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Abstract - Trust violations in HRI are inevitable, making strategies to repair trust essential for maintaining 

appropriate levels of trust. Research suggests that human-like cues in a robot’s design and communication style 

can affect people’s responses to trust violations and repair efforts. This study investigates how the presence of 

subtle anthropomorphic cues influences the formation, violation and repair of human-robot trust in the context 

of an ability-based trust violation, using an explanation as a trust repair strategy. This paper presents findings 

from an experiment (n=54) where participants performed two military house-search missions in Virtual Reality 

(VR), using a VR-Locomotion 360 treadmill (Cybercity Virtualizer ELITE 2). A 2 (agent type: human-like vs. 

machine-like) x 2 (explanation: present vs. absent) mixed factorial design was used, with repeatedly measured 

self-reported trust in the agent (prior, violated, final) as the dependent variable. Results indicate that, although 

the communication style manipulation was subtle, participants perceived the human-like robot as significantly 

more human-like than the machine-like robot. However, neither the anthropomorphic cues nor the presence of 

an explanation had a significant effect on trust development. Finally, we discuss the methodological advantages 

and challenges of using VR for HRI trust research. 
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1. Introduction 

1.1. Problem statement 

Due to recent technological developments in artificial intelligence (AI) and robotics, more and more 

people are increasingly interacting with AI agents including robots in a variety of domains [88, 50]. As 

robots become more intelligent, they are increasingly self-governing, gain decision authority within their 

functioning [6, 28, 24, 59, 74], and require less human involvement and control [54, 46]. In other words, 

they become increasingly autonomous; able to achieve a given set of tasks during an extended period of time 

without human control or intervention [79]. As such, future robots are expected to work interdependently 

with human team members in Human-Robot Teams (HRTs) towards a shared objective [59]. Collaborating 

with (semi-)autonomous artificial agents to achieve goals implies that the human operator hands over at least 

some of their control. This transfer of control requires a level of trust in the robot's ability to effectively 

execute its assigned tasks. 

Establishing this level of trust is a continuous process, since trust is dynamic and fragile, often 

fluctuating throughout the course of collaboration. This dynamic can be broadly understood as a trust 

lifecycle, consisting of the formation, violation and repair of human-robot trust [71, 81, 83, 78]. Since trust 

violations are an inevitable aspect of this process, trust repair has become a major topic in HRI. One 

commonly employed strategy for maintaining and repairing trust is the use of explanations. However, 

explanations are not always successful [21, 8, 35, 42].  

Studies suggest that anthropomorphic cues (i.e., features that give robots human-like qualities) play a 

significant role in how trust develops, including the effectiveness of trust repair [81, 34]. These cues, 

including the robot’s design and communication style can greatly impact how people perceive, interact with, 

rely on and trust these systems. For example, anthropomorphic cues (e.g., a face or limbs, capable of 

dialogue, seeming personality traits) can facilitate interaction by leveraging the familiarity of interpersonal 

social dynamics. However, they can also lead to misplaced trust if the cues create expectations that the robot 

cannot fulfil.  

This study aims to examine the impact of explanations on trust repair and explores how anthropomorphic 

cues influence the various phases of the trust lifecycle. To achieve this, we employ a high-fidelity military 

HRI scenario set in a graphically detailed Virtual Reality (VR) task environment, designed to enhance 

ecological validity by increasing immersion, thereby triggering more emotional and implicit trust decisions 

more effectively than traditional cognitive trust paradigms. Furthermore, adopting a temporal perspective on 

trust allows us to observe its evolution as events unfold over time.  

1.2. Background 

1.2.1. Human-Robot teams  

The introduction of automated systems, such as machines on assembly lines in manufacturing, has 

revolutionized productivity and efficiency by executing repetitive tasks faster and with greater accuracy than 

humans in a wide variety of routine - initially mostly physical - tasks [12]. With the emergence of Artificial 

Intelligence (AI) and deep neural networks, the possibilities of automation further expanded as machines 

gained the capability to learn, to make decisions, and to mimic human cognitive functions [73]. 

With the term AI, we refer to “systems that display intelligent behaviour by analysing their environment 

and taking actions – with some degree of autonomy – to achieve specific goals” [1] (p. 1). In addition to their 

level of autonomy, these AI-based systems, referred to as AI agents, can differ in various aspects, including 

their form and function. They can be completely software-based (e.g., voice assistants, image analysis 

software, search engines), or AI can be embedded in hardware devices, such as advanced robots, 

autonomous cars, or drones [1].  

Today, people are increasingly interacting with AI-embedded hardware across various domains. For 

instance, robotic waiters serve customers in restaurants, surgeons collaborate with partially remote-

controlled surgical robots, and an increasing number of drivers rely on cars equipped with features that 

reduce the need for human intervention (e.g., automatic parking, adaptive cruise control and stop-and-go 

control systems). These interactions fall under the field of Human-Robot Interaction (HRI), yet the question 
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of what qualifies as a "robot" remains contentious. A robot is defined as "a device that automatically performs 

complex, often repetitive tasks (such as in industrial assembly lines)", but also as "a machine built to resemble a 

human being or animal in appearance and behaviour" [53]. Whether a specific machine is perceived as one or 

the other (i.e., more machine or human-like) depends on its purpose, design, communication style, and 

individual differences among users [49, 50].  

Regardless of the specific definition, these machines are become increasingly autonomous, capable of 

completing tasks over extended periods without human control or intervention [79]. Robots can take over tasks 

that were previously conducted by humans, whereas other tasks still need to be executed by human counterparts 

[64]. As a result, the rise of HRTs poses interesting challenges related to teamwork and trust. 

1.2.2. Trust 

Trust is crucial for teamwork. We define human-AI (H-AI) trust as a human’s willingness to make oneself 

vulnerable to an AI agent’s decisions and recommendations in the pursuit of some benefit, with the expectation 

that the AI agent will help achieve their common goal in a context characterized by uncertainty and risk [41, 26, 

19, 47]. Teamwork involves risk and requires trust because it involves individuals depending on each other's 

contributions to collectively complete tasks and achieve objectives. When team members delegate tasks or 

responsibilities to each other, they become vulnerable in the sense that they are relying on others' competence 

and commitment. During the collaboration, team members must maintain an appropriate level of trust in that 

everyone will perform as required in order to accomplish that goal [40]. That is, overly and unnecessarily 

monitoring the activity of other team members slows down progress and adds unnecessary workload, but team 

members should also maintain a healthy level of vigilance to ensure everyone is meeting expectations.  

