
Model Checking Agent Programs
by Using the Program Interpreter

Sung-Shik T.Q. Jongmans, Koen V. Hindriks, and M. Birna van Riemsdijk

Delft University of Technology

Abstract. Model checking agent programs is a challenge and it is still
a question which approaches can suitably be applied to effectively model
check such programs. We present a new approach to explicit-state, on-
the-fly model checking for agent programs. In this approach we use the
agent program interpreter for generating the state space. A model checker
is built on top of this interpreter by implementing efficient transforma-
tions of temporal properties to Büchi automata and an efficient book-
keeping mechanism that maintains track of states that have been visited.
The proposed approach is generic and can be applied to different agent
programming frameworks. We evaluate this approach to model checking
by comparing it empirically with an approach based on the Maude model
checker, and one based on the Agent Infrastructure Layer (AIL) interme-
diate language in combination with JPF. It turns out that although our
approach does not use state-space reduction techniques, it shows signif-
icantly improved performance over these approaches. To the best of our
knowledge, no such comparisons of approaches to model checking agent
programs have been done before.

1 Introduction

Various approaches have been used for model checking agent systems (see, e.g.,
[1–8]). In this paper, we focus on explicit-state on-the-fly model checking for agent
programming languages. Current state-of-the-art approaches for model checking
agent programs are based on the use of existing model checkers. In particular,
in [8] and [1] agent programs written in Mable and AgentSpeak(F), respectively,
are translated to Promela and verified with SPIN [9]. In the Agent Infrastructure
Layer (AIL) project [10] a Java-based framework to which various APLs can be
translated is used, in combination with the Java model checker Java Path Finder
(JPF) [11]; the model checker is called AJPF. The definition of this translation
needs to be specified only once for each AIL interpreted language. Moreover,
in [7], an implementation of (a simplified version of) 3APL is presented in the
Maude term rewriting language [12]. This enables model checking of 3APL pro-
grams with the Maude model checker (MMC) [13]. A possible advantage of such
approaches is that built-in optimizations and state space reduction techniques of
the existing model checker may be reused for the verification of agent programs.

In this paper, we propose a new approach in which a model checker is built
from scratch on top of the interpreter of an agent programming language. Al-
though any model checker needs to rely on an implementation of the semantics

of agent programs, our approach differs from others in the sense that it relies
on an explicit but abstract interface to an agent program interpreter and evalu-
ation of agent specific conditions are delegated to a standard interpreter for the
language whereas temporal properties are handled by well-known techniques for
LTL model checking (see also the architecture in Figure 1 below).1 We have
chosen the agent programming language Goal [14] as our target language. One
reason for choosing Goal is that the operational semantics of Goal has been
implented in Maude, enabling the use of the MMC for Goal, and a transla-
tion has been defined to AIL. This facilitates comparison between our approach
and other approaches. To the best of our knowledge, no such comparisons of ap-
proaches to model checking agent programs have been done before. In this paper,
we present an empirical evaluation of these approaches. It turns out that even
though our approach does not use state-space reduction techniques, it shows
significantly improved performance over these other approaches.

The contribution of this paper is thus twofold: we provide a new approach
to model checking agent programs, and a comparison that provides insight into
aspects that influence performance when using existing model checkers to model
check agent programs.

The rest of the paper is organized as follows. Section 2 introduces some
preliminaries. In Section 3, we introduce a new approach to model checking that
is based on using the interpreter for an agent programming language itself during
the verification of an agent program. We have implemented an interpreter-based
model checker for the language Goal, and briefly discuss the associated language
for specifying properties. Section 4 presents a number of experiments and the
results of a comparison between available approaches for model checking Goal
agents. Section 5 discusses our findings. The paper is concluded in Section 6.

2 Preliminaries

In this section, we briefly explain model checking, the Goal language, and its
property specification language.

Given a model of a system, model checking tests automatically whether this
model satisfies a given property (see, for example, [15]). Properties are often
specified in a temporal logic such as LTL [16], as we do in this work. A model
of a program (consisting of all its possible computations) satisfies an LTL prop-
erty ϕ if all computations satisfy the property. The model checking algorithm
searches for a counterexample, i.e. a computation on which ¬ϕ is true; if such a
computation cannot be found, the model satisfies the property ϕ.

A Goal agent decides which action to perform next based on its beliefs
and goals. The beliefs (collectively called the belief base) typically represent the

1 The model checker JPF used in an alternative model checking approach discussed
in this paper is not built on top of the standard JVM in this sense but relies on a
dedicated JVM developed for JPF. Most other model checking approaches require a
translation to a specific language supported by the model checker (such as Maude).
Our approach does not require such a translation.

current state of the agent’s environment. The Goal interpreter also offers the
possibility to specify knowledge, which is general knowledge about the environ-
ment that is typically static. In the interpreter for Goal, both knowledge base
and belief base are Prolog programs. A decision to act will usually also depend
on the goals of the agent. Goals of an agent are stored in a goal base. The goal
base consists of conjunctions of Prolog atoms. Together, the beliefs and goals
make up an agent’s mental state. To make decisions, a Goal agent uses so-
called action rules which consist of a mental state condition used to inspect the
agent’s beliefs and goals, and an action that may be executed if the mental state
condition holds. Actions include constructs for changing the agents’ beliefs as
well as goals; as we focus here on single agents communication primitives are
not allowed. Action rules can be combined into so-called modules to provide
additional structure to an agent program. To be precise, mental state conditions
φ are built from mental atoms Bψ and Gψ as follows:

χ ::= first-order atoms
ψ ::= χ | ¬χ | χ ∧ χ
φ ::= Bψ | Gψ | ¬φ | φ ∧ φ

Informally, Bψ is true if ψ follows from the belief base of the agent, and Gψ
is true if ψ follows from the goal base. For example, we have G(p) in a mental
state with goal base Γ = {p ∧ q}; due to space limitations, we cannot provide
all the details here but refer the reader to [17] and remark that G refers to
the primitive goal operator discussed in detail in [17]. A Goal computation
t = m0, a0,m1, a1, · · · is an infinite sequence of mental states mi and actions ai

such that execution of ai in mi brings about mi+1, and m0 is the initial mental
state. The meaning of a Goal program is defined as the set of all its possible
computations. More details about the program constructs the Goal language
supports and are supported by the model checker as well can be found in [17].

Although the model checking approach presented in this paper is able to
handle programs with all features mentioned above, not all of these features could
be used in the comparative experiments presented in this paper since various of
these features are not supported by the translation of Goal to AIL, nor by the
implementation of the Goal semantics in Maude. We recognize that in principle
it is possible to extend the model checking approaches based on AIL and Maude
to include these features. In this paper, however, we focus in particular on the
performance of these approaches for the core subset of Goal that is supported
by all three of approaches discussed here. The basic assumption here is that if
for a subset of the Goal language we can already show significant performance
differences, then it is unlikely that extensions to the full Goal language will
perform much better.

A simple Goal program for solving a blocks world [18] tower building prob-
lem is given in Table 1. Blocks are represented using the predicate block(X), the
fact that a block X is stacked on another block Y is represented as on(X,Y), and
the fact that there is no block on top of a block X is represented as clear(X). This
program assumes a single tower of blocks labelled as aa,ab,ac etc. and stacked

in this order where aa is the bottom block. The agent moves all blocks to the
table, i.e., when block ab is moved to the table, the tower has been unstacked.
For this reason, the agent has the goal of having ab on the table.2

main: agent {
beliefs {

block(aa). block(ab). block(ac). block(ad). block(ae).
on(aa,table). on(ab,aa). on(ac,ab). on(ad,ac). clear(ad).
on(ae,table). clear(ae).

}
goals { on(ab,table). }
program {

if goal(on(ab,table)), bel(on(X,Y)), bel(clear(X))
then moveXfromYtoTable(X,Y) .

}
action-spec {

moveXfromYtoTable(X,Y) {
pre { block(X) }
post { not(on(X,Y)), on(X,table), clear(Y) }

}
}
}

Table 1: Simple Goal program for the blocks world

The language used here to specify properties of a Goal program is LTL,
where the propositional atoms are mental atoms defined above.

3 An Interpreter-Based Model Checker

Figure 1 provides a graphical representation of an architecture for an interpreter-
based model checker (IMC). The IMC architecture consists of two main com-
ponents. The first component translates the negation of an LTL formula from
the property language to a Büchi automaton, thus representing the property
state space. (Recall that mental atoms are treated as propositional atoms in
this component.) The formula translator that has been implemented is based on
the LTL2AUT algorithm of [19]. The second component evaluates the property
by means of a search of the product state space. The product state space is
the product of the property state space and the program state space. The com-
ponent implements the generalized nested depth-first search algorithm of [20],
an on-the-fly exploration algorithm. This means that only parts of the product
state space that are needed are actually generated. The program state space is
obtained by means of the agent program interpreter which explains why we have
labeled our approach interpreter-based.

We have created a model checker for the agent language Goal by plugging
in the interpreter of Goal and using the mental atoms of the Goal language as
2 In Goal, a conjunctive goal may be used to express that a set of blocks should be

on the table, but the AIL translation does not allow the use of conjunctive goals.

atoms in the property language. This means that the mental state condition eval-
uation is delegated to the interpreter for the agent language itself and handled
by the query evaluator that is part of the agent interpreter whereas temporal
properties are represented by a Büchi automaton (see also Figure 1). In a similar
way IMCs for other agent languages can be obtained by plugging in an inter-
preter for those languages and instantiating the atoms of the property language
accordingly. For example, as Jason uses the construct ? for inspecting an agent’s
beliefs and ! for inspecting an agent’s event base, these operators could be used
instead of the B and G operators that are part of Goal (or similar mappings as
those proposed in [1] as long as the interpreter provides support to evaluate such
conditions). So, even though the main IMC components have been built from
scratch, this effort is not dedicated to a single agent programming language.

