
Dynamic Logic for Plan Revision in
Intelligent Agents

M. Birna van Riemsdijk

Frank S. de Boer

John-Jules Ch. Meyer

institute of information and computing sciences,
utrecht university

technical report UU-CS-2005-013

www.cs.uu.nl

Dynamic Logic for Plan Revision in Intelligent
Agents

M. Birna van Riemsdijk1 Frank S. de Boer1,2,3 John-Jules Ch. Meyer1

1 ICS, Utrecht University, The Netherlands
2 CWI, Amsterdam, The Netherlands

3 LIACS, Leiden University, The Netherlands

Abstract. In this paper, we present a dynamic logic for a propositional
version of the agent programming language 3APL. A 3APL agent has
beliefs and a plan. The execution of a plan changes an agent’s beliefs.
Plans can be revised during execution. Due to these plan revision capa-
bilities of 3APL agents, plans cannot be analyzed by structural induction
as in for example standard propositional dynamic logic. We propose a
dynamic logic that is tailored to handle the plan revision aspect of 3APL.
For this logic, we give a sound and complete axiomatization.

1 Introduction

An agent is commonly seen as an encapsulated computer system that is situated
in some environment and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives [23]. Programming these flex-
ible computing entities is not a trivial task. An important line of research in this
area, is research on cognitive agents. These are agents endowed with high-level
mental attitudes such as beliefs, desires, goals, plans, intentions, norms and obli-
gations. Intelligent cognitive agents should be able to reason with these mental
attitudes in order to exhibit the desired flexible problem solving behavior.

The very concept of (cognitive) agents is thus a complex one. It is imper-
ative that programmed agents be amenable to precise and formal specification
and verification, at least for some critical applications. This is recognized by
(potential) appliers of agent technology such as NASA, which organizes special-
ized workshops on the subject of formal specification and verification of agents
[16,11].

In this paper, we are concerned with the verification of agents programmed
in (a simplified version of) the cognitive agent programming language 3APL4

[12,22,5]. This language is based on theoretical research on cognitive notions
[3,4,15,18]. In the latest version [5], a 3APL agent has a set of beliefs, a plan
and a set of goals. The idea is that an agent tries to fulfill its goals by selecting
appropriate plans, depending on its beliefs about the world. Beliefs should thus
represent the world or environment of the agent; the goals represent the state of

4 3APL is to be pronounced as “triple-a-p-l”.

the world the agent wants to realize and plans are the means to achieve these
goals.

As explained, cognitive agent programming languages are designed to pro-
gram flexible behavior using high-level mental attitudes. In the various lan-
guages, these attitudes are handled in different ways. An important aspect of
3APL is the way in which plans are dealt with. A plan in 3APL can be executed,
resulting in a change of the beliefs of the agent.5 Now, in order to increase the
possible flexibility of agents, 3APL [12] was endowed with a mechanism with
which the programmer can program agents that can revise their plans during
execution of the agent. This is a distinguishing feature of 3APL compared to
other agent programming languages and architectures [14,17,8,7]. The idea is
that an agent should not blindly execute an adopted plan, but it should be able
to revise it under certain conditions. As this paper focusses on the plan revi-
sion aspect of 3APL, we consider a version of the language with only beliefs
and plans, i.e., without goals. We will use a propositional and otherwise slightly
simplified variant of the original 3APL language as defined in [12].

In 3APL, the plan revision capabilities can be programmed through plan
revision rules. These rules consist of a head and a body, both representing a
plan. A plan is basically a sequence of so-called basic actions. These actions can
be executed. The idea is, informally, that an agent can apply a rule if it has a plan
corresponding to the head of this rule, resulting in the replacement of this plan
by the plan in the body of the rule. The introduction of these capabilities now
gives rise to interesting issues concerning the characteristics of plan execution,
as will become clear in the sequel. This has implications for reasoning about the
result of plan execution and therefore for the formal verification of 3APL agents,
which we are concerned with in this paper.

As for related work, verification of agents programmed in an agent program-
ming language has for example been addressed in [2]. This paper addresses model
checking of the agent programming language AgentSpeak. A sketch of a dynamic
logic to reason about 3APL agents has been given in [22]. This logic however is
designed to reason about a 3APL interpreter or deliberation language, whereas
in this paper we take a different viewpoint and reason about plans. In [13], a
programming logic (without axiomatization) was given for a fragment of 3APL
without plan revision rules. Further, the operational semantics of plan revision
rules is similar to that of procedures in procedural programming. In fact, plan
revision rules can be viewed as an extension of procedures. Logics and semantics
for procedural languages are for example studied in De Bakker [6]. Although the
operational semantics of procedures and plan revision rules are similar, tech-
niques for reasoning about procedures cannot be used for plan revision rules.
This is due to the fact that the introduction of these rules results in the seman-
tics of the sequential composition operator no longer being compositional (see
sections 3 and 6). This issue has also been considered from a semantic perspective
in [21].

5 A change in the environment is a possible “side effect” of the execution of a plan.

3

The outline of the paper is as follows. After defining (a simplified version
of) 3APL and its semantics (section 2), we propose a dynamic logic for prov-
ing properties of 3APL plans in the context of plan revision rules (section 3).
As will become clear, this is actually not a logic for general 3APL plans, but
the plans that the logic can deal with are restricted in a certain way. For this
logic, we provide a sound and complete axiomatization (section 4). In section
5, we discuss how this logic for restricted 3APL plans can be extended to a
logic for non-restricted plans and we discuss some example proofs, using the
logic. Finally, we consider the relation between proving properties of procedural
programs and proving properties of 3APL agents in section 6. In particular, we
compare procedures with plan revision rules.

To the best of our knowledge, this is the first attempt to design a logic
and deductive system for plan revision rules or similar language constructs.6

Considering the semantic difficulties that arise with the introduction of this type
of construct, it is not a priori obvious that it would be possible at all to design
a deductive system to reason about these constructs. The main aim of this work
was thus to investigate whether it is possible to define such a system, and in
this way also to get a better theoretical understanding of the construct of plan
revision rules. Whether the system presented in this paper is also practically
useful to verify 3APL agents, remains to be seen and will be subject to further
research.

2 3APL

2.1 Syntax

Below, we define belief bases and plans. A belief base is a set of propositional
formulas. A plan is a sequence of basic actions and abstract plans. Basic actions
can be executed, resulting in a change to the beliefs of the agent. An abstract
plan can, in contrast with basic actions, not be executed directly in the sense
that it updates the belief base of an agent. Abstract plans serve as an abstraction
mechanism like procedures in procedural programming. If a plan consists of an
abstract plan, this abstract plan could be transformed into basic actions through
the application of plan revision rules, which will be introduced below.7

In the sequel, a language defined by inclusion shall be the smallest language
containing the specified elements.

Definition 1 (belief bases) Assume a propositional language L with typical
formula p and the connectives ∧ and ¬ with the usual meaning. Then the set of
belief bases Σ with typical element σ is defined to be ℘(L).8

6 Parts of this work have been published in [20].
7 Abstract plans could also be modelled as non-executable basic actions.
8 ℘(L) denotes the powerset of L.

4

Definition 2 (plans) Assume that a set BasicAction with typical element a is
given, together with a set AbstractPlan with typical element p.9 Then the set of
plans Plan with typical element π is defined as follows:

– BasicAction ∪ AbstractPlan ⊆ Plan,
– if c ∈ (BasicAction ∪ AbstractPlan) and π ∈ Plan then c ;π ∈ Plan.

Basic actions and abstract plans are called atomic plans and are typically de-
noted by c. For technical convenience, plans are defined to have a list structure,
which means, strictly speaking, that we can only use the sequential composition
operator to concatenate an atomic plan and a plan, rather than concatenating
two arbitrary plans. In the following, we will however also use the sequential
composition operator to concatenate arbitrary plans π1 and π2 yielding π1;π2.
The operator should in this case be read as a function taking two plans that
have a list structure and yielding a new plan that also has this structure. The
plan π1 will thus be the prefix of the resulting plan.

We use ε to denote the empty plan, which is an empty list. The concatenation
of a plan π and the empty list is equal to π, i.e., ε;π and π; ε are identified with
π.

A plan and a belief base can together constitute a so-called configuration.
During computation or execution of the agent, the elements in a configuration
can change.

Definition 3 (configuration) Let Σ be the set of belief bases and let Plan be
the set of plans. Then Plan×Σ is the set of configurations of a 3APL agent.

Plan revision rules consist of a head πh and a body πb. Informally, an agent that
has a plan πh, can replace this plan by πb when applying a plan revision rule of
this form.

Definition 4 (plan revision (PR) rules) The set of PR rules R is defined as
follows: R = {πh πb | πh, πb ∈ Plan, πh 6= ε}.10

Take for example a plan a; b where a and b are basic actions, and a PR rule
a; b c. The agent can then either execute the actions a and b one after the
other, or it can apply the PR rule yielding a new plan c, which can in turn be
executed. A plan p consisting of an abstract plan cannot be executed, but can
only be transformed using a procedure-like PR rule such as p a.

Below, we provide the definition of a 3APL agent. The function T , taking a
basic action and a belief base and yielding a new belief base, is used to define
how belief bases are updated when a basic action is executed.
9 Note that we use p to denote an element from the propositional language L, as well

as an element from AbstractPlan. It will however be indicated explicitly which kind
of element is meant.

10 In [12], PR rules were defined to have a guard, i.e., rules were of the form πh | φ πb.
For a rule to be applicable, the guard should then hold. For technical convenience
and because we want to focus on the plan revision aspect of these rules, we however
leave out the guard in this paper.

5

Definition 5 (3APL agent) A 3APL agent A is a tuple
〈Rule, T 〉 where Rule ⊆ R is a finite set of PR rules and T : (BasicAction×Σ) →
Σ is a partial function, expressing how belief bases are updated through basic
action execution.

2.2 Semantics

The semantics of a programming language can be defined as a function taking a
statement and a state, and yielding the set of states resulting from executing the
initial statement in the initial state. In this way, a statement can be viewed as
a transformation function on states. In 3APL, plans can be seen as statements
and belief bases as states on which these plans operate. There are various ways
of defining a semantic function and in this paper we are concerned with the
so-called operational semantics (see for example De Bakker [6] for details on this
subject).

