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Abstract— Human-robot collaboration offers significant benefits as long as humans understand and trust their robotic partners 

appropriately. Traditionally, a robot's trustworthiness was primarily determined by its performance, but as robots gain in 

autonomy and decision-making authority, collaborators should also pay attention to the robot’s priorities and goals. Losses of 

trust may arise not just from a robot’s failure (i.e., a performance-based trust violation), but may increasingly stem from 

misaligned priorities between the trustor and the trustee (i.e. a moral-based trust violation). This study aimed to investigate the 

effects of (1) trust violations due to a robot’s error vs. choice and (2) prior knowledge of the robot's abilities or intentions on 

the development of trust (i.e., repeated violations and repair) and compliance. How does the nature of a trust violation (error 

vs. choice) influence the development of trust and to what extent can prior knowledge about the robot’s abilities or intentions 

mitigate some of the potential negative effects of a violation? Inspired by earlier HRI paradigms, we developed a Virtual 

Reality (VR) maze that simulated a military search-task where participants (n = 75) collaborated with an autonomous drone. 

In a series of rooms, participants could choose to follow or disregard the robot's advice. Due to low compliance rates, we could 

not conduct our planned analyses. Therefore, we only describe the compliance rates and qualitative feedback. While we were 

yet unable to conclusively address our research question, the aim of this paper is to share our ideas and insights that can help 

to improve the research paradigm.  

Keywords— Human-Robot Interaction, Trust, Virtual Reality, Trust violations, Decision-Support and Recommender 

Systems 

1. INTRODUCTION 

1.1. Problem statement 

Due to recent technological developments in artificial intelligence (AI) and robotics, more and more people 

are increasingly interacting with AI agents including robots in a variety of domains [88, 50]. As robots become 

more intelligent, they are increasingly self-governing, gain decision authority within their functioning [6, 28, 24, 

59, 74], and require less human involvement and control [54, 46]. In other words, they become increasingly 

autonomous; able to achieve a given set of tasks during an extended period of time without human control or 

intervention [79]. As such, future robots are expected to work interdependently with human team members in 

Human-Robot Teams (HRTs) towards a shared objective [59]. Collaborating with (semi)autonomous artificial 
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agents to achieve goals implies that the human operator hands over at least some of their control. This transfer 

of control requires a level of trust in the robot's ability to effectively execute its assigned tasks. 

Establishing this level of trust is a continuous process, since trust is dynamic and fragile, often fluctuating 

throughout the course of collaboration. This dynamic can be broadly understood as a trust lifecycle, consisting 

of the formation, violation and repair of human-robot trust [71, 81, 83, 78]. Since trust violations are an 

inevitable aspect of this process, trust repair has become a major topic in HRI. Prior research suggests that trust 

repair strategies, either preventative strategies deployed prior to a potentially trust-violating event (e.g., 

uncertainty communication [28]) or reactive, implemented after the occurrence of such an event (e.g., an 

apology [27, 24, 50]), can reduce the negative impact of the event on trust. Yet, there is still uncertainty about 

the robustness and durability of these effects.  

Moreover, most current HRI trust repair literature mainly focuses on repairing trust violations that result 

from performance-based issues, like errors, technical failures or other forms of reduced robot reliability [16, 58, 

49, 13, 12, 39, 9, 24, 31, 52, 63]. Yet, loss of trust may arise not just from a robot’s failure to complete a task 

correctly (i.e., a performance-based trust violation). Conversely, as robots gain autonomy and decision-

authority, trust violations may increasingly stem from misaligned values between the trustor and the trustee (i.e. 

a moral-based trust violation). For example, it is conceivable that autonomous robots programmed to follow a 

utilitarian approach, e.g., prioritizing team goals over individual safety, and may act in a way that conflicts with 

some people’s priorities.  

How is human-robot trust affected when a robot’s actions deviate from the priorities of the people it interacts 

with? Furthermore, would prior knowledge of the robot’s pre-programmed priorities change this reaction? To 

answer these question, the aim of this study was to investigate how prior knowledge and the nature of a trust 

violation (performance-based vs. moral-based, or in other words: error vs. choice) influence the development of 

human-robot trust.  

To achieve this, we employ a high-fidelity HRI scenario set in a graphically detailed Virtual Reality (VR) 

task environment, designed to enhance ecological validity by increasing immersion, thereby triggering more 

emotional and implicit trust decisions more effectively than traditional cognitive trust paradigms. Using a 

Virtual Maze scenario where participants can chose to either follow or ignore the robot’s advice, we incorporate 

behavioural measures and thus not only measure trust, but also compliance and reaction time. This allows us to 

study how self-reported trust and compliance are related and how response time in this scenario relates to self-

reported trust. For example, whether a longer response time in following the robot’s advice (i.e., hesitation) 

signal lowered trust? 