Agent Program Interpreter

Agent
Program

Query
Evaluator

(Mental state)

State
Generator

Interpreter-Based Model Checker

Property Evaluation
(Product State Space Search)

Property Translator
(Büchi Automaton Generator)

Agent
Property
Language

Fig. 1: Architecture of an Interpreter-Based Model Checker

To be able to support various agent languages a well-defined interface is
needed from the IMC to the interpreter of a specific agent language. The in-
terface for any IMC needs to provide support for two types of requests from
the exploration component: requests for supplying successors states (given the
current state and the agent program that is being checked), and requests for eval-
uating mental atoms in the mental state that is currently being examined. Both
requests are handled by invoking existing methods of the interpreter. One advan-
tage of the IMC approach is that the full support offered by the interpreter can
be reused. Existing model checkers for APLs sometimes limit the expressiveness
of the property language: the logic of [3], for example, only allows ground atomic

formulas inside mental literals. In contrast, because the query mechanism of the
Goal interpreter is used, any mental atoms that this interpreter can handle can
be used as ”atoms” in the property language, including conditions that contain
free variables, the use of conjunctions and negations in mental atoms, and the
use of knowledge rules. Another benefit of using an interface as described is that
it only requires support for generating successor states and handling queries, and
the approach abstracts from more specific differences between agent languages
related to the precise set of built-in actions that is supported. The point is that
although specific and concrete actions are needed in agent languages to com-
pute successor states, the model checking approach presented here only needs
to know the successor states but not the manner in which these were generated.
The latter is delegated to the agent interpreter itself.

In addition, it is always possible to refine the IMC interpreter and add specific
optimizations to make the interpreter more efficient. In our current implemen-
tation for Goal we have implemented a translation of mental states to binary
representations in order to more efficiently use memory resources. This represen-
tation of Goal mental states increases the performance of the model checker.
It is more costly to perform frequently used operations such as checking for
equality of states and computing hash codes for states when the mental state
representation that the interpreter manipulates is used instead of the binary
representation. These operations need to be performed to check whether states
have already been visited and to check for cycles in the search. We briefly ex-
plain the details of this representation for Goal. Informally, every bit (having
a unique index) in the binary representation of a mental state corresponds to
a belief or a goal: 1-bits indicate that the corresponding belief or goal is part
of the mental state, whereas 0-bits indicate the opposite. To translate binary
representations of mental states back and forth, we need a bookkeeping mech-
anism that associates each indexed bit with a unique belief or goal. Since it is
infeasible to compute beforehand which beliefs and goals an agent might have
in a computation, assigning indices to beliefs and goals is done during model
checking. This is achieved by dynamically identifying beliefs and goals that have
not occurred so far, and assigning indices incrementally, starting from 0. This
means that at runtime any beliefs or goals that have not occurred so far during
execution are added to a list of beliefs and goals that have occurred so far and
associated with an integer index (the position in the bit string); there thus is no
need to know beforehand which beliefs or goals will occur. The benefit is that
instead of using the explicit representation of beliefs and goals we can now use
bit strings instead to represent mental states in the state space that needs to
be searched. Using bit strings provides two benefits: it reduces memory (space)
requirements but most importantly it reduces time needed to compare states (in
order to check whether a state has already been visited).3

3 Note that as knowledge (rules) are assumed to be static we do not need to represent
these as part of the state space because they never change. Most, if not all, agent
programming languages similar to Goal assume rules to be static.

Due to space limitations we are not able to provide all the details here. In
essence, the bit string representation of a mental state is a conversion of a mental
state to a “canonical representation” of that state. The main point here is that
if e.g. a belief or goal formula occurs in a mental state the presence of that
formula can be checked at a unique index of the bit string. This means that
whenever the state space exploration algorithm needs to verify that a mental
state has already been visited it does not need to transform visited states into
such a canonical representation first (e.g. by sorting the formulas in that state) in
order to compare it with the new state to be checked. This involves a significant
reduction of time needed to check the visited lists during state space exploration
(which yields a time reduction approximately in the order of N × |m| × log(|m|)
where N denotes the length of the visited list and |m| the average size of a
mental state for each time that a visited check needs to be performed). To give an
indication of the space reduction, we briefly discuss the more specific issue related
to storing ground belief atoms only. Suppose that for explicit representation
of such atoms we would use a string representation. A reasonable measure of
size needed in that case would be the length of that representation, i.e. string
length (in terms of bytes). For the sake of argument, let us assume that we
can approximate space requirements by the average length of such strings and
on average we would need L bytes to store a belief (this is an underestimate
of what is really needed). Moreover, suppose we have N different belief atoms
which may or may not occur in a belief base. This yields 2N possible belief
bases. The average number of beliefs in these belief bases is ΣN

0 k×
(
N
k

)
divided

by 2N , which equals N/2. Explicit state space representation (using only belief
bases) would thus require N × 2N−1 ×L bytes, or N × 2N × 4×L bits. Instead
the bit string representation would require N × L bytes to represent the list of
belief atoms and N ×2N bits to represent the state space. This is a conservative
estimate of the space reduction, which shows that minimally space requirements
are reduced with a factor 4× L.

4 Experiments and Results

As we view our approach as only one alternative to others, it is important to
evaluate our approach and compare it with existing alternatives. The key mea-
sure for comparison is performance as model checking of reasonably complex
agent programs is only possible if performance is adequate. Our implementation
of an IMC for Goal enables a comparison between three approaches. The IMC
for Goal can be compared with AJPF (the AIL project model checker) and
the MMC (based on Maude) that both provide a tool to model check Goal
agents. In order to gain a better understanding of the differences between these
approaches we present a number of experiments and corresponding results.