The operational semantics of a language is usually defined using transition
systems [?]. A transition system for a programming language consists of a set of
axioms and derivation rules for deriving transitions for this language. A transi-
tion is a transformation of one configuration into another and it corresponds to a
single computation step. Let A = 〈Rule, T 〉 be a 3APL agent and let BasicAction
be a set of basic actions. Below, we give the transition system TransA for our
simplified 3APL language, which is based on the system given in [12]. This tran-
sition system is specific to agent A.

There are two kinds of transitions, i.e., transitions describing the execution
of basic actions and those describing the application of a plan revision rule. The
transitions are labelled to denote the kind of transition. A basic action at the
head of a plan can be executed in a configuration if the function T is defined for
this action and the belief base in the configuration. The execution results in a
change of belief base as specified through T and the action is removed from the
plan.

Definition 6 (action execution) Let a ∈ BasicAction.

T (a, σ) = σ′

〈a;π, σ〉 →exec 〈π, σ′〉

A plan revision rule can be applied in a configuration if the head of the rule is
equal to a prefix of the plan in the configuration. The application of the rule
results in the revision of the plan, such that the prefix equal to the head of the
rule is replaced by the plan in the body of the rule. A rule a; b c can for
example be applied to the plan a; b; c, yielding the plan c; c. The belief base is
not changed through plan revision.

Definition 7 (rule application) Let ρ : πh πb ∈ Rule.

〈πh;π, σ〉 →app 〈πb;π, σ〉

6

In the sequel, it will be useful to have a function taking a PR rule and a plan,
and yielding the plan resulting from the application of the rule to this given
plan. Based on this function, we also define a function taking a set of PR rules
and a plan and yielding the set of rules applicable to this plan.

Definition 8 (rule application) Let R be the set of PR rules and let Plan be
the set of plans. Let ρ : πh πb ∈ R and π, π′ ∈ Plan. The partial function
apply : (R× Plan) → Plan is then defined as follows.

apply(ρ)(π) =
{
πb;π′ if π = πh;π′,
undefined otherwise.

The function applicable : (℘(R) × Plan) → ℘(R) yielding the set of rules ap-
plicable to a certain plan, is then as follows: applicable(Rule, π) = {ρ ∈ Rule |
apply(ρ)(π) is defined}.

Using the transition system, individual transitions can be derived for a 3APL
agent. These transitions can be put in sequel, yielding transition sequences. From
a transition sequence, one can obtain a computation sequence by removing the
plan component of all configurations occurring in the transition sequence. In the
following definitions, we formally define computation sequences and we specify
the function yielding these sequences, given an initial configuration.

Definition 9 (computation sequences) The set Σ+ of finite computation se-
quences is defined as {σ1, . . . , σi, . . . , σn | σi ∈ Σ, 1 ≤ i ≤ n, n ∈ N}.

Definition 10 (function for calculating computation sequences) Let
xi ∈ {exec, app} for 1 ≤ i ≤ m. The function CA : (Plan × Σ) → ℘(Σ+) is
then as defined below.

CA(π, σ) = {σ, . . . , σm ∈ Σ+ | θ = 〈π, σ〉 →x1 . . .→xm
〈ε, σm〉

is a finite sequence of transitions in TransA}.

Note that we only take into account successfully terminating transition se-
quences, i.e., those sequences ending in a configuration with an empty plan.
Using the function defined above, we can now define the operational semantics
of 3APL.

Definition 11 (operational semantics) Let κ : Σ+ → Σ be a function yielding
the last element of a finite computation sequence, extended to handle sets of
computation sequences as follows, where I is some set of indices: κ({δi | i ∈ I}) =
{κ(δi) | i ∈ I}. The operational semantic function OA : Plan → (Σ → ℘(Σ)) is
defined as follows:

OA(π)(σ) = κ(CA(π, σ)).

We will sometimes omit the superscript A to functions as defined above, for
reasons of presentation.

7

Example 1 Let A be an agent with PR rules {p; a b, p c}, where p is
an abstract plan and a, b, c are basic actions. Let σa be the belief base resulting
from the execution of a in σ, i.e., T (a, σ) = σa, let be σab the belief resulting
from executing first a and then b in σ, etc.

Then CA(p; a)(σ) = {(σ, σ, σb), (σ, σ, σc, σca)}, which is based on the transi-
tion sequences 〈p; a, σ〉 →app 〈b, σ〉 →exec 〈ε, σb〉 and 〈p; a, σ〉 →app 〈c; a, σ〉 →exec

〈a, σc〉 →exec 〈ε, σca〉. We thus have that OA(p; a)(σ) = {σb, σca}. 4

3 Plan Revision Dynamic Logic

In programming language research, an important area is the specification and
verification of programs. Program logics are designed to facilitate this process.
One such logic is dynamic logic [9,10], with which we are concerned in this paper.
In dynamic logic, programs are explicit syntactic constructs in the logic. To be
able to discuss the effect of the execution of a program π on the truth of a
formula φ, the modal construct [π]φ is used. This construct intuitively states
that in all states in which π halts, the formula φ holds.

Programs in general are constructed from atomic programs and composition
operators. An example of a composition operator is the sequential composition
operator (;), where the program π1;π2 intuitively means that π1 is executed first,
followed by the execution of π2. The semantics of such a compound program can
in general be determined by the semantics of the parts of which it is composed.
This compositionality property allows analysis by structural induction (see also
[19]), i.e., analysis of a compound statement by analysis of its parts. Analysis of
the sequential composition operator by structural induction can in dynamic logic
be expressed by the following formula, which is usually a validity: [π1;π2]φ ↔
[π1][π2]φ. For 3APL plans on the contrary, this formula does not always hold.
This is due to the presence of PR rules.

We will informally explain this using the 3APL agent of example 1. As ex-
plained, the operational semantics of this agent, given initial plan p; a and initial
state σ, is as follows: O(p; a)(σ) = {σb, σca}. Now compare the result of first “ex-
ecuting”11 p in σ and then executing a in the resulting belief base, i.e., compare
the set O(a)(O(p)(σ)). In this case, there is only one successfully terminating
transition sequence and it ends in σca, i.e., O(a)(O(p)(σ)) = {σca}. Now, if it
would be the case that σca |= φ but σb 6|= φ, the formula [p; a]φ↔ [p][a]φ would
not hold.12

Analysis of plans by structural induction in this way thus does not work for
3APL. In order to be able to prove correctness properties of 3APL programs
however, one can perhaps imagine that it is important to have some kind of
11 We will use the word “execution” in two ways. Firstly, as in this context, we will use

it to denote the execution of an arbitrary plan in the sense of going through several
transition of type exec or app, starting in a configuration with this plan and resulting
in some final configurations. Secondly, we will use it to refer to the execution of a
basic action in the sense of going through a transition of type exec.

12 In particular, the implication would not hold from right to left.

8

induction. As we will show in the sequel, the kind of induction that can be
used to reason about 3APL programs, is induction on the number of PR rule
applications in a transition sequence. We will introduce a dynamic logic for 3APL
based on this idea.

3.1 Syntax

In order to be able to do induction on the number of PR rule applications in
a transition sequence, we introduce so-called restricted plans. These are plans,
annotated with a natural number13. Informally, if the restriction parameter of a
plan is n, the number of rule applications during execution of this plan cannot
exceed n.

Definition 12 (restricted plans) Let Plan be the language of plans and let
N− = N ∪ {−1}. Then, the language Planr of restricted plans is defined as
{π�n | π ∈ Plan, n ∈ N−}.

Below, we define the language of dynamic logic in which properties of 3APL
agents can be expressed. In the logic, one can express properties of restricted
plans. As will become clear in the sequel, one can prove properties of the plan
of a 3APL agent by proving properties of restricted plans.

Definition 13 (plan revision dynamic logic (PRDL)) Let π �n∈ Planr be a
restricted plan and let A be a 3APL agent (definition 5). Then the language of
dynamic logic LPRDL with typical element φ is defined as follows:

– L ⊆ LPRDL,
– if φ ∈ LPRDL, then [π�n]φ ∈ LPRDL,
– if φ, φ′ ∈ LPRDL, then ¬φ ∈ LPRDL and φ ∧ φ′ ∈ LPRDL.

3.2 Semantics

In order to define the semantics of PRDL, we first define the semantics of re-
stricted plans. As for ordinary plans, we also define an operational semantics for
restricted plans. We do this by defining a function for calculating computation
sequences, given an initial restricted plan and a belief base.

Definition 14 (function for calculating computation sequences) Let
xi ∈ {exec, app} for 1 ≤ i ≤ m. Let Napp(θ) be a function yielding the number
of transitions of the form si →app si+1 in the sequence of transitions θ. The
function CAr : (Planr ×Σ) → ℘(Σ+) is then as defined below.

CAr (π�n, σ) = {σ, . . . , σm ∈ Σ+ | θ = 〈π, σ〉 →x1 . . .→xm
〈ε, σm〉

is a finite sequence of transitions in TransA where 0 ≤ Napp(θ) ≤ n}

13 Or with the number −1, it will become clear in the sequel why we need this.

9

As one can see in the definition above, the computation sequences CAr (π�n, σ)
are based on transition sequences starting in configuration 〈π, σ〉. The number
of rule applications in these transition sequences should be between 0 and n, in
contrast with the function CA of definition 10, in which there is no restriction
on this number.

Based on the function CAr , we define the operational semantics of restricted
plans by taking the last elements of the computation sequences yielded by CAr .
The set of belief bases is empty if the restriction parameter is equal to −1.

Definition 15 (operational semantics) Let κ be as in definition 11. The oper-
ational semantic function OA

r : Planr → (Σ → ℘(Σ)) is defined as follows:

OA
r (π�n)(σ) =

{
κ(CAr (π�n, σ)) if n ≥ 0,
∅ if n = −1.

Using the operational semantics of restricted plans, we can now define the se-
mantics of plan revision dynamic logic.

Definition 16 (semantics of PRDL) Let p ∈ L be a propositional formula, let
φ, φ′ ∈ LPRDL and let |=L be the entailment relation defined for L as usual. The
semantics |=A of LPRDL is then as defined below.