To minimize the risks and maximize the benefits of HRI, trust should be well calibrated [43]. Calibrated 

trust refers to a balanced relation between the perceived trustworthiness of an AI agent and its actual 

trustworthiness [41]. Here, trustworthiness is a property of the AI-system, while perceived trustworthiness is a 

judgement by the human [16]. For safe and successful collaborations, people should be able to determine when 

it is appropriate to rely on AI agents and when it is best to override them [41].  In situations involving 

consequential decisions, such as military operations or healthcare, it is essential to know when AI is safer than 

human intervention and vice versa [4]. Miscalibration, represented as either ‘overtrust’ or ‘undertrust’, can lead 

to inappropriate reliance, which can compromise safety and profitability respectively [41]. In case of overtrust 

(i.e., excessive trust), a trustor accepts too much risk, which can lead to complacency and can cause costly 

disasters [67]. At the same time, undertrust (i.e. insufficient trust) also prevents effective collaboration as it 

leads to scepticism, causing inefficient monitoring of the work behaviours of other members and an uneven 

distribution of workload [41, 84]. At worst, people may choose not to use or even consciously disable systems 

that can potentially help them [80]. In other words, maximizing trust is not the objective in H-AI collaboration, 

as effective and efficient teamwork requires finding the right balance of trust among team members. Trust is “a 

continual process of active exploration and evaluation of trustworthiness and reliability” [27] (p.146). 

1.2.3. Trust lifecycle 

To navigate the constant pursuit of an optimal level of trust in ever-changing circumstances, we must 

understand the dynamics of trust. We want to understand how trust develops, how it breaks down, and how it 

recovers [82]. In prior work, researchers have suggested the concept of a ‘trust lifecycle’ [71, 81, 83, 78], 

consisting of multiple phases. To simplify, the trust ‘life cycle’ is split up in three distinct phases; trust 

formation, trust violation, and trust repair [81, 83].  

First, trust has to be formed. During trust formation, a relationship of trust is established between human and 

robot, typically increasing with further successful interactions. At some point, a trust violation may occur due to 

unexpected AI agent behaviour, errors, or undesired decisions, leading to a sudden drop in the robot’s perceived 

trustworthiness and potentially destabilizing the relationship [71, 78]. Essentially, a trust violation is any kind of 

behaviour from an AI agent that decreases a human’s trust in it [61]. In the trust repair phase, trust is expected to 

gradually recover, either passively through the agent’s return to reliable behaviour or actively through trust 

repair strategies. That is, an AI agent can employ strategies to restore trust and facilitate reconciliation after one 

party broke the trust of another, such as providing explanations for decisions or expressing regret [3, 83, 33, 61].  

Research suggests that trust in a robot develops differently when human-like cues are incorporated into the 

robot’s design [81, 34]. In the following, we will discuss the concept of anthropomorphism, followed by a 

discussion of findings on how anthropomorphic cues influence the various phases of the trust life cycle. 
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1.2.4. Anthropomorphism   

Incorporating human-like cues into the design of robots and other AI agents (e.g., a face or limbs, 

capable of dialogue, seeming personality traits) can trigger the bias of anthropomorphism, which is “the 

tendency to attribute human characteristics to inanimate objects, animals, and others with a view to helping 

us rationalize their actions” [17] (p.180). Research demonstrates that even relatively simple, subtle and 

superficial anthropomorphic cues (e.g., a voice, a gender or a name) can lead to the attribution of 

fundamental human qualities, including perception of mind [20, 90], rational thought (e.g., agency) [88], and 

the ability to experience emotions [86, 87]. For example, people were more willing to engage with a 

software agent when it addressed them with their first names [56] and in studies of Apple’s voice assistance, 

Siri, perceived anthropomorphism was linked to perceived intelligence [57]. These findings suggest that 

anthropomorphism is not only triggered by obvious human-like features in a robot’s physical appearance, 

such as a body, limbs, or face, but also by more subtle cues. 

1.2.5. Anthropomorphism and the trust life cycle 

1.2.5.1. Trust formation 

The formation of trust in an agent is initially informed by previous experience with the particular agent 

or a similar system and prior knowledge such as the system’s reputation. These past experiences and prior 

knowledge are used to construct a mental model: personal, internal (cognitive) representations of external 

reality, based on their unique life experiences, perceptions, and understandings of the world [32]. We use 

these cognitive frameworks to interpret and make sense of the world around us, forming expectations about 

what is likely to occur next [48, 70]. They shape our reasoning processes and guide our decisions, actions, 

and behaviours [32].  

These cognitive structures are highly subjective and not a complete and accurate representation of reality 

[32], as they are also shaped by cognitive biases like anthropomorphism [26, 81]. For instance, perceiving a 

robot as a highly advanced tool, a device that performs complex tasks, versus a machine designed to 

resemble a human in appearance and behaviour (e.g., to provide companionship) will result in different 

expectations and predictions about its behaviour and capabilities. Anthropomorphism may cause human 

operators to generate a more sympathetic and user-friendly mental representation of the agent [13]. As 

mentioned earlier, whether a specific machine is perceived as one type of robot or another (i.e., which 

mental model a person adopts) likely depends on factors such as its purpose, design, communication style, 

and individual differences among users [49, 50].   

On one hand, capitalizing on people’s tendency to anthropomorphize by incorporating human-like cues 

into the robot’s design can facilitate the formation of trust [24]. The familiarity of human-like social 

behaviour enhances people’s implicit understanding of non-human agents [88, 50]. This familiarity fosters a 

sense of competence in interacting with these novel agents [18]. Human-like social cues can smooth 

interactions by allowing people to draw on their existing knowledge of interpersonal interactions, making 

these interaction more intuitive and comprehensible, thereby potentially easing acceptance and adoption. 

On the other hand, this sense of familiarity can be misleading when the expectations it triggers do not 

align with the robot’s actual abilities and limitations [23]. After all, a robot is fundamentally different from a 

human. This idea is exemplified by Large Language Model-based chatbots, such as OpenAI’s ChatGPT, 

which produce text that appears highly human-like. The interaction can feel so natural that people feel 

compelled to say "please" or "thank you" when engaging with the chatbot [63]. Their ability to generate 

coherent answers can deceive users into believing these chatbots understand more than they actually do [10]. 

This can lead to misplaced trust and inappropriate reliance. Therefore, scholars caution that anthropomorphic 

characteristics should be employed with careful consideration [13, 81, 34]. 

1.2.5.2. Trust violation 

The level of human-likeness in an AI agent also influences how people respond to trust violations. There 

seems to be a higher tolerance for mistakes from human-like agents than from machine-like ones [22]. 

Research showed that breakdowns in trust in case of automation failure were less severe when the agent was 

more human-like [81]. Additionally, research has found a link between anthropomorphism and perceptions 

of responsibility: participants who interacted with an anthropomorphic autonomous car were significantly 

less likely to blame the car for an accident than those in a regular autonomous car condition [87]. As the 
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authors predicted, anthropomorphism mitigated the agent’s blame for the incident. Wynne and Lyons suggest 

that “teammate-likeness” could support forgiveness and ease trust repair [88, 22]. Overall, the findings indicate 

that anthropomorphism in AI agents can help alleviate breakdowns in trust and facilitate trust repair. However, 

it is crucial to recognize that this does not necessarily lead to better-calibrated trust, as it may still be based on 

false assumptions [66].  