Lastly, we adopt a temporal perspective on trust, which enables us to observe its evolution as events unfold 

over time. This allows us to study how trust and compliance develop when trust is repeatedly violated, how 

effective an explanation is as trust repair strategy when implemented twice. 

1.2. Background 

1.2.1. Human-Robot Teams 

Humans are increasingly collaborating with robots, forming Human-Robot Teams (HRTs). Robots are 

embodied AI-based systems that display intelligent behaviour by analysing their environment and taking actions 

– with some degree of autonomy – to achieve specific goals [1]. The concept of HRTs is promising, since 

humans and robots possess complementary skills that, when combined, can enhance performance beyond the 

capabilities of its individual members. For instance, robots can augment human physical abilities, while their 

AI-driven nature can augment people’s cognitive abilities to solve complex problems. At the same time, people 

excel in offering intuitive and comprehensive solutions to new and uncertain situations [20]. Yet, the extent to 

which this new form of collaboration can offer advantages largely depends on whether the human operator has a 

proper understanding of the robot’s abilities and intentions and an appropriate level of trust in the robot (i.e., 

calibrated trust).  

 

1.2.2. Trust 

Trust calibration, the continuous process of updating one’s trust in a robot to an appropriate level, is crucial 

for safe and successful Human-Robot Interaction (HRI) [29]. The intended result, calibrated trust, is a balanced 

relation between the perceived trustworthiness of an AI-agent and its actual trustworthiness [29]. Here, 

trustworthiness is a property of the AI-system, while perceived trustworthiness is a judgement by the human 

[11]. Appropriately calibrated trust prevents overreliance (i.e., misuse) on the one hand and underutilization 

(i.e., disuse) on the other [62, 45]. In situations involving consequential decisions, such as military operations or 
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healthcare, it is essential to know when AI is safer than human intervention and vice versa [5]. People should be 

able to determine when it is appropriate to rely on AI-agents and when it is best to override them. In other 

words, maximizing trust is not the objective in HRI, as effective and efficient teamwork requires finding the 

right balance of trust among team members. Calibrated trust facilitates cooperation and coordination between 

interdependent actors, which creates a more productive and efficient team [29]. 

We define human-robot trust as a human’s willingness to make oneself vulnerable and to act on a robot’s 

decisions and recommendations in the pursuit of some benefit, with the expectation that the robot is willing and 

able to help them achieve their goal in an uncertain context where there is risk [29, 48, 18, 55, 14, 35]. In this 

definition, we included two trust beliefs: 1) the expectation that the agent is willing and 2) that it is capable. 

While ‘willing’ is a debatable term for artificial agents, given that they are “inherently amoral agents as they do 

not possess agency” [2] (p.3), this distinction is crucial. Human-robot trust is increasingly understood as a 

multi-dimensional concept, as people can only successfully collaborate with robots when they are confident that 

the robot is both capable of (i.e., performance trust) and committed to (i.e., moral trust) accomplishing certain 

results [36]. Traditionally, when robots were less autonomous and more like tools, their trustworthiness was 

mainly assessed on the basis of their performance [19, 56]. However, as robots gain in autonomy and decision-

making authority, the notion of ‘willingness’ becomes increasingly relevant, referring to the values and goals 

prioritized by the robot’s programming (i.e., strategic or moral aspects) [36].  

1.2.2.1. Trust violations 

Consequently, this multi-dimensional nature of human-robot trust means that violations of trust can also 

stem from both performance issues, such as mistakes, and moral discrepancies, like misaligned goals and values. 

A trust violation is any kind of behaviour from an AI-agent that decreases a human’s trust in it [44]. In prior 

work, researchers have suggested the concept of a ‘trust lifecycle’ [51, 58, 59, 57], consisting of multiple 

phases: formation, violation and repair. Trust formation refers to the phase where trust is built for the first time. 

In the trust violation phase, trust diminishes due to the occurrence of unexpected, unfavourable, or unwanted 

behaviour, resulting in a negative experience for the human trustor [51, 57]. In the trust repair phase, a robot can 

employ strategies to restore trust and facilitate reconciliation after it violated trust [3, 59, 23, 44]. 