σ |=A p ⇔ σ |=L p
σ |=A [π�n]φ⇔ ∀σ′ ∈ OA

r (π�n)(σ) : σ′ |=A φ
σ |=A ¬φ ⇔ σ 6|=A φ
σ |=A φ ∧ φ′ ⇔ σ |=A φ and σ |=A φ′

As OA
r is defined in terms of agent A, so is the semantics of LPRDL. We use

the subscript A to indicate this. Let Rule ⊆ R be a finite set of PR rules. If
∀T , σ : σ |=〈Rule,T 〉 φ, we write |=Rule φ.

4 The Axiom System

In order to prove properties of restricted plans, we propose a deductive system
for PRDL in this section. Rather than proving properties of restricted plans, the
aim is however to prove properties of non-restricted 3APL plans. The idea is
that this can be done using the axiom system for restricted plans, by relating
the semantics of restricted plans to that of non-restricted plans. We will explain
and elaborate on this in section 5.

Definition 17 (axiom system (ASRule)) Let BasicAction be a set of basic ac-
tions, AbstractPlan be a set of abstract plans and Rule ⊆ R be a finite set of
PR rules. Let a ∈ BasicAction, let p ∈ AbstractPlan, let c ∈ (BasicAction ∪
AbstractPlan) and let ρ range over applicable(Rule, c;π). The following are then

10

the axioms of the system ASRule.

(PRDL1) [π�−1]φ
(PRDL2) [p�0]φ
(PRDL3) [ε�n]φ↔ φ with 0 ≤ n
(PRDL4) [c;π�n]φ↔ [c�0][π�n]φ ∧

∧
ρ[apply(ρ, c;π)�n−1]φ with 0 ≤ n

(PL) axioms for propositional logic
(PDL) [π�n](φ→ φ′) → ([π�n]φ→ [π�n]φ′)

The following are the rules of the system ASRule.

(GEN)
φ

[π�n]φ

(MP)
φ1, φ1 → φ2

φ2

As the axiom system is relative to a given set of PR rules Rule, we will use the
notation `Rule φ to specify that φ is derivable in the system ASRule above.

We will now explain the PRDL axioms of the system. The other axioms and
the rules are standard for propositional dynamic logic (PDL) [9]. We start by
explaining the most interesting axiom: (PRDL4). We first observe that there are
two types of transitions that can be derived for a 3APL agent: action execution
and rule application (see definitions 6 and 7). Consider a configuration 〈a;π, σ〉
where a is a basic action. Then during computation, possible next configurations
are 〈π, σ′〉14 (action execution) and 〈apply(ρ, a;π), σ〉 (rule application) where ρ
ranges over the applicable rules, i.e., applicable(Rule, a;π).15 We can thus analyze
the plan a;π by analyzing π after the execution of a, and the plans resulting
from applying a rule, i.e., apply(ρ, a;π).16 The execution of an action can be
represented by the number 0 as restriction parameter, yielding the first term of
the right-hand side of (PRDL4): [a�0][π�n]φ.17 The second term is a conjunction
of [apply(ρ, c;π)�n−1]φ over all applicable rules ρ. The restriction parameter is
n−1 as we have “used” one of our n permitted rule applications. The first three
axioms represent basic properties of restricted plans. (PRDL1) can be used to
eliminate the second term on the right-hand side of axiom (PRDL4), if the left-
hand side is [c;π�0]φ. (PRDL2) can be used to eliminate the first term on the
right-hand side of (PRDL4), if c is an abstract plan. As abstract plans can only
be transformed through rule application, there will be no resulting states if the

14 assuming that T (a, σ) = σ′
15 See definition 8 for the definitions of the functions apply and applicable.
16 Note that one could say we analyze a plan a; π partly by structural induction, as it

is partly analyzed in terms of a and π.
17 In our explanation, we consider the case where c is a basic action, but the axiom

holds also for abstract plans.

11

restriction parameter of the abstract plan is 0, i.e., if no rule applications are
allowed. (PRDL3) states that if φ is to hold after execution of the empty plan, it
should hold “now”. It can be used to derive properties of an atomic plan c, by
using axiom (PRDL4) with the plan c; ε.

4.1 Soundness

The axiom system of definition 17 is sound.

Theorem 1 (soundness) Let φ ∈ LPRDL. Let Rule ⊆ R be an arbitrary finite
set of PR rules. Then the axiom system ASRule is sound, i.e.:

`Rule φ ⇒ |=Rule φ.

Proof: We prove soundness of the PRDL axioms of the system ASRule. In the
following, let π ∈ Plan be an arbitrary plan and let φ ∈ LPRDL be an arbitrary
PRDL formula. Furthermore, A = 〈Rule, T 〉 and |=〈Rule,T 〉 will be abbreviated
by |=Rule.

(PRDL1) To prove: ∀T , σ : σ |=Rule [π �−1]φ. Let σ ∈ Σ be an arbitrary
belief base and let T be an arbitrary belief update function. We have that
σ |=Rule [π �−1]φ ⇔ ∀σ′ ∈ OA

r (π �−1)(σ) : σ′ |=Rule φ by definition 16. Fur-
thermore, OA

r (π�−1)(σ) = ∅ by definition 15, trivially yielding the desired result.

(PRDL2) Let p ∈ AbstractPlan be an arbitrary abstract plan. To
prove: ∀T , σ : σ |=Rule [p �0]φ. Let σ ∈ Σ be an arbitrary belief
base and let T be an arbitrary belief update function. We have that
σ |=Rule [p �0]φ ⇔ ∀σ′ ∈ OA

r (p �0)(σ) : σ′ |=Rule φ by definition 16. Further-
more, OA

r (p �0)(σ) = ∅ by definition 6, trivially yielding the desired result.

(PRDL3) To prove: ∀T , σ : σ |=Rule [ε �n]φ ↔ φ where n ≥ 0, i.e.,
∀T , σ : (σ |=Rule [ε �n]φ ⇔ σ |=Rule φ). Let σ ∈ Σ be an arbitrary belief
base and let T be an arbitrary belief update function. By definition 14, we have
that CAr (ε�n, σ) = {σ} where n ≥ 0, i.e.:

κ(CAr (ε�n, σ)) = {σ}. (4.1)

By definitions 16, 15 and (4.1), we have the following, yielding the desired result.

σ |=Rule [ε�n]φ⇔ ∀σ′ ∈ OA
r (ε�n)(σ) : σ′ |=Rule φ

⇔ ∀σ′ ∈ κ(CAr (ε�n, σ)) : σ′ |=Rule φ
⇔ σ |=Rule φ

(PRDL4) To prove: ∀T , σ : σ |=〈Rule,T 〉 [c;π �n]φ ↔ [c �0][π �n
]φ ∧

∧
ρ[apply(ρ, c;π)�n−1]φ, i.e.:

∀T , σ : σ |=〈Rule,T 〉 [c;π�n]φ⇔ ∀T , σ : σ |=〈Rule,T 〉 [c�0][π�n]φ and

∀T , σ : σ |=〈Rule,T 〉
∧
ρ

[apply(ρ, c;π)�n−1]φ.

12

Let σ ∈ Σ be an arbitrary belief base and let T be an arbitrary belief update
function. Assume c ∈ BasicAction and furthermore assume that 〈c;π, σ〉 →execute

〈π, σ1〉 is a transition in TransA, i.e., κ(CAr (c�0, σ)) = {σ1} by definition 14. Let
ρ range over applicable(Rule, c;π). Now, observe the following by definition 14:

κ(CAr (c;π�n, σ)) = κ(CAr (π�n, σ1)) ∪
⋃
ρ

κ(CAr (apply(ρ, c;π)�n−1, σ)). (4.2)

If c ∈ AbstractPlan or if a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is not
derivable, the first term of the right-hand side of (4.2) is empty.

(⇒) Assume σ |=Rule [c;π �n]φ, i.e., by definition 16 ∀σ′ ∈ OA
r (c;π �n, σ) :

σ′ |=Rule φ, i.e., by definition 15:

∀σ′ ∈ κ(CAr (c;π�n, σ)) : σ′ |=Rule φ. (4.3)

To prove: (A) σ |=Rule [c�0][π�n]φ and (B) σ |=Rule

∧
ρ[apply(ρ, c;π)�n−1]φ.

(A) If c ∈ AbstractPlan or if a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is
not derivable, the desired result follows immediately from axiom (PRDL2) or an
analogous proposition for non executable basic actions. If c ∈ BasicAction, we
have the following from definitions 16 and 15.

σ |=Rule [c�0][π�n]φ⇔ ∀σ′ ∈ OA
r (c�0, σ) : σ′ |=Rule [π�n]φ

⇔ ∀σ′ ∈ OA
r (c�0, σ) : ∀σ′′ ∈ OA

r (π�n, σ′) : σ′′ |=Rule φ
⇔ ∀σ′ ∈ κ(CAr (c�0, σ)) : ∀σ′′ ∈ κ(CAr (π�n, σ′)) : σ′′ |=Rule φ
⇔ ∀σ′′ ∈ κ(CAr (π�n, σ1)) : σ′′ |=Rule φ

(4.4)

From 4.2, we have that κ(CAr (π �n, σ1)) ⊆ κ(CAr (c;π �n, σ)). From this and
assumption (4.3), we can now conclude the desired result (4.4).

(B) Let c ∈ (BasicAction ∪ AbstractPlan) and let ρ ∈ applicable(Rule, c;π). Then
we want to prove σ |=Rule [apply(ρ, c;π)�n−1]φ. From definitions 16 and 15, we
have the following.

σ |=Rule [apply(ρ, c;π)�n−1]φ⇔ ∀σ′ ∈ OA
r (apply(ρ, c;π)�n−1, σ) : σ′ |=Rule φ

⇔ ∀σ′ ∈ κ(CAr (apply(ρ, c;π)�n−1, σ)) : σ′ |=Rule φ

(4.5)

From 4.2, we have that κ(CAr (apply(ρ, c;π)�n−1, σ)) ⊆ κ(CAr (c;π �n, σ)). From
this and assumption (4.3), we can now conclude the desired result (4.5).