1.2.5.3. Trust repair 

Finally, previous research has explored how different levels of anthropomorphism in agents influence the 

effectiveness of trust repair attempts after mistakes. For instance, Hamacher et al. (2016) found that people 

preferred an expressive, personable robot that apologized and attempted to rectify its errors, even though it was 

less efficient and more error-prone than a non-communicative but more reliable robot. Anthropomorphic cues, 

such as apologizing, led to greater forgiveness of the robot’s mistakes [22]. Similarly, Kim and Song discovered 

that a human-like agent was more effective at repairing trust when it took responsibility for its mistakes, 

whereas a machine-like agent was more successful when it blamed external factors [34].  

Despite growing research on anthropomorphism and trust repair, some questions remain. This study builds 

on previous work by using a ‘neutral’ trust repair strategy (i.e., an explanation) rather than an apology, which is 

inherently anthropomorphic. Previous studies, including those by de Visser et al. (2016) and Kim and Song 

(2021), included expression of regret (i.e., “I am sorry”) even in supposedly non-anthropomorphic agents, 

potentially diluting the effects of agent type manipulations. De Visser et al. (2016) acknowledged that 

incorporating human-like trust repair behaviours, such as regret, likely diminished the differences between agent 

types. To avoid this issue, our study excludes the expression of regret and instead uses explanations as a neutral 

strategy, suitable for both human-like and machine-like agents. Explanations help users understand the error, 

how it can be fixed, and how to prevent it in the future [21]. 

1.3. Current study 

This study aims to investigate the effects of anthropomorphic cues and the presence of an explanation 

following the consequences of an incorrect advice, on the formation, violation and repair of human-robot trust. 

Based on prior findings, we expect that the human-like robot will elicit higher initial trust levels compared to the 

machine-like agent. We also expect that trust breakdowns following a failure will be less severe with the 

human-like agent. Furthermore, we anticipate a steeper trust recovery in the final phase of the trust cycle for the 

human-like agent. Overall, we predict that the human-like agent will maintain higher levels of trust throughout 

the task. Additionally, we expect a more significant recovery of trust after a violation when an explanation is 

provided. We hypothesize an interaction effect between anthropomorphic cues and the explanation, predicting 

that the machine-like agent's explanation might be seen more as an error message, while the explanation from 

the human-like agent will be perceived more as an apology, making it more effective in repairing trust. 

 

A key methodological contribution of this study is the technical effort invested in the development of a 

realistic military scenario in a graphically detailed VR task environment. The VR simulation was designed to 

mirror authentic HRI situations, providing a practical understanding of potential trust relations in a operational 

military context. A 360 degrees VR Treadmill with an implemented motion platform allowed participants to 

walk freely in the virtual environment. Our realistic VR task was designed to enhance ecological validity by 

increasing immersion, thereby triggering more emotional and implicit trust decisions more effectively than 

traditional cognitive trust paradigms. This allows us to investigate the impact of a trust violation in a realistic 

manner, slightly startling the participant, without posing physical risks to participants. 

This paper presents findings from a VR pilot study and of our main VR experiment. The main objective of 

this paper is to share our research idea and views on the methodological advantages and challenges of using VR 

for HRI trust research. 

2. Method 
Before conducting the main VR experiment, we carried out two pilot studies: one online (n = 32) and one in 

VR (n = 41). The goal of the online pilot study was to evaluate the effectiveness of the agent type manipulation, 

while the VR pilot study aimed to assess the practicalities of working with the VR environment and to observe 

how people responded to the environment. The online pilot study will be briefly discussed in the section on 
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agent type manipulation. The VR pilot followed the same methodology as the main experiment, and the 

lessons learned from it are discussed in the discussion section. 

2.1. Participants  

2.1.1. VR pilot 

For the VR pilot, 63 participants came to the VR lab, but only 41 successfully completed the task, 21 of 

whom were female. Of the 22 participants that were excluded, 21 were unable to complete the VR 

experiment due to technical issues (both hardware and software), and one had to stop due to dizziness. All 

participants were students at the University of Twente. Age ranged from 18-25 years old (M = 21.12, SD = 

1.52). The participants for both the pre-test and the experiment were recruited through SONA, a test subjects 

pool at the University of Twente. Both studies were registered under the same project number, which 

prevented people from registering twice and avoided re-sampling the sample person [77]. 

2.1.2. VR experiment 

A total of 68 participants were initially recruited for the main experiment. However, two participants 

withdrew due to dizziness, six were excluded due to technical issues, and another six failed a manipulation 

check designed to ensure attention to the questionnaire (e.g., a questionnaire item instructing participants to 

select "strongly disagree" as their answer). This resulted in a final dataset comprising 54 participants (35 

female, 19 male), all students from the University of Twente, aged 18-26 years (M = 20.31, SD = 1.93). 

Most were from Germany (n = 29) and the Netherlands (n = 15), with others from Romania (n = 3), and 

Bulgaria, China, France, Greece, Spain, Turkey, and the USA (all n = 1).  

2.2. Design 

A 2 (Agent type: human-like vs. machine-like) x 2 (Explanation: present vs. absent) mixed factorial 

design was employed with Agent type as a between-subjects factor, and Explanation as a within-subjects 

factor. The main dependent variable was trust. The variable Time was included as a within-participants 

factor in the analysis to refer to the different measurements (T1, T2, T3). Each participant was randomly 

assigned to one of two agent type conditions (human-like: n = 28, machine-like: n = 26) 

2.3. Task and procedure 

Upon arrival at the laboratory, participants were greeted by the researcher and guided to the room with 

the VR set-up where the study was to be conducted. The researcher provided a brief introduction to the 

study, emphasizing the general purpose and the tasks participants would be asked to perform. Participants 

were presented with an information sheet about the study and a consent form. Upon agreeing to participate, 

participants filled out a pre-study questionnaire (i.e., demographics and personality questionnaires) on a 

desktop computer in the lab using the online survey software Qualtrics, where they also received more 

detailed information about the scenario and task. The image of the drone that accompanied the following text 

depended on the agent type condition and are depicted in Section 2.4.1. 

“In this experiment, you will carry out house searches in two abandoned houses. A few months ago, the 

surrounding area had to be evacuated and all residents had to leave their homes. Luckily the area is declared 

safe now. But before the civilians can return to their homes safely, their houses need to be checked for 

potential danger. For this, a house-to-house search operation of residential homes has been launched.  

You will search two houses. Your role is to do a first exploration. During your searches, your main priority 

is your safety, despite the things you may encounter. You can report everything after you finished your search. 

Your goals are to stay safe and finish your search. 

You will perform these house searches in collaboration with an autonomous drone (see figure below). The 

drone is equipped with cameras and sensors that allow it to monitor its surroundings and to warn you for 

potential danger. The drone will fly ahead of you and it will indicate whether or not it detects danger. 
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The drone gives advice through audio messages that start with a 'beep' sound. Please stand still to listen to the 

audio messages whenever you hear the ‘beep’ sound. Listen carefully to the instructions of the drones.  

The two houses are similarly structured. Both houses have three floors, which can be reached via one 

staircase (see figure below). You will enter the house through the front door. You will enter the second floor using 

the staircase, where you will check the floor and then return to the staircase again to move to the third floor. 

