective basis for a design and analysis model of human-
machine systems. The detailed discussion of Chapter 6 shows interdependence to 
be the key for understanding the complexity of human-machine systems. The 
interdependence analysis provides the path by which we can add not only 
capability, but also the kind of flexibility that enables a system to be resilient. The 
second claim of this thesis is: Resilience in human-machine systems benefits from 
a teamwork infrastructure designed to exploit interdependence. Evidence for the 
need of such a structure is provided by the BW4T experiment in which increasing 
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autonomy without providing a teamwork infrastructure resulted in degraded 
performance. The benefits of including an infrastructure that supports 
interdependence are demonstrated by the UAV and DRC systems that proved 
themselves capable of surviving and successfully completing complex operations 
in scenarios with unexpected events. These case studies demonstrate that the 
flexibility of designs based on interdependence indeed leads to resilience.  

Before concluding our journey, we will summarize the results we have achieved.  

12.1 Results 

Coactive Design makes five major contributions: 1) a new perspective, 2) a 
richer understanding of interdependence, 3) a new system model, 4) a new design 
method, 5) and a new tool to assist the designer in system design and analysis. 

The first contribution of Coactive Design is a change in focus (Chapter 5). 
Focusing on interdependence is a clear break from the autonomy-centered 
perspectives that dominate current research. Coactive Design is focused on systems 
where the human and machine are engaged in teamwork. Besides implying that 
more than one party is involved, the term “coactive” is meant to convey the type of 
involvement. Consider an example of playing the same sheet of music solo versus 
as a duet. Although the music is the same, the processes involved are very different 
(Clark, 1996). The difference is that the process of a duet requires ways to support 
the interdependence among the players. This is a drastic shift for many autonomous 
robots, most of which were designed to do things as independently as possible. The 
term “coactive design” is about designing in a way that enables effective teamwork 
through support for interdependence.  

The second major contribution of this work is a definition of interdependence 
and an understanding of the design implications of this definition (Chapter 6). The 
central role of interdependence demands a rich understanding of interdependence 
itself. In his seminal book, James D. Thompson (1967) recognized the importance 
of interdependence in organizational design, just as we are proposing its 
importance in human-machine systems. The correlation is made clear by 
Thompson’s description of an organization as an “open-system, indeterminate and 
faced with uncertainty” (p. 13). He also noted that there was a lack of 
understanding about interdependence — something still true today. Understanding 
the nature of the interdependence between team members provides insight into the 
kinds of coordination that will be required of them. Indeed, we assert that 
coordination mechanisms in skilled teams arise largely because of such 
interdependencies. For this reason, understanding interdependence is an important 
requirement in designing systems that will work jointly with people. This thesis 
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argues that managing interdependencies is the mechanism by which we achieve the 
higher level concepts of coordination, collaboration and teamwork. 

The third major contribution is a new system model for human-machine system 
design (Chapter 7). We have already referred to the need to “manage” 
interdependencies and to “support” interdependent relationships — this chapter 
begins to describe how we think this may be done. Our system model highlights 
three key team capabilities, over and above task capabilities, that are needed for 
effective human-machine collaboration: observability, predictability and 
directability. For team members, these three capabilities enable resilience, allowing 
them to “recognize and adapt to handle unanticipated perturbations” (Woods & 
Hollnagel, 2006, p. 22). From a designer’s perspective, observability, 
predictability, and directability are important because they provide guidance on 
how to identify design requirements. By determining how these capabilities must 
be supported in order to be capable of understanding and influencing team 
members, designers can create a specification. This design stance necessarily 
shapes not only the “user interface” for the human but also the implementation of a 
robot’s autonomous capabilities. The shaping process is provided by the three team 
capabilities in our system model which capture three of the key elements required 
for effective teamwork. 

The Coactive Design method is the fourth major contribution (Chapter 8). It is a 
method for designers building highly interdependent systems. It provides the first 
step by step procedure for designing interdependent systems, based on the 
perspective provided by Chapter 5, the understanding provided by Chapter 6 and 
the specific support requirements identified in Chapter 7. We present our method 
within the ecology of existing methodologies and describe how it is a bridge to 
design a system to work effectively as a teammate. 