(⇐) Assume σ |=Rule [c �0][π �n]φ and σ |=Rule

∧
ρ[apply(ρ, c;π) �n−1]φ, i.e.,

∀σ′ ∈ κ(CAr (π�n, σ1)) : σ′ |=Rule φ (4.4) and ∀σ′ ∈ κ(CAr (apply(ρ, c;π)�n−1, σ)) :
σ′ |=Rule φ (4.5).
To prove: σ |=Rule [c;π �n]φ, i.e., ∀σ′ ∈ κ(CAr (c;π �n, σ)) : σ′ |=Rule φ (4.3). If
c ∈ AbstractPlan or if a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is not

13

derivable, we have that κ(CAr (c;π�n, σ)) =
⋃

ρ κ(CAr (apply(ρ, c;π)�n−1, σ)) (4.2).
From this and the assumption, we have the desired result.

If c ∈ BasicAction and a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is
derivable, we have (4.2). From this and the assumption, we again have the desired
result. 2

4.2 Completeness

In order to prove completeness of the axiom system, we first prove proposition
1, which says that any formula from LPRDL can be rewritten into an equivalent
formula where all restriction parameters are 0. This proposition is proven by
induction on the size of formulas. The size of a formula is defined by means of
the function size : LPRDL → N3. This function takes a formula from LPRDL and
yields a triple 〈x, y, z〉, where x roughly corresponds to the sum of the restriction
parameters occurring in the formula, y roughly corresponds to the sum of the
length of plans in the formula and z is the length of the formula.

Definition 18 (size) Let the following be a lexicographic ordering on tuples
〈x, y, z〉 ∈ N3:

〈x1, y1, z1〉 < 〈x2, y2, z2〉 iff
x1 < x2 or (x1 = x2 and y1 < y2) or (x1 = x2 and y1 = y2 and z1 < z2).

Let max be a function yielding the maximum of two tuples from N3 and let f
and s respectively be functions yielding the first and second element of a tuple.
Let l be a function yielding the number of symbols of a syntactic entity and let
l(ε) = 0. The function size : LPRDL → N3 is then as defined below.

size(p) = 〈0, 0, l(p)〉

size([π�n]φ) =
{
〈n+ f(size(φ)), l(π) + s(size(φ)), l([π�n]φ)〉 if n > 0
〈f(size(φ)), s(size(φ)), l([π�n]φ)〉 otherwise

size(¬φ) = 〈f(size(φ)), s(size(φ)), l(¬φ)〉
size(φ ∧ φ′) = 〈f(max(size(φ), size(φ′))), s(max(size(φ), size(φ′))), l(φ ∧ φ′)〉

Note that when calculating the plan length of a formula [π �n]φ, i.e., the sec-
ond element of the tuple size([π�n]φ), the length of π is added to the length
of the plans in φ in case n > 0. If however n = 0 or n = −1, the length
of π is not added to the length of the plans in φ and s(size(φ)) is simply
returned. This definition of the function size results in the fact that a for-
mula φ in which all restriction parameters are 0 (or −1), will satisfy size(φ) =
〈0, 0, l(φ)〉. Further, this definition gives us that size([c�0][π�n]φ) is smaller than
size([c;π�n]φ), which is needed in the proof of lemma 1, which will be used in
the proof of proposition 1.

Clause (4.7) of lemma 1 specifies that the right-hand side of axiom (PRDL4)
is smaller than the left-hand side. This axiom will usually be used by applying
it from left to right to prove a formula such as [π�n]φ. Intuitively, the fact that

14

the formula will get “smaller” as specified through the function size, suggests
convergence of the deduction process.

Lemma 1 Let φ ∈ LPRDL, let c ∈ (BasicAction ∪ AbstractPlan), let ρ range
over applicable(Rule, c;π) and let n > 0. The following then holds.

size(φ) < size([ε�n]φ) (4.6)

size([c�0][π�n]φ ∧
∧
ρ

[apply(ρ, c;π)�n−1]φ) < size([c;π�n]φ) (4.7)

size(φ) < size(φ ∧ φ′) (4.8)
size(φ′) < size(φ ∧ φ′) (4.9)

Proof: First, we prove (4.6). From definition 18, we have:

size([ε�n]φ) = 〈n+ f(size(φ)), s(size(φ)), l([ε�n]φ)〉.

This is bigger than size(φ).
Now we prove (4.7). We have the following from definition 18, using that

n > 0:

size([c;π�n]φ) = 〈n+ f(size(φ)), l(c;π) + s(size(φ)), l([c;π�n]φ)〉,
size([c�0][π�n]φ) = 〈n+ f(size(φ)), l(π) + s(size(φ)), l([c�0][π�n]φ)〉,
size([apply(ρ, c;π)�n−1]φ) = 〈(n− 1) + f(size(φ)), l(apply(ρ, c;π))

+s(size(φ)), l([apply(ρ, c;π)�n−1]φ)〉.

Let F = [c �0][π �n]φ and S = [apply(ρ, c;π) �n−1]φ. Then,
max(size(F), size(S)) = size(F) for any PR rule ρ. Thus, size(F ∧

∧
ρ S) =

〈n+f(size(φ)), l(π)+s(size(φ)), l(F ∧
∧

ρ S)〉, which is smaller than size([c;π�n
]φ), yielding the desired result.

Finally, we prove (4.8) and (4.9). First, we show that size(φ) < size(φ∧φ′),
which we will refer to by R. We thus have to show:

〈f(size(φ)), s(size(φ)), l(φ)〉 <
〈f(max(size(φ), size(φ′))), s(max(size(φ), size(φ′))), l(φ ∧ φ′)〉.

If f(size(φ)) < f(max(size(φ), size(φ′))), we have R. If f(size(φ)) =
f(max(size(φ), size(φ′))) and s(size(φ)) < s(max(size(φ), size(φ′))), we again
have R. If s(size(φ)) = s(max(size(φ), size(φ′))), we also have R, because
l(φ) < l(φ ∧ φ′). Covering all cases, this yields the desired result. The same
line of reasoning can be applied to show size(φ′) < size(φ ∧ φ′). 2

Now we can formulate and prove the following proposition.

Proposition 1 Any formula φ ∈ LPRDL can be rewritten into an equivalent
formula φPDL where all restriction parameters are 0, i.e.:

∀φ ∈ LPRDL : ∃φPDL ∈ LPRDL : size(φPDL) = 〈0, 0, l(φPDL)〉 and `Rule φ↔ φPDL.

15

Proof: The fact that a formula φ has the property that it can be rewritten
as specified in the proposition, will be denoted by PDL(φ) for reasons that will
become clear in the sequel. The proof is by induction on size(φ).

– φ ≡ p
size(p) = 〈0, 0, l(p)〉 and let pPDL = p, then PDL(p).

– φ ≡ [π�n]φ′

If n = −1, we have that [π�n]φ′ is equivalent with > (PRDL1). As PDL(>),
we also have PDL([π�n]φ′) in this case.
Let n = 0. We then have that size([π�n]φ′) = 〈f(size(φ′)), s(size(φ′)), l([π�n
]φ′)〉 is greater than size(φ′) = 〈f(size(φ′)), s(size(φ′)), l(φ′)〉. By induc-
tion, we then have PDL(φ′), i.e., φ′ can be rewritten into an equivalent
formula φ′PDL, such that size(φ′PDL) = 〈0, 0, l(φ′PDL)〉. As size([π�n]φ′PDL) =
〈0, 0, l([π�n]φ′PDL)〉, we have PDL([π�n]φ′PDL) and therefore PDL([π�n]φ′).
Let n > 0. Let π = ε. By lemma 1, we have size(φ′) < size([ε �n]φ′).
Therefore, by induction, PDL(φ′). As [ε�n]φ′ is equivalent with φ′ by axiom
(PRDL3), we also have PDL([ε�n]φ′). Now let π = c;π′ and let L = [c;π′�n]φ′

and R = [c�0][π′�n]φ′ ∧
∧

ρ[apply(ρ, c;π
′)�n−1]φ′. By lemma 1, we have that

size(R) < size(L). Therefore, by induction, we have PDL(R). As R and L
are equivalent by axiom (PRDL4), we also have PDL(L), yielding the desired
result.

– φ ≡ ¬φ′
We have that size(¬φ′) = 〈f(size(φ′)), s(size(φ′)), l(¬φ′)〉, which is
greater than size(φ′). By induction, we thus have PDL(φ′) and
size(φ′PDL) = 〈0, 0, l(φ′PDL)〉. Then, size(¬φ′PDL) = 〈0, 0, l(¬φ′PDL)〉 and thus
PDL(¬φ′PDL) and therefore PDL(¬φ′).

– φ ≡ φ′ ∧ φ′′
By lemma 1, we have size(φ′) < size(φ′ ∧φ′′) and size(φ′′) < size(φ′ ∧φ′′).
Therefore, by induction, PDL(φ′) and PDL(φ′′) and therefore size(φ′PDL) =
〈0, 0, l(φ′PDL)〉 and size(φ′′PDL) = 〈0, 0, l(φ′′PDL)〉. Then, size(φ′PDL ∧ φ′′PDL) =
〈0, 0, l(φ′PDL∧φ′′PDL)〉 and therefore size((φ′∧φ′′)PDL) = 〈0, 0, l((φ′∧φ′′)PDL)〉
and we can conclude PDL((φ′ ∧ φ′′)PDL) and thus PDL(φ′ ∧ φ′′).

2

Although structural induction is not possible for plans in general, it is possible
if we only consider action execution, i.e., if the restriction parameter is 0. This is
specified in the following proposition, from which we can conclude that a formula
φ with size(φ) = 〈0, 0, l(φ)〉 satisfies all standard PDL properties.

Proposition 2 (sequential composition) Let Rule ⊆ R be a finite set of PR
rules. The following is then derivable in the axiom system ASRule.

`Rule [π1;π2�0]φ↔ [π1�0][π2�0]φ

Proof: If π1 = ε, we have [π2�0] ↔ [ε�0][π2�0]φ by axiom (PRDL3). Otherwise,
let ci ∈ (BasicAction ∪ AbstractPlan) for i ≥ 1, let π1 = c1; . . . ; cn, with n ≥ 1.