During your mission, your level of trust in the drone will be assessed via a virtual interface. During that time, 

your search is on pause. When you’ve indicated your level of trust using your hand controller, click the Submit 

button and you can continue your search.”  

 
Fig 1. Schematic maps of the general construction of the two buildings that accompanied the instruction text. 

 

Each participant completed two missions, one in building A and one in building B. These virtual buildings 

were designed as abandoned, old Baroque houses. The two houses had a similar layout, featuring three floors 

connected by a central staircase with each floor composed of narrow corridors and dimly lit rooms. However, 

the two buildings differed in their appearance, room layouts, and the specific hazards they contained. For 

instance, one building included a nursery and a kitchen, while the other featured a study room and a bathroom.  

The VR environment in which the experiment was conducted was built in Unity 3D (version 2020.4.3.F1). 

Participants used VR glasses (Oculus Rift), two hand controllers (Oculus Touch) to interact with the 

environment. The Cyberith Virtualizer ELITE 2, a 360 degrees VR Treadmill with an implemented motion 

platform, allowed participants to walk in the virtual environment (Figure 2). The Cyberith Virtualizer ELITE 2 

allows users to move naturally within a virtual environment by simulating walking, running, and other physical 

movements while staying in place. This is achieved through a combination of an omnidirectional treadmill, a 

supportive harness system and advanced motion tracking [14]. Participants wore special shoes with low-friction 

soles, designed to glide smoothly across the base of the Virtualizer, akin to using fingers on a laptop trackpad. 

We often explained the walking technique as "similar to doing Michael Jackson’s moonwalk," where 

participants would lean slightly forward in the harness and slide their feet across the base.  
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Fig 2. The Cyberith Virtualizer ELITE 2. Source: https://www.cyberith.com/virtualizer-elite/ 

 

Participants began with a practice session in Unity’s ‘base scene’, a neutral virtual space (see Figure 3), 

to become familiar with walking on the VR treadmill. They were instructed to walk around. Once they had 

mastered the walking and felt comfortable in the VR environment, which usually took about 5 minutes, they 

were allowed to proceed to the actual task.  

 

 

Fig 3. Screenshot of ‘base scene’ in Unity where participants practiced walking. 

Given that data collection occurred in the spring (pilot) and fall (experiment) of 2021, hygienic safety 

measures were implemented to conform to COVID-19 regulations. The number of people in the room at any 

one time was restricted to ensure social distancing, and windows were kept open to maintain proper 

ventilation. All equipment, including the VR headset, controllers, and desktop computer, was thoroughly 

cleaned between participants. Additionally, hand sanitizer was provided, and participants were encouraged 

to use it before and after the experiment. 

Each session began in a neutral, nearly empty room with only two objects: a museum pedestal displaying 

the drone in the centre of the room and a virtual gateway leading to the first floor of one of the houses. As 

participants approached the drone, an audio file was triggered, and the drone introduced itself (Table 1). 

Directly after the introduction, participants were asked to briefly remove their headsets to complete a short 

questionnaire measuring perceived anthropomorphism as a manipulation check. The questionnaire was 

provided on a clipboard so they could fill it out without stepping out of the treadmill equipment. Once the 

questionnaire was completed, participants were instructed to put on their headset again and to proceed 

through the virtual gateway to begin their first search. 

 

 
Fig 4. Schematic representation of the timeline of a run. Each participant performed two runs in two similar 

buildings with the same timeline. The first advice is correct; the participant is successfully warned about an obstacle on 

the first floor. The second advice is incorrect; the agent does not adequately detect the danger on the second floor. The 

third advice has no known outcome, as the run terminates after measuring trust the third and final time before they have 

searched the floor. 

 

Upon entering a narrow corridor on the first floor of each house, participants encountered the drone once 

again. As they approached it, the drone announced “Starting area scan” before flying out of sight to scan the 

environment ahead. All events in the virtual environment (e.g., the drone flying away, the drone’s messages 

by audio, the activation of the burglar and bomb animations, and the participant being transported from one 
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floor to the next) were automated using invisible triggers within the virtual space. When a participant stepped on 

one of these triggers, the corresponding event was activated.  

At the start of the first floor, the drone correctly warned the participant about an obstacle just ahead. Upon 

turning the corner, participants encountered either a laser booby trap (building A, floor 1) or a safety ribbon set 

up by a colleague (building B, floor 1). The drone provided instructions on how to dismantle the laser trap by 

cutting a blue wire located in a fuse box on the wall or how to cut the safety ribbon using a virtual knife with 

their virtual hand. These obstacles on the first floors of both buildings were designed to enhance the immersion 

in the VR environment. Following this interaction, the participants’ level of trust in the drone was administered 

for the first time (i.e., initial trust (T1)) using a virtual questionnaire interface in the VR environment (Figure 5). 

At these moments, the search would freeze. Once they indicated their level of trust and clicked the Submit 

button using the hand controller, they could continue the search. 

 
Fig 5. A screenshot of the virtual questionnaire interface in VR. Participants could alter the value in the virtual user interface 

with their hand controller and submit their score. In this figure, the lowest value on the 7-point Likert scale is selected.  

 

On the second floor, the drone failed to adequately warn the participant about potential danger ahead. 

Participants encountered either a thief (building A, floor 2) or a smoking IED (Improvised Explosive Device) 

(building B, floor 2) (Figure 6). These events were designed to provoke a trust violation by startling the 

participant without causing harm; the thief ran off and the IED, which was defective, did not fully explode. 

Immediately after these events, halfway through the second floor, the second trust questionnaire was 

administered to assess post-violation trust (T2).  

 

 
Fig 6. Screenshots of the obstacles in the VR environment. From left to right: safety ribbons (floor 1, building B), laser 

trap (floor 1, building A), smoking bomb (floor 2, building B) and a burglar (floor 2, building A). Participants were 

adequality warned about the two obstacles on the first floor. The agent failed to warn about the obstacles on the second 

floor. 

 

On the way back to the staircase on the second floor, depending on the explanation condition, the drone 

either provided an explanation for its failure to warn about the threat or remained silent. The presence of an 

explanation was manipulated across the missions: in one mission, participants received an explanation, while in 

the other, they did not. The order of explanation conditions (present/absent) and the order of the two buildings 

(A/B) were systematically varied. In practice, this meant that there were four options for the first mission: 
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building A with explanation (n = 16), building A without explanation (n = 12), building B with explanation 

(n = 14), and building B without explanation (n = 12). 

On the third floor, the drone provided a third piece of advice, indicating that no danger was detected. To 

measure the effect of the explanation, the third trust questionnaire (final trust, T3) was administered directly 

after this advice, before participants received feedback on its accuracy. The third advice was correct; there 

were no threats on the third floor. Once participants finished searching the third floor, the mission ended. 

After performing both searches and stepping off the treadmill, participants were administered the final 

questionnaires on a desktop computer in the lab. These included a multi-dimensional trust questionnaire, 

along with surveys on how they perceived the drone, the trust violations, and the repair attempts.  