4.1 Experimental Evaluation

Before introducing the experiments that we performed, we first discuss a number
of issues related to evaluating the results of our experiments. One issue concerns

the input that is provided to the model checkers to obtain a fair comparison. A
second issue concerns what it means to say that a model checker scales well. We
use regression analysis to obtain resource consumption functions (time, space)
that fit the data. A third issue concerns the interpretation of the data obtained
from the experiments.

Semantic Equality of Agents The experiments are designed to enable a fair
comparison as much as possible. The most important condition for a fair com-
parison is that semantically equivalent Goal programs are provided as input
to the three different model checkers. Unfortunately, as AJPF and MMC im-
plement different subsets of Goal, it turned out to be rather complex task to
design experiments. For example, in AJPF, goals must be (negations of) single
terms. As a result, the experimental agents used in the experiments are simple
and are artificial in various respects. IMC is based on Goal’s interpreter and
as such does not pose any restrictions, which illustrates another advantage of
the interpreter-based approach introduced here; although there is no principled
reason to assume other approaches cannot be extended to cover additional lan-
guage features, the approach presented here provides an alternative that is able
to support checking agent programs that use almost any feature supported by
the agent interpreter (see also the discussion of the IMC interface above).

Apart from language support considerations there is a second reason for
keeping the experiments simple. We first need to evaluate the performance of
the model checkers for simple cases before providing more complex programs to
check. This has also motivated us to use deterministic agents, i.e. agents that
have only one possible computation, in our experiments. The relevant literature
provides indications that it is already hard to model check simple programs due
to performance reasons and these findings are confirmed by our experiments. We
found that even simple non-deterministic agents were beyond the capabilities of
MMC, and to a lesser extent this also is the case for AJPF. Another reason
for our choices in this regard are that by only considering deterministic agents,
it is easier to draw conclusions about resource consumption during the model
checking of agents.

Scalability In order to be able to model check reasonably sized agent programs
a model checker needs to be scalable. To avoid confusion, it is important to more
precisely define when a model checker is said to scale well. Though improving
scalability has been an important factor in research on software verification, to
the best of our knowledge, no standards or metrics regarding scalability have
been proposed for model checkers. In order to clarify this notion we introduce
the following definition.

Definition 1 (Scalability and Unscalability). A model checker is said to be
scalable or scale well with regard to certain conditions, if the relation between
those conditions and resource consumption of the model checker can be described
by one of the following functions:

Logarithmic : y = b · log(x) + a
Polynomial (d < 1) : y = b · xd

Linear : y = b · x+ a

A model checker is said to be not scalable or scale poor with regard to certain
conditions, if the relation between those conditions and resource consumption of
the model checker can be described by one of the following functions:

Polynomial (d > 1) : y = b · xd

Exponential : y = b · rx

In these functions, x and y represents, respectively, the conditions and the re-
source consumption, a is called the intercept, b is called the coefficient, d is called
the degree of the polynomial, and r is called the radix..

The intuition behind Definition 1 is that a model checker scales well if the relation
between conditions and consumption is at most linear. The reason for regarding
polynomial relations in degree d > 1 as not scalable is that x is, in general, very
large for real-world model checking problems. In such cases, a quadratic relation
versus a cubic relation can already make the difference between (in)tractability
of a problem. Note that our definition differs from complexity theory, where all
problems that can be solved in polynomial time are deemed tractable.

Regression analysis To determine the type of relation between experimental
conditions and resource consumption, we will apply regression analysis to analyze
the experimental data. That is, we will fit the functions given in Definition 1
to the measurements using least-squares regression, and assess how good the
fits found are by comparing their R2 values. The fitted function that yields
the highest (i.e. closest to 1) R2 is deemed the relation between conditions and
consumption. The resource consumption of the model checkers is obtained by
measuring two dependent variables: verification time and memory consumption.

The conditions under investigation, in statistics called independent variables,
are the size of the belief base and the size of the state space. The size of the state
space is defined as the total number of mental states that can be encountered on
all computations of the Goal agent. The size of a belief base is defined as the
number of elements it contains (i.e. ground atoms). In the experiments reported
on below, we simply used the model checkers to report the number of states
visited.

To study the different effects of both independent variables, the experiments
are organized as follows. In the first experiment, the size of the belief base is
varied, while the size of the state space is kept constant. In the second experi-
ment, the size of the belief base is kept constant, while the size of the state space
is varied. Finally, in the third experiment, both the size of the belief base and
state space are varied.

4.2 Experiments

We now present the three experiments that we have performed (together with
the experimental results).

Experiment 1 (Size of Belief Base) In this first experiment, we investigate
the scalability of the model checkers in the size of the belief base; the size of the
state space is kept constant.