16

Through repeated application of axiom (PRDL4), first from left to right and then
from right to left (also using axiom (PRDL1) to eliminate the rule application
part of the axiom), we derive the desired result.18

[π1;π2�0]φ↔ [c1; . . . ; cn;π2�0]φ
↔ [c1�0][c2; . . . ; cn;π2�0]φ
↔ . . .
↔ [c1�0][c2�0] . . . [cn�0][π2�0]φ
↔ [c1; c2�0][c3�0] . . . [cn�0][π2�0]φ
↔ . . .
↔ [c1; . . . ; cn�0][π2�0]φ
↔ [π1�0][π2�0]φ

2

Theorem 2 (completeness) Let φ ∈ LPRDL and let Rule ⊆ R be a finite set of
PR rules. Then the axiom system ASRule is complete, i.e.:

|=Rule φ ⇒ `Rule φ.

Proof: Let φ ∈ LPRDL. By proposition 1 we have that a formula φPDL exists such
that `Rule φ↔ φPDL and size(φPDL) = 〈0, 0, l(φPDL)〉 and therefore by soundness
of ASRule also |=Rule φ↔ φPDL. Let φPDL be a formula with these properties.

|=Rule φ⇔ |=Rule φPDL (|=Rule φ↔ φPDL)
⇒ `Rule φPDL (completeness of PDL)
⇔ `Rule φ (`Rule φ↔ φPDL)

The second step in this proof needs some justification. The general idea is that
all PDL axioms and rules are applicable to a formula φPDL and moreover, these
axioms and rules are contained in our axiom system ASRule. As PDL is complete,
we have |=Rule φPDL ⇒ `Rule φPDL. There are however some subtleties to be
considered, as our action language is not exactly the same as the action language
of PDL, nor is it a subset (at first sight).

The action language of PDL is built using basic actions, sequential composi-
tion, test, non-deterministic choice and iteration. The action language of PRDL
is built using basic actions, abstract plans, empty plans and sequential com-
position. If we for the moment disregard abstract plans and empty plans, the
language PRDL is a subset of the language PDL. If we take the subset of PDL
axioms and rules dealing with formulas in this subset, this axiom system should
be complete with respect to these formulas.

The action language of full PRDL however also contains abstract plans and
empty plans. The question is, how these should be axiomatized such that we
obtain a complete axiomatization. In order to answer this question, we make
18 We use the notation φ1 ↔ φ2 ↔ φ3 ↔ . . ., which should be read as a shorthand for

φ1 ↔ φ2 and φ2 ↔ φ3 and . . . This notation will also be used in the sequel.

17

the following observation. In a formula φPDL, abstract and empty plans can only
occur with a 0 restriction parameter by definition. Further, the semantics of a
formula [p �0]φPDL where p is an abstract plan, is similar to the semantics of
the fail statement of (an extended version of) PDL. The set of states resulting
from “execution” of both statements is empty.19 The semantics of a formula
[ε�0]φPDL is similar to the semantics of the skip statement of PDL. The set of
states resulting from the execution of both statements in a state σ is {σ},20 i.e.,
the semantics is the identity relation. The action language of PRDL can thus
be considered to be a subset of the action language of PDL, where p�0 and ε�0
correspond respectively to fail and skip.

Now, fail and skip are not axiomatized in the basic axiom system of PDL.
These statements are however defined as 0? and 1? respectively and the test
statement is axiomatized: [ψ?]φ↔ (ψ → φ). We now fill in 0 and 1 for ψ in this
axiom, which gives us the following.

[0?]φ↔ (0 → φ) ⇔ [0?]φ ⇔ [fail]φ
[1?]φ↔ (1 → φ) ⇔ [1?]φ↔ φ ⇔ [skip]φ↔ φ

The statements fail and skip are thus implicitly axiomatized through the ax-
iomatization of the test. For our axiom system to be complete for formulas φPDL,
it should thus contain the PDL axioms and rules that are applicable to these for-
mulas, that is, the axiom for sequential composition, the axioms for fail and
skip as stated above, the axiom for distribution of box over implication and the
rules (MP) and (GEN). The latter three are explicitly contained in ASRule. The
axiom for sequential composition is derivable in the system ASRule for formulas
φPDL, by proposition 2. Axiom (PRDL2) for p �0 corresponds with the axiom
for fail. The axiom for ε�0, corresponding with the axiom for skip, is an in-
stantiation of axiom (PRDL3). Axiom (PRDL3), i.e., the more general version of
[ε�0]φ ↔ φ, is needed in the proof of proposition 1, which is used elsewhere in
this completeness proof. 2

We conclude with a remark with respect to axiom (PRDL3). In the proof above,
we explained that the semantics of ε�0 and skip are equivalent. As it turns out
(see proposition 3), [ε�0]φ is equivalent with [ε�n]φ, as can be proven from axiom
(PRDL3), which is thus also equivalent with skip.

Proposition 3 (empty plan) Let Rule ⊆ R be a finite set of PR rules. The
following is then derivable in the axiom system ASRule.

`Rule [ε�0]φ↔ [ε�n]φ with 0 ≤ n

19 An abstract plan p cannot be executed directly, it can only be transformed using
PR rules. The restriction parameter is however 0, so no PR rules may be applied
and the set OA

r ([p�0]φ)(σ) = ∅ for all A and σ.
20 CAr ([ε�0]φPDL)(σ) = {σ} = κ(CAr ([ε�0]φPDL)(σ)) = OA

r ([ε�0]φPDL)(σ)

18

Proof:
1. [ε�n][ε�0]φ↔ [ε�0]φ (PRDL3)
2. [ε�0]φ↔ φ (PRDL3)
3. [ε�n][ε�0]φ↔ [ε�n]φ 2, (GEN), (PDL)
4. [ε�0]φ↔ [ε�n]φ 1, 3, (PL)

2

5 Proving Properties of Non-Restricted Plans

In sections 3 and 4 we have presented a logic for restricted plans with sound and
complete axiomatization. This means that it should be possible to construct a
proof for, e.g., a formula [a; b �3]φ if and only if it is true for a given agent.
This might be considered an interesting result, but our ultimate aim is to prove
properties of non-restricted 3APL plans.

The semantics of restricted plans is closely related to the semantics of non-
restricted plans. Using this relation, we will show how the proof system for
restricted plans can be extended to a proof system for non-restricted plans.
Then we will discuss the usability of this system, using examples.

5.1 From Restricted to Non-Restricted Plans

We first add the following clause to the language LPRDL (definition 13),21 yield-
ing a language that we will call LPRDL+ : if φ ∈ LPRDL+ and π ∈ Plan, then
[π]φ ∈ LPRDL+ . By means of this construct, we can thus specify properties of
non-restricted plans. We define the semantics of this construct in terms of the
operational semantics of non-restricted plans as follows.

Definition 19 (semantics of PRDL+) Let A be a 3APL agent (definition 5).
The semantics of formulas not of the form [π]φ with φ ∈ LPRDL+ is as in definition
16. The semantics of formulas of the form [π]φ is as defined below.

σ |=A [π]φ⇔ ∀σ′ ∈ OA(π)(σ) : σ′ |=A φ

This definition thus takes the operational semantics of non-restricted plans to
define the semantics of constructs of the form [π]φ. In the following proposition,
we relate the operational semantics of plans and the operational semantics of
restricted plans.

Proposition 4 ⋃
n∈ N

Or(π�n)(σ) = O(π)(σ)

Proof: Immediate from definitions 15, 14, 11 and 10. 2

From this proposition, we have the following corollary, which shows how the
construct [π�n]φ is related to the construct [π]φ.
21 Replacing each occurrence of LPRDL in this definition by LPRDL+ .

19

Corollary 1

∀n ∈ N : σ |=A [π�n]φ⇔ ∀σ′ ∈ OA(π)(σ) : σ′ |=A φ
⇔ σ |=A [π]φ

Proof: Immediate from proposition 4, definition 16 and definition 19. 2

From this corollary, we can conclude that we can prove a property of the form
[π]φ by proving ∀n ∈ N : `Rule [π�n]φ, using the system for restricted plans. This
idea can be captured in a proof rule as follows.

Definition 20 (proof rule for non-restricted plans)

[π�n]φ, n ∈ N
[π]φ

This rule should be read as having an infinite number of premises, i.e., [π�0]φ,
[π�1]φ, [π�2]φ, . . . (see also [10]). Deriving a formula [π]φ using this infinitary
rule thus requires infinitely many premises to have been previously derived.

The rule is sound by corollary 1. The system ASRule for restricted plans
(definition 17) taken together with the rule above, is a complete axiom system
for PRDL+: if [π]φ is true then each of the premises of the rule is true (corollary
1) and each of these premises can be proven by completeness of ASRule. The
notion of a proof in this case is however non-standard, as a proof can be infinite.
This completeness result is therefore theoretical, and putting the system to use
in this way is obviously problematic.

One way to try to deal with this problem is the following. The idea is
that properties of the form ∀n ∈ N : `Rule [π �n]φ can be proven by induc-
tion on n, rather than proving [π�n]φ for each n. If we can prove [π�0]φ and
∀n ∈ N : ([π�n]φ `Rule [π�n+1]φ), we can conclude the desired property. In the
next section we will illustrate how this could be done, using examples. The ex-
amples however show that it is not obvious that this kind of induction can be
applied in all cases.

5.2 Examples

Example 2 Let A be an agent with one PR rule, i.e., Rule = {a; b c}
and let T be such that [a�0]φ, [b�0]φ and [c�0]φ. We now want to prove that
∀n : [a; b�n]φ. We have [a; b�0]φ by using that this is equivalent to [a�0][b�0]φ by
proposition 2. The latter formula can be derived by applying (GEN) to [b�0]φ.
We prove ∀n ∈ N : ([a; b�n]φ `Rule [a; b�n+1]φ) by taking an arbitrary n and
proving that [a; b�n]φ `Rule [a; b�n+1]φ. Using (PRDL4) and (PRDL3), we have
the following equivalences.

[a; b�n]φ↔ [a�0][b�n]φ ∧ [c�n−1]φ
↔ [a�0][b�0][ε�n]φ ∧ [c�0][ε�n−1]φ
↔ [a�0][b�0]φ ∧ [c�0]φ

20

Similarly, we have the following equivalences for [a; b�n+1]φ, yielding the desired
result.