2.4. Independent variables 

2.4.1. Agent type  

The variable Agent Type had two levels (human-like vs. machine-like) and was manipulated between 

participants. Both agent types shared the same embodiment and appearance (see Figure 7). The distinction 

between the agent types was conveyed through the image accompanying the task instructions and the agent's 

self-introduction, delivered via computerized speech before the two missions. The drone’s introduction in 

the human-like condition’s contained subtle anthropomorphic cues, such as giving the drone a name and a 

human-like voice, and having it introduce itself using the first-person singular pronoun and referring to the 

team as ‘we’.  

Messages from the agents were delivered through computerized speech in audio messages, each preceded 

by a ‘beep’ sound.4F

5 The messages were created using the Free Text to Speech Software by Wideo 5F

6 and 

edited with Audacity 2.2.1 software. The audio messages for the human-like agent featured a male, human-

like voice. For the machine-like agent, the pitch of the audio messages was modified to within the range of 

145 and 175 Hz, making the voice neither distinctly male nor female. This adjustment aimed to create a 

unique sound that would avoid associations with a specific person and minimize the attribution of human-

like features, thereby reducing anthropomorphic tendencies. 

 

Table 1. Details on the agent type manipulation 

 Human-like condition Machine-like condition 

Image 

accompanying the 

task instruction text 

  

 
5 “Beep-07” was downloaded from https://www.soundjay.com/beep-sounds-1.html.  

6 Text was converted to speech using https://wideo.co/text-to-speech/. The “[en-US] Jack Bailey-S” voice was used 

at speed dial “1”. 
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Introduction by the 

drone  

(in speech) 

“Hello, I’m Tony, your teammate during our 

mission. I will inform you on whether I detect 

danger ahead. We will go on two house-search 

missions. Each house has three floors. I will 

monitor the environment with my sensors and 

camera’s and warn you when I detect any 

danger.  Please listen to my messages and 

move carefully.” 

“This artificial intelligence algorithm is an 

embodied tool that is designed to detect danger 

and to assist you during your mission. You will 

go on two house-search missions. Each house 

has three floors. The AI-tool will monitor the 

environment with the sensors and camera’s and 

give you a warning when it detects any danger. 

Please listen to the algorithm’s messages.” 

 

2.4.1.1. Online pilot 

The agent type manipulation was tested in an online pilot study. Participants viewed a 30-second video 

of the drone introducing itself (Figure 7). Half of the participants got assigned the human-like agent and the 

other half the machine-like agent. Afterward, all participants completed three subscales from the Godspeed 

scale, assessing perceived anthropomorphism, perceived intelligence, and likeability [5] and three subscales 

from the Autonomous Agent Teammate Likeness scale; perceived agency, task-independent relationship 

building, and perceived altruistic intent (benevolence) [89], as well as a measure of perceived trustworthiness 

[7]. A one-way ANOVA was used to compare perceptions of the drone. 

 

 
Fig 7. Screenshot from the video of the drone introducing itself in the online pilot. The drone hoovered slightly up and 

down while the audio message played. 

 

Thirty-two participants (17 M, 14 F, 1 X; Mage = 22.4, SDage = 7.0) completed the study via Qualtrics, with 

no compensation. Participants were randomly assigned to one of the two agent types (human-like: n = 15, 

machine-like: n = 17) after consenting to participate. The online pilot revealed that the human-like agent was 

perceived as significantly more anthropomorphic, intelligent, likeable, and trustworthy (Appendix A).  

2.4.2. Explanation 

The variable Explanation also had two levels: present or absent. This was manipulated within-subjects across 

the two missions. The explanation was provided between measurements T2 and T3 (Figure 4). In the condition 

without an explanation, the agent remained silent and made no remark about its mistake. The explanations given 

were: “Incorrect advice due to faulty signal from infrared camera” in building A, and “Incorrect advice due to 

faulty object detection by C1-DSO camera” in building B.  

2.5. Dependent variables 

Trust in the agent during the task was measured using a visual slider within the virtual environment (see 

Figure 5) [58]. Participants were asked “How would you rate your current level of trust in the agent?” with the 

slider ranging from 0 (Very low) to 6 (Very high) [85, 34]. Trust was measured at three points during each 

mission (referred to as T1, T2, and T3) (see Figure 4). For the analysis, two new variables were created to 

reflect changes in trust levels. The first variable, "trust decline [T1-T2]," was calculated by subtracting the score 
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of the first measure [T1] from the second [T2] to assess the change following the trust violation. Similarly, 

the second variable, "trust repair [T2-T3]," was derived by subtracting the second measure [T2] from the 

third [T3] to capture the extent of trust recovery.  

Trust after the task was measured after completing the task using a multidimensional measure of trust 

in the drone, based on the ABI-model [51, 52]. The scale measured three dimensions of trust: ability, 

benevolence, and integrity. Participants rated their agreement with 11 items (Appendix B) on a 5-point 

Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). 

 

2.6. Other measures 

Demographics. The first part of the questionnaire involved demographic questions concerning 

participants' age, nationality, gender and education. Participants were also asked if they had ever used VR 

before (yes/no) and how often they play videogames, rated on a scale from 1 (Never) to 6 (Every day) 

Propensity to Trust Automation. Propensity to Trust Automation was measured using the Adapted 

Propensity to Trust Automated Agents (PTAA) scale [30], hereafter referred to as Propensity to Trust Scale. 

Participants rated their agreement with six items on a 5-point Likert scale ranging from 1 (strongly disagree) 

to 5 (strongly agree) (e.g., “Generally, I trust automated agents”). To ensure clarity, a definition of 

“autonomous agent” was provided, as not all participants may be familiar with the term. 

Heartland Forgiveness Scale. The Heartland Forgiveness Scale was used to measure Forgiveness 

(Thompson et al., 2005). The original scale contains 18 items divided into three subscales; Forgiveness of 

Self, Other, and Situations. For this experiment, the Forgiveness of Others was particularly relevant, so only 

the corresponding six items were used (e.g., “When someone disappoints me, I can eventually move past 

it.”). Participants rated these items on a 7-point Likert scale ranging from 1 (almost always false of me) to 7 

(almost always true of me).  

Perceived threat. To assess perceived threat in the environment, a four-item scale was used [25]. This 

scale measured perceived danger with two items (“How dangerous is this setting?” and “How likely is it that 

you could be harmed in this setting?”) and perceived fear with two items (“How much does this setting make 

you feel anxious or fearful?” and “How much does it seem like a frightening or scary place?”). Participants 

rated these four items on 5-point Likert scale ranging from 1 (not at all) to 5 (a great deal). 

Perceptions of the drone: In the final questionnaire, we measured the likeability, perceived intelligence, 

and perceived anthropomorphism of the drone using the ‘Godspeed’ semantic differentials [5]. Participants 

rated their perceptions of their drone on a continuum between bipolar adjectives. For each concept, five 

word-pairs were used, such as ‘artificial’ versus ‘lifelike’ for perceived anthropomorphism, ‘nice’ versus 

‘awful’ for likability, and ‘knowledgeable’ versus ‘ignorant’ for perceived intelligence. Perceived 

anthropomorphism was administered twice, once directly after the introduction by the drone and at the end. 