The fifth major contribution of this thesis is the Interdependence Analysis (IA) 
Table (Chapter 8.1). This is a design and analysis tool to be used in conjunction 
with the Coactive Design method. It is a simple, visual way to enumerate the 
alternative ways by which combinations of team members can achieve a goal. If a 
system is to be resilient and deal with a demand for “a shift of processes, strategies 
and coordination” (Woods & Hollnagel, 2006, p. 22), there must be alternative 
processes, strategies and coordination. The IA Table enables designers to discover 
alternatives and understand how to support them in their systems. Based on the 
alternatives the designer chooses to support, the IA Table helps identify the 
independence relationships that must be supported for that relationship to be 
effective. This includes determining specific observability, predictability and 
directability requirements needed to support those relationships. Since design is 
always an iterative process, the IA Table supports this and helps understand the 
impact design changes might have on both individual and team performance. 
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Summarizing the contributions we answer our key question. Coactive Design is 
an approach that enables a developer to design a system to work effectively as a 
teammate. By following the Coactive Design method and using the IA Table, 
designers have a way to ground the high-level teamwork concepts into design 
specifications and requirements. These specifications are based on three key team 
capabilities: observability, predictability, and directability. Since the purpose of the 
IA Table is to identify the requirements necessary to support the desired 
interdependent relationships, it guides a designer to find alternatives that provide 
flexibility. This flexibility will add resilience to the final system. 

12.2 Future Work 

As is often the case in life, the more you learn, the more you learn there is more 
to learn. Coactive Design provides a step toward improving the resilience of 
human-machine systems, however, many issues relating to the problem of how to 
get humans and machines to work together as a resilient system are still open. 
Exploiting the full potential of these types of systems remains an unfinished task 
for the related research communities. 

Beginning with the claims of this thesis, we explore some of the potential future 
work. We start with the claim that resilience benefits from a teamwork 
infrastructure for exploiting interdependence in human-machine systems. To make 
this claim more precise, we suggest to focus on the development of metrics for 
evaluation and to develop benchmark tasks that allow for systematic and controlled 
experiments. 

Developing appropriate metrics is challenging. How do you measure the benefit? 
How much benefit is provided? Is there a methodical way to evaluate the cost-
benefit relationship between the effort required to support a particular type of 
interdependence and its associated benefit? Do aspects of the teamwork 
infrastructure conflict or interfere with each other reducing anticipated benefits? 
Our claims are based on the rudimentary metric of completion or survival. While 
this is clearly a critical metric, more nuanced measures could lead to additional 
insights.  

The complexity of teamwork makes it important to evaluate for the varying 
metrics in a controlled manner. This leads to several more research questions. How 
do you evaluate the benefits of teamwork in a controlled manner? How does the 
benefit vary across different ways of supporting interdependence? What are good 
bench mark tasks? How do the benefits scale with team size? Controlled 
evaluations will be an important part of collecting more detailed performance data. 
The joint activity testbed was a way to study teamwork in a controlled 
environment. We demonstrated the impact of failing to address interdependence. 
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An obvious follow-on is to add support for interdependence and validate that it 
mitigates the problems that resulted in performance degradation in our experiment. 
Some other options include studying the impact of team size, the difference based 
on type or amount of interdependence, and varying across different domains. The 
last research area is most challenging as it involves extending beyond the current 
BW4T capabilities. It would involve identifying similar domains that are simple 
enough to analyze, yet complex enough to be interesting. The BW4T testbed has 
already been used by other researchers (Harbers, Jonker, & Riemsdijk, 2012; 
Savarimuthu & Winikoff, 2013) and has been integrated into university level 
coursework 24 . Having a variety of proven joint activity testbeds would be 
beneficial to future research. 

In our case studies, we focused on building new types of systems and our 
validation criterion was successful resilient performance. A controlled formal 
experiment would be a natural follow-on to this work. The main challenge would 
be what to compare it to. There are no other open source systems that one could 
draw upon for comparison. Even though there were twenty-five other VRC teams, 
the unstable nature of agile development makes it unlikely that any of these 
systems still are in working order. The best approach may be to enable or inhibit 
the features of an existing system, like IHMC’s, that we claim add value. 