[a; b�n+1]φ↔ [a�0][b�n+1]φ ∧ [c�n]φ
↔ [a�0][b�0][ε�n+1]φ ∧ [c�0][ε�n]φ
↔ [a�0][b�0]φ ∧ [c�0]φ

4

Example 3 We will prove a property of a very simple 3APL agent using
axiom (PRDL4) and induction on the number of PR rule applications. Our agent
has one PR rule: Rule = {a a; a}. Furthermore, assume that T is defined such
that [a�0]φ. We want to prove the following: ∀n ∈ N : [a�n]φ. In order to prove
the desired result by induction on the number of PR rule applications, we thus
have to prove [a�0]φ and ∀n ∈ N : [a�n]φ `Rule [a�n+1]φ. [a�0]φ was given. Let
ai denote a sequence of a’s of length i, with a0 = ε. The premiss of the second
conjunct can be rewritten using axiom (PRDL4) as follows.

[a�n]φ↔ [a�0]φ ∧ [(a; a)�n−1]φ
↔ [a�0]φ ∧ [a�0][a�n−1]φ ∧ [(a; a; a)�n−2]φ
↔ [a�0]φ ∧ [a�0][a�n−1]φ ∧ [a�0][(a; a)�n−2]φ ∧ [(a; a; a; a)�n−3]φ
...
↔ [a�0]φ ∧ [a�0][a�n−1]φ ∧ . . . ∧ [a�0][(an)�0]φ ∧ [(a; (an))�0]φ

So, in order to prove [a�n+1]φ, we may assume - among other things - [a�n]φ,
[(a; a) �n−1]φ, [(a; a; a) �n−2]φ, . . ., [(a; (an)) �0]φ (last conjunct of each line).
Equivalently, we may thus assume the following.22∧

i

[(a; (ai))�n−i]φ for 0 ≤ i ≤ n (5.1)

The consequent, i.e., [a�n+1]φ, can be rewritten using axiom (PRDL4) as below.

[a�n+1]φ↔ [a�0]φ ∧ [(a; a)�n]φ
↔ [a�0]φ ∧ [a�0][a�n]φ ∧ [(a; a; a)�n−1]φ
↔ [a�0]φ ∧ [a�0][a�n]φ ∧ [a�0][(a; a)�n−1]φ ∧ [(a; a; a; a)�n−2]φ
...
↔ [a�0]φ ∧ [a�0][a�n]φ ∧ . . . ∧ [a�0][(a; (an))�0]φ ∧ [(a; a; (an))�0]φ

(5.2)
As [a�n+1]φ is equivalent to all of the lines on the righthandside of (5.2), we may
prove any of these lines, in order to prove the desired result. As it turns out, it
is easiest to prove the last line. The reason is that in this case, the last conjunct
has a restriction parameter of 0. We can thus use proposition 2 for sequential

22 Note that [a �0][(a0) �n]φ ↔ [a �0][ε �n]φ and [a �0][ε �n]φ ↔ [a �0]φ, using axiom
(PRDL3).

21

composition to prove this conjunct as follows.

1. [a�0]φ assumption
2. [(a; a; (an−1))�0][a�0]φ 1, (GEN)
3. [(a; a; (an−1); a)�0]φ 2,proposition 2
4. [(a; a; (an))�0]φ 3,definition of ai

Proving the other part of the last line of (5.2), i.e.,
∧

i[a�0][(a; (a
i))�n−i]φ for

0 ≤ i ≤ n, can be done by applying (GEN) to each of the conjuncts of 5.1,
yielding the desired result. 4

The important thing to note about this example is that rewriting of formulas like
[a�n]φ using (PRDL4), terminates. This is because the number of rewrite steps is
restricted by n. If we would not have this restriction parameter, we might have
the following variant of (PRDL4):

[c;π]φ↔ [c�0][π]φ ∧
∧
ρ

[apply(ρ, c;π)]φ.23

An attempt to proving [a]φ for an agent with the PR rule of example 3 and this
“axiom”, would however result in infinite regression:

[a]φ↔ [a�0]φ ∧ [a; a]φ
↔ [a�0]φ ∧ [a�0][a]φ ∧ [a; a; a]φ
↔ [a�0]φ ∧ [a�0][a]φ ∧ [a�0][a; a]φ ∧ [a; a; a; a]φ
...

In the example above, we have proven the desired result in our axiom system,
using the key axiom (PRDL4). Another way to look at an agent with only the
PR rule a a; a, is by considering the language of plans that is “generated” by
this rule. By doing this, a much simpler proof can be obtained.

Example 4 We take again the agent of example 3, i.e., an agent with one PR
rule a a; a, and with [a�0]φ. We want to prove again ∀n ∈ N : [a�n]φ. Taking
into account the PR rule that is given and the initial plan a, one can conclude
that the action sequences that can be executed by this agent, are sequences of
a of an arbitrary length. Given this, one could instead prove ∀n ∈ N+ : [an�0]φ,
where N+ is the set of positive natural numbers.24 We prove this by taking an

23 We use the 0-restriction parameter here to distinguish between rule application and
action execution, i.e., [c; π]φ is true, if and only if [π]φ is true after the execution of
c and φ is true after the plans resulting from the application of the PR rules of the
agent.

24 The result ∀n ∈ N : [a �n]φ that we want to prove specifies that always at least
one action a is executed: if n = 0, the required result is [a�0]φ, which specifies the
execution of a. The result does not require proving [ε�n]φ, which would be provable
if we would assume φ to be valid.

22

arbitrary n and proving [an�0]φ for this n.

1. [a�0]φ assumption
2. [a�0][a�0]φ 1, GEN
3. [a; a�0]φ 2, proposition 2

...
[an�0]φ

4

Obviously, this proof is much shorter than the proof of example 3. It is however
obtained through meta-reasoning about the PR rules of the agent. In the desired
result ∀n ∈ N+ : [an �0]φ, the restriction parameter is 0. The application of
PR rules has thus in effect been eliminated from the expression in the object
language.

Meta-reasoning could be done in this simple case: the PR rule actually gener-
ates the language of plans that can be represented by the simple regular expres-
sion a∗. PR rules in general however do not only generate languages that can be
represented by regular expressions. In particular, rules of the form p π, where
p is an abstract plan, can be compared with parameterless recursive procedures
(see also section 6), which can in turn be linked to context-free programs [10,
Chapter 9]. Furthermore, PR rules can have the form πh πb, where the head is
an arbitrary plan. It is thus not obvious that a meta-argument about the plans
generated by the agent can be constructed in the general case. Investigations
along these lines are however not within the scope of this paper and remain for
future research.

In the next example, we will use proposition 5 below, in the proof of which
we use the following lemma.

Lemma 2 Let Rule ⊆ R be a finite set of PR rules. The following is then
derivable in the axiom system ASRule.

`Rule [π�n]φ→ [π�0]φ

Proof: Let ci ∈ (BasicAction ∪ AbstractPlan) for i ≥ 1 and let π = c1; . . . ; cm,
with m ≥ 1. Through repeated application of axiom (PRDL4), from left to right,
then using (PRDL3) to get rid of [ε�n] and then using proposition 2 for sequential
composition with a 0 restriction parameter, we derive the desired result.

[π�n]φ↔ [c1; . . . ; cm�n]φ
→ [c1�0][c2; . . . ; cm�n]φ
→ . . .
→ [c1�0][c2�0] . . . [cm�0][ε�n]φ
→ [c1�0][c2�0] . . . [cm�0]φ
→ [c1; c2�0][c3�0] . . . [cm�0]φ
→ . . .
→ [c1; . . . ; cm�0]φ
→ [π�0]φ

23

2

In the following proposition, we will use some notation that we will first explain.
The notation (PRDL4)i([π �n]φ), with 0 ≤ i ≤ n, denotes the formula that
results from rewriting [π �n]φ using (PRDL4) from left to right, such that all
restriction parameters are either 0 or i. Formulas of the form [ε�m]φ are replaced
by φ, using axiom (PRDL3). In this process, (PRDL4) may only be applied to a
formula [π�m]φ if m > i.

Take, e.g., the agent of example 3 with a a; a as the only PR rule. The
formula (PRDL4)3([a�5]φ) then for example denotes the formula [a�0]φ∧ [a�0][a�0
]φ ∧ [a�0][a; a�3]φ ∧ [a; a; a�3]φ, which can be obtained by rewriting the formula
[a�5]φ as below.

[a�5]φ↔ [a�0][ε�5]φ ∧ [a; a�4]φ
↔ [a�0]φ ∧ [a�0][a�4]φ ∧ [a; a; a�3]φ
↔ [a�0]φ ∧ [a�0][a�0][ε�4]φ ∧ [a�0][a; a�3]φ ∧ [a; a; a�3]φ
↔ [a�0]φ ∧ [a�0][a�0]φ ∧ [a�0][a; a�3]φ ∧ [a; a; a�3]φ

The idea is thus, that formulas of the form [π�m]φ are rewritten until formulas
are obtained with i as the restriction parameter. A formula [π�i]φ may not be
rewritten.

Any formula [π�n]φ can be rewritten into a formula (PRDL4)i([π�n]φ) with
0 ≤ i ≤ n. An application of (PRDL4) to a formula [π�m]φ yields two conjuncts
(the second of which is again a conjunction). The first conjunct is smaller in
plan size than [π�m]φ.25 Each conjunct of the second conjunct is smaller than
[π �m]φ with respect to the restriction parameter. With each rewrite step, we
thus have a decrease either in plan size or in size of the restriction parameter of
each resulting conjunct. This can thus continue for each conjunct until either the
plan size (minus the plan size of φ) is 0 or the non-zero restriction parameters
are equal to i.

Another notation that we will use is to0(φ), denoting the formula that results
from replacing all restriction parameters in φ by 0.

Proposition 5 (restriction parameter) Let Rule ⊆ R be a finite set of PR
rules. The following is then derivable in the axiom system ASRule.

`Rule [π�n]φ→ [π�i]φ with − 1 ≤ i ≤ n

Proof: If i = −1, the desired result follows immediately by axiom (PRDL1). We
will now prove the result for i ≥ 0.