Additionally, the subscale ‘perceived agentic capability’ (or perceived agency) of the Autonomy Agent 

Teammate Likeness (AAT) scale was administered [89]. Participants were asked to rate their agreement with 

seven statements about the agent on a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly 

agree) (e.g., “The agent has the ability to make some decisions on its own.”). 

Perceptions of the trust violation. Before asking more questions about the mistake the agent made 

during the mission, we checked whether people indeed perceived a mistake. Participants were asked to rate 

their perceptions on the agent’s performance based on the three statements (i.e., “The drone failed to detect 

hazard”, “The drone gave me incorrect recommendations” and “The drone has made mistakes”) using a 5-

point Likert scale from 1 (strongly disagree) to 5 (strongly agree). This measure allowed us to check 

whether participants indeed perceived the events as unannounced [45].  

Perceptions of the explanation. To evaluate how people perceived the explanation of the agent, 

participants were first asked to rate the quality of the trust repair strategy [2] in terms of effectiveness and 

sincerity by rating their agreement with two statements on 5-point Likert scale ranging from 1 (not at all) to 

5 (a great deal) (e.g., “How effective was the message?”). A sixth option was “I don’t know or don’t 

remember”. 

Additionally, to assess how people interpreted the explanation of the agent, participants were asked to 

asked to rate their perceptions on the 1 (strongly disagree) to 7 (strongly agree): 1) The agent accepted full 

responsibility for its mistake; 2) The agent blamed external causes for its mistake.; 3) The agent apologized 

for its mistake. 
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3. Results 

3.1. Descriptives 

All participants acknowledged the intended trust violation, with none selecting "strongly disagree" on the 

three performance-related statements. All participants agreed that "the drone has made mistakes," with 27.8% 

selecting "agree" and 72.2% selecting "strongly agree." 

Eighteen participants reported that the explanation message was "not at all" effective, while only one 

participant indicated that the message was "not at all" sincere. Additionally, six participants responded with "I 

don't know or can't remember" when asked about the sincerity and effectiveness of the message. 

To verify the effectiveness of the agent type manipulation, perceived anthropomorphism scores were 

compared between the human-like and machine-like groups using a one-way ANOVA. Results indicated that 

participants perceived the human-like agent as significantly more anthropomorphic than the machine-like agent, 

both before and after the task (Table 2), confirming the success of the manipulation. 

No other significant differences between agent types were found (Table 2). Unlike the online pilot, the main 

experiment did not reveal any significant differences between the agent types in terms of constructs like 

perceived intelligence or trustworthiness. Furthermore, the explanation and the violations were not perceived 

differently based on the agent type. 

 

Table 2. Results of the one-way analysis of variance (ANOVA), comparing agent type conditions. 

Variable 

Human-like agent 
(n = 28) 

Machine-like agent 
(n = 26) 

 

M SD M SD p 

Perceived anthropomorphism before task 2,96 0,66 2,33 0,58 0,001** 

Perceived anthropomorphism after task 2,69 0,62 2,20 0,70 0,009** 

Trust multi all items 2,88 0,70 2,82 0,69 0,742 

Competence-based trust (subscale) 2,63 0,79 2,42 0,87 0,355 

Benevolence-based trust (subscale) 3,00 0,88 3,19 1,06 0,472 

Integrity-based trust (subscale) 3,10 0,98 2,97 0,75 0,616 

Perceived intelligence  2,92 0,69 2,75 0,70 0,381 

Likeability 3,35 0,74 3,19 0,81 0,459 

Perceived agency 3,50 0,72 3,43 0,72 0,738 

Perceived mistakes by the drone  4,44 0,60 4,46 0,43 0,884 

Sincerity explanation 3,68 1,28 3,23 1,34 0,214 

Effectivity explanation 2,71 1,70 2,62 1,65 0,829 

The drone accepted full responsibility for its mistake 2,68 0,94 2,92 1,32 0,436 

The drone blames external causes for its mistake 2,71 1,30 2,85 1,05 0,685 

The drone apologized for its mistake 2,46 1,04 2,85 1,26 0,227 

 

Next, we examined the relationships between personality traits, trust measures, and perceived threat as 

displayed in the correlation matrix (Table 3). As expected, trust decline [T1-T2] is related to the first trust 

measure, and trust repair [T2-T3] is related to the final trust measure, as they share overlapping values. 

However, propensity to trust was not linked to the initial trust measure, suggesting that participants' general 

tendency to trust automation did not necessarily influence their initial trust in the agent. This could be due to the 

distinction between general trust, reflected in the propensity to trust automation, and specific, task-related trust 

measured at the start of the experiment. 

Unexpectedly, forgiveness was not associated with trust repair [T2-T3], indicating that this personality trait 

may be irrelevant in this context. Additionally, perceived threat was positively correlated with perceived 

mistakes and negatively correlated with the final trust measure. This suggests that participants who found the 

setting more threatening rated the drone's performance more negatively and had lower trust in the agent by the 

end of the task compared to those who perceived the setting as less threatening. 

 

Table 3. Correlation matrix with trust measures and personality traits. 
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  Min Max. M SD 1 2 3 4 5 6 7 

1 first trust measure (T1 from first run) 0 6 4.2 0.9        

2 last trust measure (T3 from last run) 0 6 2.1 1.7 .19       

3 trust repair [T2-T3] 0 6 1.1 1.4 .12 .72**      

4 trust decline [T1-T2] 0 6 -2.8 1.1 -.28* -.11 -.63**     

5 Propensity to trust 1 5 3.6 0.4 .20 .27* .27* -.03    

6 Forgiveness 1 7 5.1 0.9 .02 .05 .09 -.14 .23   

7 Perceived mistake (negative drone performance) 1 5 4.5 0.5 -.09 -.32* -.19 -.06 -.34* -.07  

8 Perceived threat (fear + danger) 1 5 3.4 0.8 -.21 -.46** -.21 -.11 -.27* -.19 .39** 

 *. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

3.2. Trust 

We performed an ANOVA with the between-subject factor Agent type (human-like or machine-like) and 

the within-subject factors Explanation (present or absent) and Time (prior to violation [T1] vs. after violation 

[T2] vs. after repair [T3]). The dependent variable was Trust (Figure 8). 

For the main effect of Time, Mauchly’s test of sphericity indicated a violation of the sphericity 

assumption, 𝜒2(2) = 6,41,  p = .041. Since sphericity is violated (ε = 0.942), Huynh-Feldt corrected results 

are reported. A significant main effect for Time on Trust was obtained (F (1.88, 97.96) = 153.13, p < .001). 