Considering the claim that interdependence is an effective basis for a design and 
analysis model of human-machine systems we can develop some associated future 
research questions. Our starting point with Coactive Design involves an 
understanding of interdependence. Is this understanding complete? Are there other 
aspects to interdependence that are not captured by our description? This 
understanding will likely need to evolve over further analysis to reflect a more 
nuanced understanding of interdependence and its role in teamwork. Additionally, 
we presented observability, predictability, and directability as the three key team 
capabilities that are needed for effective human-machine collaboration. While we 
are convinced these three team capabilities are core components to any system, 
there may be other capabilities beyond these three that need to be included. 
Another area that will likely need to be extended is the color-coding scheme of the 
Interdependence Analysis Table. We used four categories that were valuable based 
on our experience. However, these four categories and their associated color 
schemes will need to be extended or modified as additional relevant categories are 
identified. These new categories will need to be analyzed to determine how they 
help describe the system, similar to the way we showed identification of brittleness, 
hard constraints and soft constraints. As more researchers investigate Coactive 
Design, it will propel the advancement of the underlying theory. 

                                                 
24 See 2012-2013First-year BSc Course Multi-Agent Systems offered by M. Birna Riemsdijk and Koen Hindriks 
(http://mmi.tudelft.nl/trac/goal/wiki/Education accessed on 27 FEB 2014)  
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Future work can also come from reaching outside the scope of this thesis. It 
would be interesting to see if our extensions to the ideas from organizational theory 
and human-human team studies could propagate back into those communities.  

Another interesting potential area is hardware design. In this thesis, the case 
studies were based on existing hardware with limited ability to modify these 
hardware platforms. Just as software infrastructure limitations can inhibit 
performance, hardware limitations can be equally challenging. An interesting 
follow-on area of research would be application of Coactive Design to the 
hardware design process. We have made an initial attempt in this area by applying 
Coactive Design to the hardware design of IHMC’s exoskeleton. The approach 
helped highlight some design deficiencies and the anecdotal experience indicated 
that there is a potential benefit to applying Coactive Design to hardware 
development. 

The most exciting future work is the work we cannot yet envision. As we build 
systems to be more coactive, we will inevitably uncover new ways to do things. 
The introduction of technologies that provide a new way to do something, such as 
cell phones and the Google search engine, did not just provide a new way to do 
something. They opened up a whole new world of possibilities that transformed 
our world. It is our hope that viewing the world through a coactive lens may 
someday allow robotic systems to fulfill their idealistic roles that have inhabited 
the imagination of humankind since their inception. 
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Samenvatting 
Deze thesis komt voort uit de frustratie die wij hebben ervaren bij het ontwerpen 

van onze eigen autonome systemen en vanuit autonome systemen die we gezien 
hebben van anderen. Bestaande autonome systemen kunnen niet goed omgaan met 
de onzekerheden, ambiguiteïten, en onverwachte situaties die zich in de 
werkelijkheid nu eenmaal voordoen. In de Unmanned Systems Integrated Roadmap 
van het ministerie van Defensie van de USA (2013, p.29) staat bijvoorbeeld dat 
bijna alle onbemande systemen om directe besturing vragen voor zowel basale 
handelingen als voor gedrag te maken heeft met communicatie, inzet van 
personeel, en de effectiviteit van het systeem. Dit wordt in een rapport van de 
Defense Science Board (DSB) toegeschreven aan het probleem dat autonome 
systemen niet goed om kunnen gaan met nieuwe situaties (2012, p. 58).  

Ons doel is autonome systemen effectiever te maken. Dit betekent dat ze een 
groot herstellingsvermogen moeten hebben. Herstellingsvermogen gaat niet over 
optimaal gedrag, het gaat over overleven en het kunnen uitvoeren van hun taak. 
David Woods beschrijft het als het vermogen van systemen om een onverwachte 
verstoring te kunnen herkennen en om hun gedrag hieraan aan te passen. Dit vraagt 
om een nieuw model van wat een goed functionerend systeem is, en om een 
verandering van bestaande processen, strategieën, en coordinatie (2006, p. 22). Zijn 
beschrijving gaat in op twee fundamentele aspecten van herstellingsvermogen: het 
herkennen van problemen en het bieden van flexibele alternatieven om met die 
problemen om te gaan. Daarmee wordt de onderzoeksvraag dus: hoe ontwerp je 
een systeem dat een goed herstellingsvermogen heeft? 