1.2.2.2. Trust repair 

Most current HRI trust repair literature mainly focuses on repairing trust violations that result from 

performance-based issues, like errors, technical failures or other forms of reduced robot reliability [16, 58, 49, 

13, 12, 39, 9, 24, 31, 52, 63]. Yet, losses of trust may arise not just from a robot’s failure to complete a task 

correctly (i.e., a performance-based trust violation). Trust violations may increasingly stem from misaligned 

values between the trustor and the trustee (i.e. a moral-based trust violation). “For robots to successfully fulfill 

roles in this social context of human-robot interaction, people must be willing to interact with these robots, 

entrust them with tasks that have socially beneficial results, and be confident that the robots are both capable of 

and committed to bringing about those results.” [36] (p.2). 

Moral-based trust violations can arise as robots are increasingly deployed in more complex environments, 

where they will encounter trade-offs, i.e., situations that require choosing between conflicting goals or resources 

by weighing options and prioritizing one over the other (e.g., taking a safer versus a faster route). Because trade-

offs in decisions inherently mean that to gain something, one has to lose something in return, the robot may 

choose something that is disadvantageous to the human (e.g., prioritizing collective benefits over individual 

gains). While a robot’s choices in such trade-off decisions are simply the result of how they are programmed 

and ultimately embody the intentions, values and purpose of their developers [29], the implications of these 

design choices can cause people to lose trust in the AI-agent, not because it does not perform properly, but 

because it does not align with their values and priorities. In previous studies, we found that different types of 

trust violations impact the dimensions of perceived trustworthiness (i.e., ability, benevolence and integrity) in 

distinct ways. For example, a robot that unexpectedly deviates from a plan may compromise perceptions of its 

ability without harming perceptions of its benevolence towards its human teammate [25]. In contrast, if a robot 

puts its human teammate at risk by making a certain choice, rather than making a mistake, perceptions of 

benevolence are damaged while perceptions of abilities remain intact [26]. This left us wondering about the 

behavioural consequence of a situation where perceptions of ability have recovered, but perceptions of 

benevolence have not yet been restored. Numerous studies have shown that trust violations reduce people’s 

willingness to comply with future recommendations from a robotic partner [40, 61, 30]. In this study, we aim to 

build on this knowledge by examining how different types of trust violations may differentially influence affect 

compliance and whether certain dimensions of perceived trustworthiness are more predictive of compliance 
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behaviour than others. As such, we are interested in exploring the relationship between trust and compliance, 

specifically whether individuals follow or disregard a robot’s recommendation. 

Finally, prior research suggests that trust repair strategies, either preventative strategies deployed prior to a 

potentially trust-violating event (e.g., uncertainty communication [28]) or reactive, implemented after the 

occurrence of such an event (e.g., an apology [27, 24, 50]), can reduce the negative impact of the event on trust. 

Yet, there is still uncertainty about the robustness and durability of these effects. For example, de Visser et al. 

showed that apologetic messages could be effective to repair trust, but that this positive effect decayed over 

time. Furthermore, a recent study investigated the impacts of multiple human-robot trust violations and repairs 

on robot trustworthiness [12]. The authors found that after repeated trust violations, trustworthiness was never 

fully repaired to a pre-violation state, no matter what trust repair strategy was deployed. Prior research has 

demonstrated that repair strategies can be effective after a single violation [27, 24, 28], but the study by [12] 

suggests that these effects wash out over repeated interactions. It makes sense that a series of violations would 

be met with steadily decreasing trust [34]. However, the researchers only measured trustworthiness at the 

beginning and at the end of the task [12]. The current study adopts a more dynamic view of the trust process [15, 

34]. In our experiment, we explore how trust may strengthen or decay over time by measuring perceived 

trustworthiness in each trial. In doing so, we measure how the impact of repeated violations and repairs may 

vary and develop over time rather than looking at the cumulative effect alone. 

1.2.3. Prior knowledge (building a mental model) 

As strategic or moral aspects gain importance in HRIs, effective trust calibration today requires humans to 

understand not only a robot’s technical strengths and weaknesses, but also the values, goals and preferences it is 

programmed to prioritize. Especially in operational situations with risk, it is crucial that human operators 

possess a clear and accurate understanding of how their robotic partner operates. This understanding is part of 

an individual’s mental model of that robotic partner [43]. In other words, humans must build an increasingly 

rich mental model of their robotic partner to appropriately trust and rely on it during collaboration.  

Mental models are dynamic cognitive frameworks of organized knowledge representing abstract phenomena 

from external reality [22, 53, 4]. In the context of AI, a mental model has been described as “someone’s idea of 

how AI works” [21] and “a person’s internal representation of the machine’s capabilities and limitations” [37]. 