LSD post hoc comparisons showed significantly decreased trust from T1 (M = 4.0) to T2 (M = 1.2) (∆M = -

2.8, p < .001), which reflects the intended trust-violating effect of the encounter with the unexpected 

hazards. Post-hoc further showed a significant rise in trust between T2 and T3 (M = 2.3) (∆M = 1.1, p < 

.001), which reflects a general recovery of trust in the final phase of the searches. 

All other effects were statistically non-significant. The analysis revealed that the main effect of 

Explanation on Trust was not significant, F (1, 52) = 1.57, p = 0.216, nor was the main effect of Agent type 

on Trust, F (1, 52) = 0.83, p = 0.367. The two-way interaction between Time and Explanation on Trust was 

non-significant (F (2, 104) = 0.26, p = 0.772), with sphericity assumed and non-corrected results reported 

(𝜒2(2) = 3.21,  p = .201). The two-way interaction-effect between Time and Agent type on Trust was also 

non-significant (F (2, 104) = 0.58, p = 0.563). Finally, the three-way interaction effect of Time, Explanation 

and Agent type on Trust was non-significant as well (F (2, 104) = 0.86, p = 0.425). 

 

 
Fig 8. The x-axis represents Time, while the y-axis represents Trust. Participants were asked “How would you rate 

your current level of trust in the agent?” with the slider ranging from 0 (Very low) to 6 (Very high). Different types of 

lines indicate whether an explanation was provided (solid grey = absent, dashed black = present). The left side of the 

grid displays data from participants who interacted with the Human-like agent (N = 28), while the right side shows data 

from those who interacted with the Machine-like agent (N = 26). Error bars denote standard deviations. 
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4. Discussion 

4.1. Key findings 

Our results show that the presence of anthropomorphic cues did not affect trust at any stage of the trust life 

cycle. Through all phases of the task, the two agent types were trusted similarly. Although we expected the 

human-like agent to be trusted more initially and to get penalized less for its mistake, we did not observe this 

dampening effect. We also expected a greater recovery in trust for the human-like agent compared to the 

machine-like agent in the final phase of the task, especially in combination with the explanation. However, 

neither agent type, nor the explanation, nor the combination resulted in a significant rise of trust.  

Our results also indicate that, although the agent type manipulation was subtle, it was still impactful enough 

for the human-like agent to be perceived as significantly more human-like than the machine-like agent. We 

deliberately kept our manipulation subtle, avoiding overly anthropomorphic features in physical appearance to 

maintain realism within a military context and enable more systematic comparisons. Similarly, the nature of the 

explanations was somewhat technical. Although we considered tailoring the content of the explanations to align 

with the agent-type condition, we decided to keep them identical to ensure comparability and because these 

specific explanations were effective in our prior research [39]. This approach aims to ensure the ecological 

validity of our study and to more accurately reflect the scenarios participants might encounter in real-world 

military settings. Our finding that the human-like agent was still perceived as significantly more human-like 

than the machine-like agent aligns with previous research showing how relatively simple anthropomorphic cues 

can significantly alter our perceptions of agents [60, 56, 57]. This effect was further demonstrated in our online 

pilot study, where only the audio of a 30-second video and an image accompanying the introductory text 

differed, was sufficient to produce significant differences in how the drone was perceived in terms of 

anthropomorphism, intelligence, likeability, teammate-likeness, and perceived trustworthiness. However, in 

contrast to the online pilot, the main experiment did not reveal any significant differences between the agent 

types regarding other constructs, such as perceived intelligence or trustworthiness.  

The lack of significant effects could also be explained by the overwhelming nature of the VR task 

environment. Koskinen et al. (2019) conclude that when people have to rely on automation in stressful contexts, 

individual differences in terms of coping mechanisms to deal with stressful circumstances, perceptions and 

attitudes regarding trustworthiness and a participant’s readiness for risk tasking might be more important to trust 

development than solely the technical characteristics or design features of artificial agents [36]. Naturally, trust 

is influenced heavily by the correctness of the algorithmic advice [72], the risk associated with the situation [44] 

and the severity of the violation and its consequences [55]. In our case, experiencing the consequences of an 

incorrect advice in VR seems to outweigh the source of the advice (human-like vs. machine-like) or the 

presence of an explanation in their impact on the development of trust.  

This study contributes to an ongoing debate about the implications and the appropriateness of humanizing 

AI-interaction and the extent to which anthropomorphism should be implemented [31, 75, 76]. In practice, the 

appropriateness of using human-like cues depends heavily on the context. Rather than advocating that AI agents 

should be one way or another, we argue for considering the ethical implications and context-specific boundaries 

of each application, rather than treating AI as a homogenous concept [29]. In social robotics, these cues might 

be beneficial, while in professional settings where safety and calibrated trust are crucial, they may be less 

appropriate. The use of anthropomorphic features in design should be guided by a clear understanding of the 

potential effects on user interactions and should be approached with careful and strategic consideration, as these 

features can have serious consequences [31, 9, 15, 34]. By focusing on context, we ensure more responsible and 

effective implementation that meets user needs and fosters appropriate trust.  

4.2. Methodological reflection 

VR presents both unique opportunities and significant challenges when researching trust. While VR allows 

for the creation of immersive, controlled environments that can simulate detailed, complex and realistic 

scenarios, it also introduces practical and methodological hurdles. Through our research, we encountered several 

challenges that impacted our ability to assess trust dynamics. In this section, we share the lessons learned from 

our experiences, including the insights from the extensive VR pilot. We discuss the challenges we encountered 
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in accurately and consistently measuring the effects of our intended manipulations, as well as the 

opportunities we see in using VR as a research tool for studying trust in HRI. 

4.2.1. Challenges 

Navigating VR locomotion with the Virtualizer 

While the Cyberith Virtualizer ELITE 2 is an excellent solution for enabling users to walk endlessly in a 

virtual space without encountering physical obstacles, thereby enhancing immersion and possibilities, it also 

introduced some challenges. The Cyberith Virtualizer ELITE 2 treadmill introduced considerable variability 

in how participants navigated the virtual space, largely due to differences in walking techniques. It proved 

challenging for many participants to walk naturally on the treadmill. While participants were securely 

fastened into a harness that provided support and stability, achieving smooth and consistent motion was 

difficult. Participants wore special shoes with low-friction soles, designed to glide smoothly across the base 

of the Virtualizer, akin to using fingers on a laptop trackpad. We often explained the technique as "similar to 

doing Michael Jackson’s moonwalk," where participants would lean slightly forward and slide their feet 

across the base. The participant who moved most fluently through the environment used a unique approach, 

sliding one foot from the front to the back of the base while keeping the other foot stationary, much like 

pushing a scooter or scrolling on a trackpad.  

This variability in movement led to significant inconsistencies in how participants navigated the virtual 

environment. Some participants moved erratically due to their effective walking style, with some flying 

across the building's small corridors, reaching the end of a 6-meter hallway in a single step. This not only 

increased the risk of cyber sickness but also significantly impacted how quickly and attentively participants 

moved through the environment. The timing of when triggers were activated, as well as the time, calmness, 

and attention participants had to process their surroundings and the experimental manipulations, were all 

affected by these inconsistencies. We advise future researchers making use of this technology to give 

participants more time to practice before beginning the task. 