For this experiment, we have used variants of the agent program of Table
1 with n ∈ {10, 20, 30, 45, 60, 80, 100, 200} blocks, rather than n = 5 as used
in the agent program. Four of the n blocks are initially stacked on each other,
whereas the remaining n − 4 blocks are on the table. For all n, the stacked
blocks are aa, ab, ac, and ad: aa is on the table, ab is on aa, ac is on ab, and
ad is on ac. In the target configuration, all the blocks are on the table. The
property ϕ under investigation is whether the agent eventually brings about the
target configuration. For all values of n, the program state space contains only
four mental states. In contrast, the belief base grows as n increases: it becomes
filled with redundant beliefs. That is, removing these beliefs would not affect the
behaviour of the agent.

The verification times are displayed in Fig. 2a, and the calculated relations are
given in the first column of Table 3a. These results suggest that IMC scales well
to larger belief bases, in contrast to AJPF and MMC. Though the verification
times of the latter two both grow polynomially in the size of the belief base,
the degrees of the fitted functions (shown in Table 3a between brackets) show
that the increase in verification time of MMC is more than cubic, whereas AJPF
remains under quadratic. This difference can also be observed in Fig. 2a, and
supports our decision to classify polynomial relations in degree d > 1 as not
scalable. For n = 200, the absolute difference in performance is the largest: IMC
took 1 second, AJPF took 40 minutes, while MMC took 44 hours.

The memory consumption is displayed in Fig. 3a, and the calculated relations
are given in the first column of Table 3b. One might notice that although the
degrees of the fitted polynomial functions for IMC and AJPF are the same, the
memory requirements of the former are much lower. The reason for this is that
the coefficient b (see Definition 1) for IMC is roughly 2, whereas for AJPF it
is roughly 22. According to Definition 1, all three model checkers scale well to
larger belief bases with respect to memory consumption. Nevertheless, AJPF is
substantially more memory demanding than IMC and MMC.

Experiment 2 (Size of State Space) In this second experiment, we inves-
tigate the scalability of the model checkers in the size of the state space; the
size of the belief base is kept constant. To reduce the effect of the size of the
belief base on the experimental results (the previous experiment showed that
such an effect is definitely present), it should be as small as possible. As these
requirements (small belief base, growing state space) are not easily satisfied by
a Blocks World scenario, we use the following setting.

In this experiment, the agent is a simple counter: it starts at 0, and counts
until infinity. There are various ways to implement this behaviour, and we chose
an implementation in which: the belief base is used as little as possible (for
reasons outlined above), and goals are issued very frequently. The reason for
issuing many goals is that goal creation is a relatively slow operation in the cur-

0 50 100 150 200 250
0E+0

2E+7

4E+7

6E+7

8E+7

1E+8

1E+8

1E+8

2E+8

2E+8

Number of blocks

T
im

e
 (

m
s)

0 50 100 150 200 250
1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

Number of blocks

T
im

e
 (

m
s)

(a) Experiment 1.

0 50 100 150 200 250
0E+0

1E+4

2E+4

3E+4

4E+4

5E+4

6E+4

7E+4

8E+4

Target count

T
im

e
 (

m
s)

0 50 100 150 200 250
1E+2

1E+3

1E+4

1E+5

Number of blocks

Ti
m

e
 (

m
s)

(b) Experiment 2.

0 50 100 150 200 250
0E+0

5E+5

1E+6

2E+6

2E+6

3E+6

3E+6

4E+6

4E+6

5E+6

Number of blocks

Ti
m

e
 (

m
s)

0 50 100 150 200 250
1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

Number of blocks

Ti
m

e
 (

m
s)

(c) Experiment 3.

Fig. 2: Verification times of IMC (continuous line, measurements as �), AJPF (dashed
line, measurements as �), and MMC (dashed-dotted line, measurements as O) in Ex-
periments 1, 2, and 3. Plotted lines are best-fit regression lines. Left figures have a
linear scale on the y-axis, whereas the scale on the y-axis of right figures is logarithmic.

rent Goal interpreter. Thus, by issuing many goals, not only do we challenge the
interpreter, but the interpreter-based model checker as well. Note that because
the agent can count until infinity, the state space of the agent is not finite. To
ensure that the model checking procedure is decidable, the property ϕ must be
verifiable in a finite number of interpretation cycles. One such property is that
the agent eventually believes that its current number is some natural number
n. Hence, the size of the state space is controlled by the value of n in ϕ; in this
experiment, we chose n ∈ {10, 20, 30, 45, 60, 80, 100, 200}.

The verification times are displayed in Fig. 2b, and the calculated relations
are given in the second column of Table 3a. Though we expected MMC to be
the slowest of the three (based on its performance in Experiment 1), AJPF is
in fact ten times slower: the slope of the linear function fitted on the AJPF
measurements is roughly 330, whereas the slope of MMC’s linear fit is only 33.
For n = 200, the difference is the largest: IMC took 3 seconds, AJPF took 72
seconds, and MMC took 7 seconds.

The memory consumption is displayed in Fig. 3b, and the calculated rela-
tions are given in the second column of Table 3b. Similar to Experiment 1, all
reported relations are scalable according to Definition 1, but again, AJPF de-
mands substantially more memory. Also, the relations for IMC and MMC imply
that MMC’s memory consumption grows faster in the size of the state space
than that of IMC. Hence, it is to be expected that for some n > 200, IMC will
consume less memory than MMC. This is not obvious from Fig. 3b.