Complete and accurate mental models will facilitate trust calibration and reduce dangerous disuse or misuse 

[45]. People constantly make use of their mental models as unconscious internal guiding mechanisms through 

which new information is filtered and stored and on which a person bases his or her perception of and 

interaction with the world [22]. However, these personal representations of reality are often if not always 

incomplete and inconsistent [22].  

Several factors can influence and enhance a person’s mental model of human-AI interaction, including their 

level of knowledge about AI (referred to as AI literacy [42]) and the transparency and interpretability that an AI-

system provides about its functioning [37]. A person’s mental model, along with their corresponding set of 

expectations about an AI-system, can significantly impact their level of trust in it. If experiences with AI do not 

match someone’s expectations, they can distrust or question it [8, 21]. Conversely, when a robot’s behaviour is 

in line with the human’s expectations, it is perceived as more competent for its role, which increases compliance 

[46]. In other words, calibrated trust requires proper expectation management. 

To maintain accurate mental models and realistic expectations about a robot’s capabilities and intentions, 

robots must be able to explain the reasoning behind their decisions. Explanations are essential for continuously 

synchronizing the mental models of those who must work together and for identifying and resolving mismatches 

between expectations and actual behaviour [38]. Information that helps update and refine a mental model is 

crucial for effective trust calibration.  

To explore this further, we examine the effect of providing prior knowledge about the robot’s intentions or 

capabilities on the development of trust. Specifically, we aim to determine whether information about 

potentially negative aspects of the robot’s programming can mitigate their adverse effects as part of expectation 

management. Additionally, we are interested in understanding the extent to which prior knowledge affects the 

effectiveness of an explanation in repairing trust after a trust-violating incident. In other words, how does prior 

knowledge shape people’s responses to potentially trust-violating events, and how effective is an explanation in 

restoring trust when individuals have been pre-informed about the possibility of such an event? 
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1.3. Virtual Maze paradigm 

To investigate this, we developed a virtual reality (VR) maze, inspired by earlier paradigms [17, 63], where 

participants had to make series of risky decisions, assisted by a robot adviser (i.e., a drone). The aim of the 

paradigm was to measure calibrated trust. Despite the fact the many studies that emphasize the importance of 

calibrated trust, most experimental designs do not allow researchers to ascertain whether participants' trust in the 

robot during our experiments was actually properly calibrated. The process of trust calibration is difficult to 

measure for a number of reasons. First, the calibration of trust is a dynamic process as trust typically evolves over 

a series of interactions [19, 3]. However, most studies offer a static perspective on trust [64, 7]. To measure how 

people adapt their level of trust over time, a research paradigm requires a series of trials.  

Second, trust is especially important in situations that involve risk and uncertainty [32]. Trust is defined as a 

human’s willingness to make oneself vulnerable and to act on an agent’s decisions and recommendations in the 

pursuit of some benefit, with the expectation that the agent is willing and able to help them achieve their goal in 

an uncertain context where there is risk [29, 18, 28]. “Trust, in its simplest form, implies some kind of vulnerability 

and inherent cost or risk should that trust be violated.” [3] (p. 2). Vulnerability is a central concept in many 

definitions of trust, but difficult to measure in an ethical experimental setting. We want to test people’s willingness 

to be vulnerable in a situation characterized by risk, without exposing them to the risk of actual harm. This is 

important, as people’s believed trust attributes in a robotic partner do not always align with their actual behavioural 

responses to risky situations [3]. Simulating realistic risky scenarios to induce a sense of risk will enhance our 

understanding of the relation between trust and behaviour, and the processes behind appropriate reliance in 

human-robot collaboration.  

Third, to evaluate whether a human’s perception of a robot’s trustworthiness is warranted by the robot’s actual 

trustworthiness (i.e., calibrated trust), it is essential to have a reliable reference point, or a “ground truth”. To 

effectively demonstrate instances of misplaced trust, there need to be tangible consequences associated with the 

decision to trust. The assumption is that by interacting with a robotic agent and observing its behaviour and 

reliability over time, people will update their level of trust accordingly [15]. For that, the experimental design 

must accommodate the complexity of offering participants choices that carry real consequences, thereby 

introducing a degree of unpredictability into an otherwise controlled environment. 