1. [π�n]φ↔ (PRDL4)n−i([π�n]φ) (PRDL4)
2. [π�i]φ↔ (PRDL4)0([π�i]φ) (PRDL4)
3. (PRDL4)n−i([π�n]φ) → to0((PRDL4)n−i([π�n]φ)) lemma 2
4. to0((PRDL4)n−i([π�n]φ)) ↔ (PRDL4)0([π�i]φ) syntactic equality
5. (PRDL4)n−i([π�n]φ) → (PRDL4)0([π�i]φ) 3, 4
6. [π�n]φ→ [π�i]φ 1, 2, 5

25 The second element of size(F), where F denotes the first conjunct, is smaller than
the second element of size([π�m]φ.

24

Step 4 is justified, because both (PRDL4)n−i([π�n]φ) and (PRDL4)0([π�i]φ) result
from the same number of applications of (PRDL4) to [π�n]φ and [π�i]φ respec-
tively. The latter two formulas are syntactically equal, except for the restriction
parameter. The formulas (PRDL4)n−i([π �n]φ) and (PRDL4)0([π �i]φ) are thus
also syntactically equal,26 except for the restriction parameters, which are n− i
or 0 in the first case and 0 in the latter. Setting the restriction parameters of
the first formula to 0, will thus give us equivalent formulas. 2

Example 5 We now consider an agent with two PR rules: Rule = {a
a; a, a; a; a b} and we assume that [a �0]φ and [b �0]φ. We want to prove
∀n ∈ N : [a �n]φ. Along similar lines of reasoning as in example 3, i.e., by
using axiom (PRDL4) to rewrite [a�n]φ, we can conclude that we may again use
assumption (5.1) from example 3. We have to prove the following, taking the
“last line” of the rewriting of [a�n+1]φ by (PRDL4).∧

i

[a�0][(a; (ai))�n−i]φ for 0 ≤ i ≤ n (5.3)∧
i

[(b; (ai−2))�n−i]φ for 2 ≤ i ≤ n (5.4)

[(a; a; (an))�0]φ (5.5)

The formulas (5.3) and (5.5) were proven in the example above, using assumption
(5.1). We will prove (5.4) by proving

∧
i[(a

i−2)�n−i]φ and using (GEN) to derive
the desired formula.

In the proof below, let 3 ≤ i ≤ n and let 0 ≤ r ≤ n in the first line and
0 ≤ r ≤ n− 3 in the second line.

1.
∧

r[(a; (a
r))�n−r]φ assumption (5.1)

2.
∧

r[(a; (a
r))�n−r−3]φ 1,proposition 5

3.
∧

i[(a; (a
i−3))�n−i]φ where r = i− 3

4.
∧

i[(a
i−2)�n−i]φ definition of ai

5.
∧

i[b�0][(a
i−2)�n−i]φ 4, (GEN)

6.
∧

i[b�0][(a
i−2)�n−i]φ↔

∧
i[(b; (a

i−2))�n−i]φ (PRDL4)
7.

∧
i[(b; (a

i−2))�n−i]φ 5, 6, (MP)

The above proves [(b; (ai−2))�n−i]φ for 3 ≤ i ≤ n. If i = 2, we need to prove
[b�n−2]φ. According to axiom (PRDL4), this is equivalent to proving [b�0]φ.27

This was given, so we are done. 4

In section 5.1, we have presented an infinitary axiom system to prove properties
of non-restricted 3APL plans. As an infinitary axiom system is difficult to use,
we have suggested to use induction on the number of PR rule applications, i.e.,
on the restriction parameter, in an expression. Some examples have been worked
26 That is, modulo swapping of conjuncts.
27 By (PRDL4) we have [b�n−2]φ ↔ [b�0][ε�n−2]φ and by (PRDL3): [b�0][ε�n−2]φ ↔ [b�0

]φ.

25

out to illustrate this approach. As the examples show, it is doable (at least for
the example cases) to use induction on the number of PR rule applications. It
is however a fairly complicated undertaking. Future research will have to show
whether this type of reasoning is amenable to some kind of automation, and
what the limits of the approach are.

6 PR Rules versus Procedures

As stated in the introduction, the operational semantics of (parameterless) pro-
cedures is similar to that of PR rules. The operational semantics of a procedure
p ⇐ S where p is the procedure name and the statement S is the body of the
procedure, can be defined by a transition 〈p;S′, σ〉 → 〈S;S′, σ〉, where S′ is a
statement. If we compare this semantics to the semantics of PR rules of defi-
nition 7, we can see that both are so-called body-replacement semantics: if the
head of a PR rule or the name of a procedure occur at the head of a statement
that is to be executed, the head or the procedure name are replaced by the body
of the rule or the procedure respectively.

Because of this similarity, one might think that techniques used for reasoning
about procedures can be used to reason about PR rules. This however turns out
not to be the case, due to the non-compositional semantics of the sequential
composition operator in 3APL (see introduction of section 3). In this section,
we will elaborate on this issue by studying inference rules of Hoare logic for
reasoning about procedures (see for example [6,1] for a detailed explanation of
Hoare logic). We will also show that reasoning by induction on the number of
PR rule applications and reasoning about procedures using Hoare logic inference
rules, although very different at first sight, actually do have similarities.

6.1 Reasoning about Procedures

Hoare logic is used for reasoning about programs. Inference rules are defined
to derive so-called Hoare triples. A Hoare triple is of the form {φ1} S {φ2}
and intuitively means that if φ1 holds, φ2 will always hold after the execution
of the statement S.28 To reason about non-recursive procedures, the following
inference rule can be defined for a procedure p ⇐ S (for simplicity, we assume
we only have one procedure) with procedure name p and body S.

{φ1} S {φ2}
{φ1} p {φ2}

The rule states that if we can prove that φ2 holds after the execution of the body
S of the procedure (assuming φ1 holds before execution), we can infer that φ2

holds after the procedure call p.

28 The Hoare triple {φ1} S {φ2} can be characterized in dynamic logic by the formula
φ1 → [S]φ2.

26

If the procedure p⇐ S is recursive, that is, if p is called in S, the rule above
will still be sound, but a system with only this rule for reasoning about procedure
calls will not be complete (see also [1]). An attempt at proving {φ1} p {φ2} results
in an infinite regression. The following rule [1], which is a variant of so-called
Scott’s induction rule (see for example [6]), is meant to overcome this difficulty.

Definition 21 (Scott’s induction rule)

{φ1} p {φ2} ` {φ1} S {φ2}
{φ1} p {φ2}

The rule states that if we can prove {φ1} S {φ2} from the assumption that
{φ1} p {φ2}, we can infer {φ1} p {φ2}. Using this rule for reasoning about
procedure calls, a complete proof system can be obtained [1].29

In a proof of a property of a procedural program, the rule above is (often)
used in combination with the following rule for sequential composition.

Definition 22 (rule for sequential composition)

{φ1} S {φ2} {φ2} S′ {φ3}
{φ1} S;S′ {φ3}

Consider for example a procedure p ⇐ p and suppose we want to prove
{φ1} p;S {φ3} (p is non-terminating, so we should be able to prove this for
any φ1 and φ3). We then have to prove {φ1} p {φ2} and {φ2} S {φ3} for some
φ2. If we take φ2 = 0, i.e., falsum, the second conjunct follows immediately. In
proving {φ1} p {0}, which we will refer to as H, we use Scott’s induction rule
and we thus have to prove H from the assumption that H. This is immediate,
concluding the proof.

The point of this example is the following. Using Scott’s induction rule, we
can prove properties of a procedure call p. If we want to prove a property of a
statement involving the sequential composition of this procedure call and some
other statement S, we can use properties proven of the procedure call (obtained
using Scott’s induction rule) and compose it with properties proven of S by
means of the rule for sequential composition. In particular, this technique can
be applied to for example a procedure p ⇐ p;S, where an assumption about
p can be used to prove properties of p;S. Scott’s induction rule for proving
properties of procedure calls is thus most useful if used in combination with the
rule for sequential composition.

Scott’s induction rule for PR rules A question one might ask, is whether a
variant of Scott’s induction rule can be used to reason about PR rules. Assuming

29 Note that this is a proof rule for deriving partial correctness specifications, a Hoare
triple {φ1} p {φ2} meaning that if p terminates, φ2 will hold after execution of p
(provided that p is executed in a state in which φ1 holds). If p does not terminate,
anything is derivable for p. The rule cannot be used to prove termination of p.

27

one PR rule πh πb, the following rule could be formulated.

{φ1} πh {φ2} ` {φ1} πb {φ2}
{φ1} πh {φ2}

Assume for the moment that it is possible to use this rule to prove {φ1} πh {φ2}
for some PR rule πh πb and properties φ1 and φ2. The question now is,
whether the fact that we can prove {φ1} πh {φ2}, will do us any good if we want
to prove properties of more complex plans such as πh;π.

Proving properties of πh;π based on properties proven of πh, would have to be
done using the rule for sequential composition. This rule is however not sound
in the context of PR rules. In general, it is not the case that O(π1;π2)(σ) ⊆
O(π2)(O(π1)(σ)) (see also the introduction of section 3). Let Σ1 = O(π1)(σ)
and Σ2 = O(π2)(Σ1). If φ2 holds in all states in Σ1 (if φ1 holds in σ), then
φ3 will hold in all states in Σ2 by assumption. Let Σ3 = O(π1;π2)(σ) and let
σ′ ∈ Σ3, but σ′ 6∈ Σ2. Then we may not conclude that φ3 will hold in σ′ and
therefore the rule is not sound.

The fact that we can prove {φ1} πh {φ2}, will thus not help if we want to
prove properties of a plan like πh;π, because we do not have a rule for sequen-
tial composition. In particular, the assumption {φ1} πh {φ2} will not help to
prove {φ1} πb {φ2}, even if πb = πh;π. It is thus not clear whether it should
be possible in the general case to prove {φ1} πb {φ2} from the assumption
{φ1} πh {φ2}. Moreover, the rule above is not sound for agents with more than
one PR rule. It is then in general not the case that O(πb)(σ) = O(πh)(σ), rather
O(πb)(σ) ⊆ O(πh)(σ). Therefore, we may not conclude {φ1} πh {φ2} from a
proof of {φ1} πb {φ2}.