Experiment 3 (Size of State Space and Belief Base) In the third experi-
ment, we investigate the scalability of the model checkers with respect to both
the size of the belief base and the state space.

To satisfy the desired experimental conditions (growing belief base and state-
space), we adapt the agent of Experiment 2 in such a way that it remembers
all counted numbers. As a consequence, the size of the belief base will increase
linearly in the size of the state space. These beliefs are, like the superfluous
blocks in Experiment 1, redundant. The property under investigation is the same
as in Experiment 2 for the same values of n such that all three model checkers
terminate eventually.

The verification times are displayed in Fig. 2c, and the calculated relations are
given in the third column of Table 3a. IMC is again the fastest of the three model
checkers, and still shows to scale well. In contrast, scalability of AJPF and MMC
drops from linear to exponential and polynomial in degree 2.7, respectively. For
n = 200, the absolute difference in performance is the largest: IMC took 3
seconds, AJPF took 5 minutes, while MMC took over an hours.

The memory consumption is displayed in Fig. 3c, and the calculated relations
are given in the third column of Table 3b. The memory demands are similar
to those in Experiments 2: AJPF performs, though depending linearly on the
experimental conditions (thus, scalable in terms of Definition 1), the least well of
the three model checkers, whereas IMC and MMC perform roughly equal. It is
interesting to see that the intersection point of IMC and MMC for some n > 200,

mentioned when treating the memory consumption of the model checkers in
Experiment 2, is almost within the range of the values of n in Experiment 3.

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

200

Number of blocks

S
p

a
ce

 (
M

B
)

(a) Experiment 1.

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

200

Target count

S
p

a
ce

 (
M

B
)

(b) Experiment 2.

0 50 100 150 200 250
0

50

100

150

200

250

Target count

S
p

a
ce

 (
M

B
)

(c) Experiment 3.

Fig. 3: Memory consumption of IMC (continuous line, measurements as �), AJPF
(dashed line, measurements as �), and MMC (dashed-dotted line, measurements as
O) in Experiments 1, 2, and 3. Plotted lines are best-fit regression lines.

Summary Table 3a summarizes the results with respect to verification time.
IMC is the only model checker that scaled well in all three experiments. The
other two model checkers clearly have problems when the size of the belief base
increases. Table 3b summarizes the results with respect to memory consumption.
With only polynomial relations in degree d < 1, IMC has performed best with
regard to memory consumption. Though the measurement for AJPF and MMC
imply scalability as well, Fig. 3 shows that there still are clear differences between
IMC and MMC on the one hand, and AJPF on the other.

Table 2: Relations between resource consumption and experimental conditions.

Experiment 1 Experiment 2 Experiment 3
Relation R2 Relation R2 Relation R2

IMC Linear 0.9329 Linear 0.9974 Poly (0.75) 0.9722
AJPF Poly (1.7) 0.9706 Linear 0.9829 Exponential 0.9925
MMC Poly (3.3) 0.9958 Linear 0.9985 Poly (2.7) 0.9936

(a) Verification time. Boldface shows scalability.

Experiment 1 Experiment 2 Experiment 3
Relation R2 Relation R2 Relation R2

IMC Poly (0.40) 0.8266 Poly (0.59) 0.9109 Poly (0.60) 0.9113
AJPF Poly (0.40) 0.9663 Linear 0.9860 Linear 0.9966
MMC Linear 0.9664 Linear 0.9982 Linear 0.9491

(b) Memory consumption. Boldface shows scalability.

Comparison with Normal Execution In order to distinguish between over-
head caused by the model checker and possible inefficiency caused by the un-
derlying execution mechanism, we have measured resource consumption during
execution (rather than verification) of the agents by the three underlying plat-
forms as well. This can be done because the programs are deterministic, and
therefore the trace that is model checked coincides with the trace generated by
executing the programs.

In case of the program of Experiment 1, we observed that both AJPF and
MMC introduce substantial overhead with respect to run-time: the largest differ-
ence between execution and verification times, measured for n = 200, amounted
to roughly 37 minutes for AJPF, and over 41 hours for MMC. In contrast, the
difference measured for IMC was only 50 milliseconds. With respect to memory
consumption, less extreme differences were measured: for n = 200, IMC, AJPF
and MMC required, respectively, 10 MB, 125 MB, and 2 MB less than when
model checking.

In case of the program of Experiment 2, we observed that the overhead
of MMC during verification is a lot smaller than in Experiment 1: the largest
difference, measured for n = 200, is only 2 seconds (compared to 41 hours in
Experiment 1). For AJPF, the difference is again large: roughly 70 minutes.
For IMC, the largest difference is still negligible: approximately half a second.
With respect to memory consumption, larger differences were measured than for
Experiment 1: for n = 200, executing the agent took IMC, AJPF, and MMC,
respectively, 24MB, 172MB, and 6MB less than when model checking the agent.

In case of the program of Experiment 3, we observed that the overhead of
AJPF with respect to run-time is, as in the previous experiments, substantial.
For MMC, in contrast to Experiment 2, the overhead is significant as well. For
n = 200, the difference between execution and verification times for IMC, AJPF,

and MMC are 1 second, over 5 minutes, and 24 minutes, respectively. With
respect to memory consumption, again larger differences were measured: for
n = 200, executing the agent took IMC, AJPF, and MMC, respectively, 22 MB,
203 MB, and 16 MB less than when model checking the agent.