Coactive Design breekt met traditionele ontwerpmethodes door zich te richten 
op het effectief omgaan met de onderlinge afhankelijkheden tussen teamleden van 
een mens-machine systeem (Johnson, Bradshaw, Feltovich, Jonker, et al., 2011). In 
de resulterende mens-machine systemen kunnen teamleden problemen herkennen 
en als team hun gedrag hieraan aanpassen. Als een team om kan gaan met een scala 
aan onderlinge afhankelijkheidsrelaties dan maakt dat het team flexibel. 
Flexibiliteit geeft het systeem herstellingsvermogen doordat alternatieve manieren 
beschikbaar zijn om onverwachte situaties te herkennen en het hoofd te bieden.  

Coactive Design zoals we beschreven in dit proefschrift, biedt vijf belangrijke 
bijdragen: 1) een nieuw ontwerpperspectief gebaseerd op onderlinge 
afhankelijkheden, 2) een rijker begrip van onderlinge afhankelijkheden, 3) een 
nieuw model voor mens-machine systemen, 4) een nieuwe ontwerpmethode, en 5) 
een nieuw gereedschap, de Interdependence Analysis Table, dat de ontwerper helpt 
bij het systeemontwerp en -analyse. Hoofdstukken 5-8 bevatten de informatie 
waarmee andere ontwerpers deze methodiek toe kunnen passen op het ontwerp van 
hun eigen mens-machine systemen. 
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We hopen dat ontwerpers van mens-machine systemen het Coactive Design 
perspectief ervaren als verfrissend, en dat dit proefschrift een nieuw licht werpt op 
hun ontwerpuitdagingen. Evenzo hopen we dat ze onze methode en 
gereedschappen waardevol vinden in hun ontwerpproces. Met Coactive Design 
kunnen abstracte samenwerkingsconcepten vertaald worden in herbruikbare 
algoritmen en interface-elementen waarmee robots hun beoogde rol als teamlid 
kunnen vervullen. Onderlinge afhankelijkheden zijn belangrijk omdat deze de basis 
vormen voor het begrijpen van complexe systemen. Door het gebruik van de 
Coactive Design methode kan een ontwerper mens-machine systemen ontwikkelen 
welke om kan gaan met onderlinge afhankelijkheden en welke daarmee niet alleen 
meer basisvaardigheden, maar ook flexibiliteit en herstellingsvermogen hebben.  

 

  



 

148 
 

About the author 
Matthew Johnson was born in New York in 1970. On graduating from high 

school he received a full Navy scholarship to attend the University of Notre Dame. 
He received his Bachelor of Science in Aerospace Engineering in 1992 and 
proceeded to the Navy’s flight school in Pensacola Florida. In 1994 he was 
designated a Naval Aviator and received his wings of gold. He spent ten years on 
active duty, completing two deployments. He flew SH-60B helicopters and was a 
flight instructor in the T-34C. During his last two years of active duty service he 
attended Texas A&M – Corpus Christi and received a Master of Science in 
Computer Science in 2001. After leaving active duty, he continued as a flight 
instructor in the Navy Reserves retiring after twenty years of service in 2012.  

In 2002 Matt shifted his focus from flying to research. He began working at the 
Florida Institute for Human and Machine Cognition. He has worked on numerous 
projects including the Oz flight display for reducing the cognitive workload in the 
cockpit, Augmented Cognition for improving human performance, and several 
human-robot coordination projects for both NASA and the Department of Defense. 
He has worked on advanced robotic control projects such as the DARPA Little 
Dog project developing walking algorithms for a quadruped robot on rough terrain 
and the IHMC lower body humanoid developing low-gravity walking gaits for 
NASA. He has developed advanced information sharing systems designed to 
support the forward deployed soldier. Since 2009 Matt has been working on his 
PhD in Computer Science with TU Delft focusing on improving performance in 
human-machine systems. This work was done in collaboration with his colleagues 
at TU Delft and those at IHMC in Pensacola, Florida. 

 

 


	Cover
	Preface
	Acknowledgements
	Table of Contents
	1 Executive Summary
	2 Introduction
	3 Background and Related Work
	4 The Fallacy of Autonomy
	5 Coactive Design
	6 Interdependence
	7 Coactive System Model
	8 Coactive Design Method
	9 Joint Activity Testbed
	10 Applying Coactive Design to UAV Navigation
	11 Applying Coactive Design in the DARPA Virtual RoboticsChallenge
	12 Conclusion
	References
	Samenvatting
	About the author