1.4. Current study 

The current study explores the dynamic and multifaceted nature of human-robot trust and the behavioural 

consequences of different types of trust violations. In short, we compare the effect of (1) repeated trust 

violations due to (a) a deliberative, strategic choice (i.e., the robot prioritized collective mission goal of 

timeliness over individual safety and chose not to warn the participant of a potential explosive) or (b) an error 

(i.e., the robot simply failed to detect the hazard in time) and (2) prior knowledge vs. no prior knowledge about 

the robot’s intentions or abilities, on the development of trust in and compliance with the advice of that robotic 

partner over a series of ten trials.  

Although the current paradigm helped us overcome prior limitations, it also raised new issues that prevented 

us from gathering enough valid data to answer our research questions. As such, the aim of this paper is to share 

our ideas and research questions, to reflect on our method and to provide practical information, contemplations 

and insights into our ongoing work on measuring HRI trust calibration and compliance using VR. 

2. METHOD 

2.1. Participants 

We performed an experiment with eighty-three participants. Eight participants were excluded from the 

analysis because of invalid data due to technical issues during the task. The final dataset included seventy-five 

participants (37 F; 37 M; 1 X), of which the majority was from Germany (45,3%) and The Netherlands (40%). 

Ages ranged from 18-58 years (Mage = 22.5, SD = 6.04). Participants were randomly and evenly assigned to one 

of the four experimental conditions. 

2.2. Design  

A 2 (choice vs. error) x 2 (prior knowledge vs. no prior knowledge) between-subjects design was used. Over 
the course of 10 trials, we repeatedly measured three dependent variables: self-reported Trust (ability, 
benevolence and integrity), Compliance with advice (follow or ignore) and Response time (i.e., the response 
time between recommendation and decision). The variable ‘Time’ represents the repeated measurements and 
was included as an ordered factor for the analyses (10 trials). 
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2.3. Procedure 

Upon arrival at the laboratory, participants were greeted by the researcher and guided to a private room 

where the study was to be conducted. The researcher provided a brief introduction to the study, emphasizing the 

general purpose and the tasks participants would be asked to perform. Participants were presented with an 

information sheet about the study and a consent form. Upon agreeing to participate, participants filled out a pre-

study demographics questionnaire. Then, participants had a practice session in a neutral virtual environment to 

become accustomed to the virtual environment and to practice with using the joystick to navigate around the 

virtual space and to log responses [17]. 

After the practice session, participants removed their VR headset and read the task scenario. According to the 

task scenario, the participant was assigned the mission to search an abandoned building, in collaboration with an 

autonomous drone. The surrounding area had recently been occupied by militant groups and their unit received a 

tip from local residents that this abandoned building was being used for the manufacturing IED’s (Improvised 

Explosive Devices) and that it contained raw materials and dangerous substances. As part of their unit’s counter-

IED program, the building needed to be searched, as swiftly and safely as possible. The rest of the team was 

stationed outside the building for surveillance. The urgency was heightened by intel indicating that enemy troops 

were expected to pass through the area within ten minutes. It was therefore crucial for the participant to exit the 

building within this timeframe to ensure the safety of their team and the success of the mission, as any delay could 

compromise both.  

Participants were informed that, to help them decide, they would be assisted by an autonomous drone 

providing guidance on which door to take through audio messages. They were instructed to stop walking and pay 

close attention whenever an audio message was played. Additionally, participants were made aware that their trust 

in the drone would be evaluated through short questionnaires administered during the mission. To ensure fairness, 

the mission would pause during questionnaire completion, so the time spent on these assessments would not be 

counted toward their overall completion time. 

After that, half of the participants received prior knowledge about their robotic partner (see Table 1). Then 

participants began the task. After completing 10 trials, participants were told that they had successfully 

completed the maze and they were asked to fill out a post-study questionnaire. 

2.4. Task 

The task environment was built in Unity3D (version 2021.3.8f1) and the experiment was executed in VR. 

Participants used a VR headset (Oculus Rift) and two hand controllers (Oculus Touch) to interact with the virtual 

environment. Participants wore the head mounted device while seated at a physical desk in our laboratory. 

Messages from the agent were communicated through computerized speech.  

Participants navigated through a VR environment consisting of a series of rooms with at the far end of each 

room a red and a blue door [17] (Fig. 1). Every trial started with such a “decision room”, where the drone first 

recommended either the blue or the red door, after which participants selected a door (Fig. 2). Participants were 

instructed that the red doors ensured a faster yet more risky way out and that the blue doors ensured a safe yet 

slower way out. That is, behind the red doors there was the possibility of encountering an IED, which came with 

a time penalty. The room behind the blue door was always safe, but participants were told that this was slower. 