4.3 Wumpus Scenario

In order to illustrate that IMC is able to model check larger agent programs
which give rise to much larger state spaces, we present results about model
checking an agent for the well-known Wumpus World scenario [21]. The primary
motivation for presenting this domain is to show IMC is able to handle more
realistic scenarios. We are not able to present results for this domain for AJPF or
MMC. The main reason is that even for small instances of this domain the state
space already is significantly bigger than those used in the previous experiments,
and by extrapolating the results obtained above it is unlikely to obtain results
for either AJPF or Maude within reasonable time.

Fig. 4: Wumpus World

In the Wumpus World, a single agent is located in a cave that contains pits
which need to be avoided, walls that prevent movement, and a beast called the
Wumpus that as pits will kill the agent if it steps onto it. The cave is a grid
world and locations can be identified by x and y coordinates. Figure 4 illustrates
the environment; A denotes the agent, G represents gold, and W represents the
Wumpus (the grids around the Wumpus are marked so the agent can smell it
is next to the Wumpus; similarly pits are marked by ’breezes’). The goal of the
agent is to locate gold that resides somewhere (at a position initially unknown
to the agent, the environment is partially observable) and after getting the gold

leaving the cave. We can model check this environment as it is a single agent
and deterministic environment which ensures we can always determine a unique
set of successor states for each action that is performed by the agent; for more
details see [21].

The first agent that we verified moves through the cave completely non-
deterministically. It bumps into a wall if a wall blocks its way, and returns
to a previously visited position if it encounters a stench (indicating that the
Wumpus is close by). We checked a property that specifies that, given this
Wumpus-avoidance-policy of the agent, it can never be at the same position
as the Wumpus: �¬Bposition(33,-11). As the position of the Wumpus is
fixed (at (33,-11)), satisfaction of this property means that at least the agent
will never die. The model checker reports after exploring 57355 states in 6:30
minutes and using 97 MB of memory that the property is true. Another prop-
erty that we would like the agent to satisfy is that it eventually obtains the gold:
♦Bhas(gold). Unfortunately, the model checker reports a (non-minimal) coun-
terexample after exploring 89 states in 2 seconds and using 42 MB of memory: at
some point, the agent enters a loop of turning left, moving forward three steps,
turning left twice, moving forward three steps again, and turning left again. We
can, however, establish that there exists at least one computation on which the
agent does obtain the gold by verifying the property �¬Bhas(gold). The model
checker reports a counterexample in 2:19 minutes and uses 36 MB of memory;
this counterexample corresponds to the computation on which the agent obtains
the gold.

The second agent that we verified is a lot smarter than the first: it maintains a
mental map of the cave by remembering the positions it visited, including a “trail
of breadcrumbs” to find its way outside efficiently, and systematically explores
unknown grounds. This implementation removes the non-determinism from the
agent (making the state space smaller), but because a lot of information must
be stored, the belief base is much larger: it grows linearly as the agent explores
the cave, which has over 1600 different positions. The Wumpus-avoidance-policy
of this agent is the same as that of the first, and the model checker re-confirms
its effectiveness after exploration of 8225 states in 55 seconds using 37 MB of
memory. As a result the agent satisfies ♦Bhas(gold): verification required ex-
ploration of 3877 states, took 48 seconds and required 30 MB of memory.

5 Discussion

The experimental results clearly show that IMC outperforms the other two model
checkers. Also, the results show that especially MMC is unable to deal with the
simple toy examples that were under investigation, particularly with regard to
verification time; to a lesser extent, this is also true for AJPF. With regard
to AJPF, we believe that for a large part, the overhead of JPF is responsible
for the slow verification (as well as for higher memory consumption), because
executing (rather than verifying) the agent is substantially faster: the agent of
Experiment 3 easily counts to 200 within a few seconds, whereas verifying with

AJPF whether this agent actually can count to 200 takes over 5 minutes. Similar
differences were observed in all three experiments. With regard to MMC, the slow
verification is partly ascribed to the rate at which the Maude Goal interpreter
can generate the state space: the agent of Experiment 3 already takes 45 minutes
to count to 200 (when executed). Note, however, that the overhead of Maude’s
built-in model checker can be substantial as well: verifying whether the agent
can actually count to 200 takes 24 more minutes.

Earlier, we mentioned that model checking non-deterministic agents is infea-
sible with AJPF and MMC: we carried out an additional experiment with IMC
featuring a non-deterministic agent to illustrate this. Consider a Blocks World
agent as in Experiment 1 with an initial belief base containing 200 blocks di-
vided over 2 towers of 100 blocks each, and a property specifying that the target
configuration (all blocks on the table) is reached. This non-deterministic agent
has a state space of size 10,000. Nevertheless, verification with IMC takes only
2150 seconds, i.e. 35 minutes. In contrast, AJPF and MMC required already
more time (40 minutes and 44 hours, respectively) to complete verification for
n = 200 in Experiment 1: a comparable setting with only 4 states instead of
10,000. Given that the size of the belief base is constant, and assuming that
AJPF and MMC scale linearly in the size of the state space (as suggested by the
results of Experiment 2), it would take AJPF 100,000 minutes, i.e. 70 days, and
MMC 110,000 hours, i.e. 12.5 years, to terminate.