6.2 Induction

In section 6.1 we argued that, although the operational semantics of PR rules and
procedure calls are very similar, we cannot use Scott’s induction rule, which is
used for reasoning about procedure calls, to reason about PR rules. Our solution
to the issue of reasoning about PR rules as presented in this paper, is to do
induction on the number of PR rule applications. In this section, we will elaborate
on why Scott’s induction rule is called an induction rule and by doing this, we
will see that induction on the number of PR rule applications and induction as
used in Scott’s induction rule, have strong similarities.

At first sight, it does not look like using Scott’s induction rule involves doing
induction, because we do not see formulas parameterized with natural numbers
n and n+ 1. To see why the rule actually is an induction rule, we first rephrase
the rule of definition 21 and adopt notation used by De Bakker [6]. Ω is used to
denote a non-terminating statement (similar to the fail statement mentioned in
the proof of theorem 2). The first element of a tuple 〈. . . | . . .〉 is used to indicate
the procedures, in the presence of which the formula of the second element should
hold.

{φ1} Ω {φ2} 〈 | {φ1} p {φ2} ` {φ1} S {φ2}〉
〈p⇐ S | {φ1} p {φ2}〉

(6.1)

28

The rule above is an instantiation of a more general version of this rule for
multiple procedures [6]. The first antecedent is derived from this general rule, but
could be omitted in this form: Ω is a non-terminating statement and therefore
the triple {φ1} Ω {φ2} is valid for any φ1, φ2. We will however not eliminate it
for the purpose of comparing this rule with reasoning about PR rules.

Now, consider a procedure p ⇐ S and let Sn be defined as follows: S0 = Ω
and Sn+1 = S[Sn/p], where S[Sn/p] means that every occurrence of p in S
is replaced by Sn. If for example S = p;S′, then S1 = S0;S′ = Ω;S′, S2 =
S1;S′ = (Ω;S′);S′, etc.

Using this substitution construction, we can define the meaning M of a
procedure p ⇐ S in the following way (see Apt [1]): M(p) =

⋃∞
n=0M(Sn).

From this, we can conclude that 〈p⇐ S | {φ1} p {φ2}〉 is true iff ∀n : 〈p⇐ Sn |
{φ1} p {φ2}〉 is true [1]. Therefore, the induction rule above is equivalent with
the following rule.

{φ1} Ω {φ2} 〈 | {φ1} p {φ2} ` {φ1} S {φ2}〉
∀n : 〈p⇐ Sn | {φ1} p {φ2}〉

(6.2)

The meaning of a procedure call p of a procedure p ⇐ S is equivalent with the
meaning of S. More in general, the meaning of a statement S′ in which a call
to procedure p ⇐ S occurs, is equivalent with the meaning of the statement
S′[S/p], i.e., the statement S′ in which all occurrences of p are replaced with S
(see [6]). Therefore, we may replace p with Sn in rule (6.2) and we may replace
occurrences of p in S with Sn. We have by definition that S[Sn/p] = Sn+1,
yielding the following equivalent rule30.

{φ1} Ω {φ2} ∀n : ({φ1} Sn {φ2} ` {φ1} Sn+1 {φ2})
∀n : {φ1} Sn {φ2}

(6.3)

This rule, which is equivalent with Scott’s induction rule, demonstrates clearly
why Scott’s induction rule is called an induction rule. The idea of proving prop-
erties of a 3APL agent of the form ∀n : `Rule [π�n]φ by induction on n, is that
we prove [π�0]φ and ∀n : ([π�n]φ `Rule [π�n+1]φ). The similarity between the two
approaches is thus that induction on respectively the number of procedure calls
and PR rule applications is done (implicitly or explicitly).

The important difference however is that the statement S in rule (6.3) cor-
responds with the body of a procedure p in the equivalent rule (6.1). The plan
π on the other hand does not correspond with the body of a PR rule, but rather
refers to the initial plan of the agent. Related to this is the fact that rule (6.3) or
the equivalent rule (6.1) can be used in combination with the rule for sequential
composition, as explained in section 6.1. In the case of using induction to reason
about 3APL plans, this is impossible.

Concluding, the general idea of doing induction on the number of PR rule
applications is less obscure than one might have thought at first sight, because

30 We omit the procedure declaration p ⇐ S, because there are no occurrences of p in
either Sn or Sn+1 by definition.

29

of the similarity with the standard Scott’s induction rule. The way in which
induction can be used to prove properties of plans or programs, however dif-
fers between the two approaches due to the non-compositional semantics of the
sequential composition operator in plans, as a result of the presence of PR rules.

7 Conclusion

In this paper, we presented a dynamic logic for reasoning about 3APL agents,
tailored to handle the plan revision aspect of the language. As we argued, 3APL
plans cannot be analyzed by structural induction, which means that standard
propositional dynamic logic cannot be used to reason about 3APL plans. Instead,
we proposed a logic of restricted plans with sound and complete axiomatization.
We also showed that this logic can be extended to a logic for non-restricted
plans. This however results in an infinitary axiom system. We suggested that
a possible way of dealing with the infinitary nature of the axiom system, is
reasoning by induction on the restriction parameter. We showed some examples
of how this could be done. Finally, we discussed the relation between PR rules
and procedures. In particular, we argued that there is a similarity between the
use of Scott’s induction rule for reasoning about procedures, and the use of
induction on the number of PR rules applications for reasoning about PR rules.

Concluding, being able to do structural induction is usually considered an es-
sential property of programs in order to reason about them. As 3APL plans lack
this property, it is not at all obvious that it should be possible to reason about
them, especially using a clean logic with sound and complete axiomatization.
The fact that we succeeded in providing such a logic, thus at least demonstrates
this possibility. The resulting infinitary axiom system is nevertheless more of the-
oretical than practical importance. Future research will have to show whether
reasoning by doing induction on the number of PR rule applications is amenable
to some kind of automation, working towards an extension of these results to a
more practical setting. Another important line for future research is the investi-
gation of the relation between term rewriting systems and PR rules, and between
PR rules and formal language theory. We hope that those investigations will lead
to the definition of interesting subclasses of PR rules that can be analyzed by
structural induction.

References

1. K. R. Apt. Ten years of Hoare’s logic: A survey - part I. ACM Transactions of
Programming Languages and Systems, 3(4):431–483, 1981.

2. R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
AgentSpeak. In Proceedings of the second international joint conference on au-
tonomous agents and multiagent systems (AAMAS’03), pages 409–416, Melbourne,
2003.

3. M. E. Bratman. Intention, plans, and practical reason. Harvard University Press,
Massachusetts, 1987.

30

4. P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42:213–261, 1990.

5. M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. Ch. Meyer. A programming
language for cognitive agents: goal directed 3APL. In Programming multiagent
systems, first international workshop (ProMAS’03), volume 3067 of LNAI, pages
111–130. Springer, Berlin, 2004.

6. J. de Bakker. Mathematical Theory of Program Correctness. Series in Computer
Science. Prentice-Hall International, London, 1980.

7. R. Evertsz, M. Fletcher, R. Jones, J. Jarvis, J. Brusey, and S. Dance. Implementing
industrial multi-agent systems using JACK�. In Proceedings of the first interna-
tional workshop on programming multiagent systems (ProMAS’03), volume 3067
of LNAI, pages 18–49. Springer, Berlin, 2004.

8. G. d. Giacomo, Y. Lespérance, and H. Levesque. ConGolog, a Concurrent Pro-
gramming Language Based on the Situation Calculus. Artificial Intelligence, 121(1-
2):109–169, 2000.

9. D. Harel. First-Order Dynamic Logic. Lectures Notes in Computer Science 68.
Springer, Berlin, 1979.

10. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, Cambridge,
Massachusetts and London, England, 2000.

11. M. Hinchey, J. Rash, W. Truszkowski, C. Rouff, and D. Gordon-Spears, editors.
Formal Approaches to Agent-Based Systems (Proceedings of FAABS’02), volume
2699 of LNAI, Berlin, 2003. Springer.

12. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming in 3APL. Int. J. of Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

13. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. A pro-
gramming logic for part of the agent language 3APL. In Proceedings of the First
Goddard Workshop on Formal Approaches to Agent-Based Systems (FAABS’00),
2000.

14. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In W. van der Velde and J. Perram, editors, Agents Breaking Away (LNAI 1038),
pages 42–55. Springer-Verlag, 1996.

15. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture.
In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the Second Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(KR’91), pages 473–484. Morgan Kaufmann, 1991.

16. J. Rash, C. Rouff, W. Truszkowski, D. Gordon, and M. Hinchey, editors. Formal
Approaches to Agent-Based Systems (Proceedings of FAABS’01), volume 1871 of
LNAI, Berlin, 2001. Springer.

17. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51–92, 1993.
18. W. van der Hoek, B. van Linder, and J.-J. Ch. Meyer. An integrated modal

approach to rational agents. In M. Wooldridge and A. S. Rao, editors, Foundations
of Rational Agency, Applied Logic Series 14, pages 133–168. Kluwer, Dordrecht,
1998.

19. P. van Emde Boas. The connection between modal logic and algorithmic logics.
In Mathematical foundations of computer science 1978, volume 64 of LNCS, pages
1–15. Springer, Berlin, 1978.

20. M. B. van Riemsdijk, F. S. de Boer, and J.-J. Ch. Meyer. Dynamic logic for plan
revision in intelligent agents. In J. A. Leite and P. Torroni, editors, Proceedings
of the fifth international workshop on computational logic in multi-agent systems
(CLIMA’04), pages 196–211, 2004. To appear in LNAI 3487.

31

21. M. B. van Riemsdijk, J.-J. Ch. Meyer, and F. S. de Boer. Semantics of plan
revision in intelligent agents. In C. Rattray, S. Maharaj, and C. Shankland, editors,
Proceedings of the 10th International Conference on Algebraic Methodology And
Software Technology (AMAST04), volume 3116 of LNCS, pages 426–442. Springer-
Verlag, 2004. Extended version is to appear in special issue of TCS.

22. M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer. Agent program-
ming in Dribble: from beliefs to goals using plans. In Proceedings of the second
international joint conference on autonomous agents and multiagent systems (AA-
MAS’03), pages 393–400, Melbourne, 2003.

23. M. Wooldridge. Agent-based software engineering. IEEE Proceedings Software
Engineering, 144(1):26–37, 1997.

32