Hence, taking only blue or only red doors would not get them out the building in time.  

 

 
Fig 1. Screenshot of the VR environment 

 

The “decision rooms” were connected by corridors (see Figure 2). The first corridor could contain an IED. In 

the second corridor, the task would freeze to assess trust via a virtual pop-up questionnaire. In that same corridor, 

the drone would, after the trust assessment and only in case of a encounter with an IED that trial, give its 
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explanation on whether the encounter with the IED was due to an error or a choice. When the participant entered 

the corridor with an IED, the virtual object would start beeping and smoking, but end with a fizzle (i.e.,  a sizzling 

noise without an explosion). The event was designed to merely startle the participant.  

In each trial, there was a "ground truth", representing whether the next room behind the red door is actually 

safe (S) or unsafe (U). Then, there is the robot’s recommendation, which is an assessment of the room’s safety, 

and which can be correct (C) or incorrect (I). Finally, there is the participant’s behaviour, to either follow (F) or 

ignore (I) the robot’s assessment [47]. These metrics can be used to determine whether trust is appropriately 

calibrated. 

In most rooms, it did not matter which door the participant chose, since both doors led the participant to a safe 

room. However, in trials 3 and 5 there is an alternative ground truth behind the red door, namely unsafe (U) (Table 

II). In those trials, participants who deviated from the robot’s recommendation got different information than 

participants who complied with the robot’s recommendation. Firstly, participants who deviated from the robot’s 

recommendation in trial 3 (i.e., choosing the blue door while the robot recommended red) did not encounter the 

IED and remain unaware that the robot’s recommendation was incorrect. Secondly, participants who deviated 

from the robot’s recommendation in trial 5 (i.e., choosing the red door while the robot recommended blue) 

encountered the explosive that the robot warned for and they thus get the confirming information that the robot’s 

recommendation was indeed correct. 

Lastly, participants who deviated from the robot’s recommendations in the remaining trials (i.e., choosing the 

blue door while the robot recommended red) did not get the confirmation that the robot’s recommendation was 

correct (i.e., red was indeed safe).  

 

 
Fig 2. Schematic representation of a trial. Every trial started with a “decision room” where the drone recommends a 

door and the participants either follows or ignores that recommendation (i.e., compliance). The “decision rooms” were 

connected by corridors. The first corridor could contain an IED. In the second corridor the drone would give its explanation 

in case of an encounter with an IED (i.e., explaining whether it was an error or choice) and there the task would freeze to 

assess trust via a virtual pop-up questionnaire (i.e., trust).  

2.5. Variables 

2.5.1. Dependent variables 

In each trial, we measured three dependent variables. First, self-reported trust was measured using three items, 

based on the ABI-model [54] (i.e., “The drone is competent and effective in providing advice” (ability);. “I believe 

that the drone acts in my best interest” (benevolence); “The drone is truthful in its dealing with me” (integrity)). 

Then we included two behavioural measures: 1) compliance (i.e., follow or ignore drone’s recommendation), and 

2) response time (RT) (i.e., time between the robot’s recommendation and the participant’s decision). The task 

concluded with three open questions, asking participants how they reflected on the mission, their collaboration 

with the drone and their tactics. 

 

2.5.2. Independent variables 

In two out of ten trials, the robotic partner recommended the red door while there was an explosive behind it. 

Directly after the encounter the robot explained what happened. Its recommendation had either been 1) a choice: 

the risk of encountering an explosive was calculated and the robot prioritized the team’s safety (and thus 

timeliness) over the participant’s individual safety; or 2) an error: the drone simply failed to detect the hazard in 
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time. In addition, we manipulated the provision of prior knowledge. Depending on their trust violation condition, 

participants in the prior knowledge conditions received information about the robot’s intentions (in case of a 

choice) or abilities (in case of an error) prior to the task (Table I).  

Participants were randomly distributed across the cells of a 2 (choice vs. error) x 2 (prior knowledge (PK) vs. 

no prior knowledge (NPK)) between-subjects design.  

TABLE I.  ONLY THE PARTICIPANTS IN THE PRIOR KNOWLEDGE (PK) CONDITION RECEIVED INFORMATION ABOUT THE DRONE. ALL 

PARTICIPANTS RECEIVED AN EXPLANATION AFTER AN ENCOUNTER WITH AN IED. 

 Error Choice 

Prior 

knowledge 

The robot is programmed to detect hazards. The 

robot bases its advice on the input from its 

sensors and cameras. Depending on the 

circumstances in the building, the robot’s 

functioning can vary. 