Another observation concerns the size of the belief base: it turns out this has a
large impact on the verification times associated with AJPF and MMC. It follows
that the performance of these model checkers is not only dependent on the size
of the state space, but also on the way that beliefs are dealt with. We speculate
that two important aspects need to be optimized to increase performance. First,
the mechanism for querying the belief base should be implemented as efficiently
as possible. For MMC, this seems a problem as normal execution of the agents
already took a long time in Experiments 1 and 3 (in Experiment 2, belief base
queries were only performed on a belief base with at most two beliefs). Second,
the model checker should not introduce overhead on this querying, which seems
to be the case for AJPF.

6 Conclusion

We have distinguished three different approaches to model checking agent pro-
grams: two approaches that reuse existing model checkers in quite different ways,
including for example [1] and the AIL approach [10], and the interpreter-based
approach that we introduced in this paper. An architecture for this new approach
has been introduced and we discussed how the approach can be applied to various
agent programming languages. An implementation for the Goal agent language
has also been provided. One advantage of the interpreter-based approach is that
in practice it supports a more expressive property language than that supported
by currently existing alternatives.

In order to compare these approaches we performed various experiments
to gain insight into the performance of these approaches. As far as we know,
such performance comparisons have not been made before and providing such
results is one of the contributions of this paper. Our main finding is that the
interpreter-based approach outperforms the other two approaches. In addition,
the computed relations with respect to resource consumption show that model
checking non-deterministic agents (or, in general, any agent with a state space
that is orders of magnitudes larger than, for example, the simple Blocks World
examples we used) is currently beyond the capabilities of AJPF and MMC. In
contrast, IMC handles those state spaces with relative ease.

We plan on further developing the interpreter-based Goal model checker, in
particular by extending it with state space reduction techniques. As we have full
control over de code of the model checker, we expect that implementing such
techniques is, from a programming point of view, less complex than when such
language-specific optimizations would need be incorporated in an existing model
checker.

References

1. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking agents-
peak. In: Proceedings of the 2nd International Joint Conference on Autonomous
Agents and Multiagent Systems, ACM (2003) 409–416

2. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifiable multi-agent pro-
grams. Programming Multi-Agent Systems 3067 (2004) 72–89

3. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated verificiation of
multi-agent programs. In: 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, IEEE Computer Society (2008) 69–78

4. Dennis, L.A., Fisher, M.: Programming verifiable heterogeneous agent systems.
Programming Multi-Agent Systems 5442 (2009) 40–55

5. Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter,
M., Wozna, B., Zbrzezny, A.: Verics 2007 - a model checker for knowledge and
real-time. Fundamenta Informaticae 85 (2008) 313–328

6. Lomuscio, A., Raimondi, F.: Mcmas: a model checker for multi-agent systems.
Tools and Algorithms for the Construction and Analysis of Systems 3920 (2006)
450–454

7. van Riemsdijk, M.B., de Boer, F.S., Dastani, M., Meyer, J.J.C.: Prototyping 3apl in
the maude term rewriting language. Computational Logic in Multi-Agent Systems
4371 (2007) 95–114

8. Wooldridge, M., Fisher, M., Huget, M.P., Parsons, S.: Model checking multi-agent
systems with mable. In: Proceedings of the 1st International Joint Conference on
Autonomous Agents and Multiagent Systems, ACM (2002) 952–959

9. Holzmann, G.J.: The SPIN model checker. Addison-Wesley (2003)

10. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A common
semantic basis for bdi languages. Programming Multi-Agent Systems 4908 (2008)
124–139

11. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering 10 (2004) 203–232

12. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: specification and programming in rewriting logic. Theoretical
Computer Science 285 (2002) 187–243

13. Eker, S., Meseguer, J., Sridharanarayanan, A.: The maude ltl model checker.
In: Proceedings of the 4th International Workshop on Rewriting Logic and its
Applications, Elsevier Science (2002) 162–187

14. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: Agent program-
ming with declarative goals. Intelligent Agents VII 1986 (2001) 248–257

15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press (1999)
16. Emerson, E.: Temporal and modal logic. In van Leeuwen, J., ed.: Handbook of

Theoretical Computer Science. Volume B: Formal Models and Semantics. Elsevier,
Amsterdam (1990) 996–1072

17. Hindriks, K.V.: Programming rational agents in goal. Multi-Agent Programming
(2009) 119–157

18. Slaney, J., Thiébaux, S.: Blocks world revisited. Artificial Intelligence 125 (2001)
119–153

19. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear
temporal logic. Computer Aided Verification 1633 (1999) 681–692

20. Tauriainen, H.: Nested emptiness search for generalized buchi automata. In: Pro-
ceedings of the 4th International Conference on Application of Concurrency to
System Design. (2004) 165–174

21. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edn.
Prentice-Hall, Englewood Cliffs, NJ (2003)