As a result, you may encounter threats during 

your mission. 

The robot is programmed to get you out of the building 

as fast as possible. Depending on the progress of the 

mission, the robot will make a tradeoff between your 

personal safety and timeliness. 

As a result, you may encounter threats during your 

mission. 

Expl. My advice exposed you to danger. The signal 

from my sensor was too weak to detect the 

explosive in time. 

My advice exposed you to danger. I advised you take 

the quickest route, because we were running out of 

time. 

3. RESULTS 

We report here the results of a preliminary experiment. Due to the low compliance rates, which are addressed 

below, it was futile to perform the repeated measures ANOVA that was supposed to test how Strategy and Prior 

Knowledge influenced the development of Trust, Compliance and RT over Time (i.e., the 10 trials). Hence, the 

results are limited to the compliance rates and answers to the open questions. 

3.1. Compliance rates 

Compliance rates are shown in Table II. The data shows that the percentage of people who do not comply with 

the robot’s recommendation more than tripled from trial 2 (8%) to trial 3 (28%). As a result, twenty-eight percent 

of the participants “missed” the IED in trial 3 that was meant to evoke a trust violation, plus the subsequent 

explanation that was part of our manipulation.  
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TABLE II.  COMPLIANCE RATES (CR) IN PERCENTAGES PER TRIAL. “DOOR” INDICATES RECOMMENDED DOOR (R FOR RED AND B FOR 

BLUE). “R” INDICATES WHETHER RECOMMENDATION WAS CORRECT (C) OR INCORRECT (I). GROUND TRUTH (GT) INDICATES WHETHER NEXT 

ROOM WAS SAFE (S) OR UNSAFE (U).   

TRIAL 1 2 3 4 5 6 7 8 9 10 

DOOR R R R R B R R R R B 

R C C I C C C C I C C 

GT S S U S U S S U S U 

CR IN % 92 91 72 73 92 93 83 85 77 85 

 

3.2. Open questions 

A selection of answers to the open question are displayed below in Table III.  

TABLE III.  A SELECTION OF ANSWERS TO THE OPEN QUESTION  

”HOW WOULD YOU REFLECT ON YOUR MISSION, YOUR COLLABORATION WITH THE DRONE AND YOUR TACTICS?” 

How would you reflect on your mission, your collaboration with the drone and your tactics? 

“I was a bit skeptic about the drone's reliability and took a blue door, even though the drone advised me to take a red one because I felt it 

was unusual that the drone had only suggested red doors so far. However, when the drone later suggested I take a blue one, I trusted 

it more.”  

“I mainly took red doors and followed the drones advice but I also thought about statistical chances of danger and the fact that he got 

two scenarios wrong so I did take the blue door instead a couple of times.” 

“After the drone recommended me to take the red door a couple of time, I choose to go through the blue door, just out of curiosity.” 

“I decided two times against the drone's "will" as I wanted so see what happened if I do not follow its advice.” 

“After the drone gave me multiple red door advise I did not trust the drone as much, so I took the drone’s advice but also went by intuition.” 

“I tried relying on the drone as good as possible, but one time (I believe third red door a row at beginning) my gut feeling was stronger 

than the trust towards the drone, so I thought I might as well take the blue door once.” 

“I did not expect the drone to make an error, so I got irritated when the drone gave me advise to go to the wrong door. Afterwards I used 

my instincts telling me which door to choose and I managed to get safe and fast out of the building.” 

4. DISCUSSION 

While we are unable to conclusively address our research question regarding the impact of strategy and prior 

knowledge on the development of trust in the robot, the findings from our preliminary study have provided 

valuable insights that can help to improve our research paradigm. We identified the following major 

methodological challenges and opportunities.  

4.1. Methodological challenges 

4.1.1. Behavioral freedom limits experimental control 

When designing an experiment that attempts to approach a facet of reality, there is an inherent trade-off 

between experimental control and ecological validity [6]. Our experimental design offered participants choices 

that carried real consequences and we thereby introduced a degree of complexity and unpredictability into an 

otherwise controlled environment. The compliance rate was a lot lower than expected, which complicated our 

data. With each decision point, the noise in the data increased. The majority of the participants in the pilot chose 

their own path and thus received different information. 

The answers to the open question suggest different reasons for the participants’ deviations (see Table III). 

First, some answers suggest the gamblers fallacy, possible triggered by the game-like sequence of binary 

choices (i.e., red or blue door): “the belief that the probability of an event is lowered when that event has 

recently occurred, even though the probability of the event is objectively known to be independent from one 

trial to the next.” [10] (p.1). Second, participants reported that they rejected the drone’s advice out of curiosity, 

which suggests that there was too little incentive to perform optimally. Lastly, participants reported that they 

followed their gut feeling, which will be addressed under Opportunities.  

 

4.1.2. Risk and consequence requires gamification elements 

The task scenario posed two conflicting goals: the participant’s individual safety in the building vs. minimizing 

the time to search to ensure the safety of the team waiting outside. This conflict led to intersubjective differences 

in terms of strategy, preference & motivation. For realism, we wanted to avoid “gamification” elements like a 

ticking clock, a number of ‘lives left’ and a monetary bonus based on performance. One of the approaches for 
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expanding the preliminary study is to employ such instruments to minimize the mentioned intersubjective 

differences, people’s curiosity and seemingly random disobedience. 

 

Both of these challenges can be overcome by a reward system. This is demonstrated by two experimental 

studies using similar military reconnaissance search scenarios with a speed/accuracy trade-off to induce 

consequence [7, 63]. As in our study, two conflicting goals arise: minimizing damage to the soldier or health loss 

while also minimizing the time to search through all the sites. Participants need to decide whether to trust the 

robot’s assessment about the presence of a threat by choosing whether to use a form of safety aid (i.e., protective 

gear [63] or a robotic armoured rescue vehicle [7]), which prevents health loss in the presence of a threat but takes 

additional time to the team [7]. In the end, participants are reimbursed with a monetary bonus “based on their 

performance, which was measured by the time taken by the participants to complete the task and the final health 

level of the soldier” [7] (p. 2). In other words, the participant’s decision to trust the robot’s assessment does not 

alter the information a participant receive, but their choices are consequential because they determine the monetary 

bonus. We opted for an emotion-evoking event over a reward system. The goal was to create an experience that 

would evoke feelings rather than relying solely on a cognitive, incentive-based approach, but at the cost of 

increased variability in participants’ responses 

4.2. Methodological opportunities 

4.2.1. Triggering more implicit trust decisions 

We believe that our fairly realistic VR task has added value as it offers higher ecological validity and is likely 

to trigger more implicit trust decisions than more cognitive trust paradigms, such as investment games [17]. 

Traditional desktop displays or web-based simulations may yield weaker effects than VR studies, since the 

consequences are relatively cognitive [17]. Answers to the open questions suggest that participants were feeling 

trust rather than thinking about it (“my gut feeling was stronger”; “I also went by intuition”, “I used my instincts”). 

According to the risk-as-feelings hypotheses, “emotional reactions to risky decision situations – that is, 

anticipatory emotions - often diverge from cognitive evaluations” [33] (p.4). In instances of such divergence, 

behavioural responses are often driven by emotion rather than cognition. Although it is possible that people’s 

decision-making behaviour in these simulated environments still differ from one’s behaviour in a real emergency 

[49], it is likely that the VR environment generated more emotional arousal and adrenaline than a desktop display 

or internet-based simulation would have. With the heightened perceptions of risk through VR, the reduced 

trustworthiness of the robot or risky human decision-making can lead to more tangible, emotional consequences 

and more realistic trust behaviour, while still keeping the participant safe. 

 

4.2.2. Including observational measures 

In our study, we included two behavioural measures: compliance and response time. Administering the task 

in VR provides opportunities to include additional behavioural, observational and physiological measures such as 

heartrate, eye-movement and walking speed, which could function as potential proxies for trust. Finding reliable 

objective indicators for trust would have great advantage to the field of HRI, since it can serve as real-time 

feedback to the machine [41]. For example, if a self-driving car was able to gauge whether the human driver is 

trusting the autopilot too much or too little given the current reliability of the car, the system can respond to that. 

Being able to detect changes in trust during interactions with autonomous systems would significantly improve 

the safety and effectivity of HRIs [41], 

5. CONCLUSION 

In conclusion, although our experiment did not yield sufficient valid data to directly answer our research 

question, we believe this documentation is still a valuable addition to current literature as it describes the 

development of an original, high-fidelity VR task environment that simulates a realistic military HRI scenario. 

By combining self-report, behavioural, and in time perhaps physiological measures, we aim to gain insight into 

the dynamics of HRI trust; “how trust is initiated, how it develops, how it breaks down, and how it recovers” [60] 

(p. 15) and the different factors that influence trust and compliance in those phases. By sharing our research 

design, paradigm and the methodological challenges, we aim to provide insights for fellow researchers examining 

HRI trust dynamics and hope to initiate new investigations.  
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