Managing cyber sickness 

Participants interacted with the virtual environment using the Virtualizer ELITE 2 360 treadmill, Oculus 

Rift VR glasses, and Oculus Touch hand controllers. For smooth and effective interaction, it was crucial that 

all hardware and software were consistently aligned and calibrated. However, the Virtualizer ELITE 2 did 

not always integrate seamlessly with the VR headset, which is crucial for ensuring that the user’s physical 

movements were accurately mirrored in the virtual world. Even slight misalignments with the treadmill 

caused participants to veer slightly off course, leading them to walk into walls and objects, breaking the 

immersion and sometimes causing cyber sickness. Cyber sickness, which can result from a suboptimal VR 

experience, includes symptoms like nausea, disorientation, discomfort, eye strain, and drowsiness.  

Many participants had to quit the VR experiment due to cyber sickness. Because participants often felt 

obliged to continue, we had to be vigilant in observing how they looked and behaved. We consistently asked 

if they were feeling okay and emphasized that it was perfectly fine to stop if they were experiencing 

discomfort. We noticed that participants, who were always students, felt a sense of a responsibility to 

perform well and provide good data. It helped to explain that continuing the experiment while feeling unwell 

could compromise data quality, and we therefore preferred that they cease participation if they were not 

feeling well. This approach often led participants to acknowledge that they were not feeling well, and they 

chose to stop the experiment. 

Misinterpreted trust-violating events  

Thanks to the VR pilot, we gained valuable insights into how participants perceived the environment, 

leading to significant changes in the virtual scenes. Importantly, we learned that the trust-violating events 

(i.e., a thief and a smoking IED) did not always succeed in provoking a trust violation. For instance, not all 

participants recognized the IED (Improvised Explosive Device) as a bomb; some mistook it for a box and 

attempted to pick it up. As they misunderstood the threat posed by the IED, they continued to search the 

room or inspect the object more closely, inadvertently triggering the bomb animation (smoking and beeping) 

multiple times. This repeated activation diminished the immersion and reduced the intended startling effect. 

Based on these observations, we redesigned the virtual IED to more closely resemble a stereotypical 

explosive device commonly depicted in movies, featuring a prominent ticking clock. This adjustment was 
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made to ensure participants would more readily recognize it as a potential threat, avoiding confusion with non-

threatening objects.  

Similarly, the thief animation, which caused the thief to run out through a door leading outside, often 

triggered too early as participants were still exploring the kitchen area, where there was much to observe. As a 

result, many participants were still processing the previous scene and did not have a clear view of the thief or 

enough time to recognize it as a threat. Some participants attempted to chase the thief as it ran off. One 

participant, realizing it was a threat, even tried to punch the thief, resulting in an in-air punch of the virtual 

character—demonstrating the level of immersion. As participants did not always understand what was 

happening, they might not always have realized that the drone’s advice (“no danger detected”) was incorrect, 

thus failing to evoke a trust violation. 

To address these issues, we revised the task instructions to emphasize that participants' primary goal was to 

ensure their own safety during the searches, regardless of what they encountered. Any findings could be 

reported after the search was completed, with the main objectives being to stay safe and finish the task. To 

determine whether participants perceived the robot’s error as an error, it is crucial to include a manipulation 

check question in the final questionnaire, as we did. 

Unnoticed explanations 

We noticed that the robot’s explanation was not always clearly heard and understood. The explanation 

trigger was placed immediately after the trust-violating event, but participants were often too preoccupied with 

processing the event (such as a thief running off or an IED starting to smoke) to hear the drone’s message 

clearly. During debriefings, participants frequently mentioned that the environment was overwhelming and that 

they were focused on the task, causing them to miss specific details.  

Furthermore, because the drone was the audio source in VR, the volume decreased as participants moved 

farther away. This created a problem when participants lagged behind the drone, making it difficult to hear its 

messages. In the main experiment, we addressed this by changing the audio source from the drone to the 

participant’s headphones, ensuring a constant volume regardless of their position relative to the drone. However, 

even with this adjustment, many participants were still focused on processing the previous scene where the trust 

violation occurred, leading to them not clearly remembering whether or what the drone had said. It might be 

beneficial to give participants more time to acclimate to the VR environment before beginning the task. We also 

recommend researchers using VR to consider the potentially overwhelming nature of the environment when 

designing manipulations. To achieve the desired effects, we suggest making the manipulations bolder and more 

apparent than you would make them in a less stimulating setup or environment. 

4.2.2. Opportunities 

Inducing a sense of threat without posing physical risk to participants  

Trust, by definition, is only relevant in situations characterized by risk, uncertainty and vulnerability [44]. 

Studying trust repair requires violating trust and allowing people to experience the risk they take and the 

vulnerability they accept. It can be challenging to create experimental scenarios that induce feelings of 

vulnerability and risk without compromising participants' physical and psychological safety [3].  

The use of VR is a promising solution to this challenge. VR offers emotional engagement of participants 

[65] and ecological validity, while remaining experimental control, reproducibility [62]. More than 2D screen 

videos or game-like virtual environments, VR has the ability to create a strong sense of presence and to increase 

sympathetic activation significantly [11]. Based on our observations of people’s reactions during the data 

collection, we suspect that the current VR setting has intensified feelings of trust, risk and betrayal after a trust 

violation in comparison to our previous study [38]. Participants often spoke aloud as though they were directly 

communicating with the drone, suggesting a high level of immersion in the virtual environment. 

We aimed to induce a feeling of threat and risk as this would allow us to study how people naturally respond 

to unexpected events in a risky situation. Throughout the experiment, this was often visible as a number of 

participants startled, flinched or cursed when the burglar or the bomb were encountered. The houses in our VR 

task were to a certain extent designed to evoke a feeling of threat. Several times, participants would comment on 

the design, saying it is “creepy” or “like in a horror movie”, indicating that the environment was indeed 

threatening. The scene is realistic yet highly controllable and allows us to directly observe behaviour.  

We recognize that introducing startling elements in research raises ethical considerations, particularly in 

balancing the scientific value of the study against the potential for participant discomfort. The startling 
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animations were included to study specific behaviors under stress. By informing participants beforehand that 

there was a chance of running into hazards, providing them with the right to withdraw at any point without 

penalty, and debriefing them afterward, we aimed to minimize any potential harm while achieving the 

study's objectives. 

Most prior trust repair studies used relatively easy, low-risk online tasks [81, 22, 34]. Some research has 

shown that in less threatening contexts, people may even prefer erroneous robots over flawless ones [55, 22]. 

However, studies involving erroneous robots in more safety-critical situations, such as emergency 

evacuations, indicate that agent failure can be detrimental to people’s attitudes towards the robot [69, 68].  

This highlights that trust violations in high-risk and high-threat contexts have a greater impact on trust than 

those in low-risk environments. These findings suggest that perceived risk is a critical factor to consider 

when researching trust development. The perception of potential increases dependence on the robot, thereby 

amplifying the importance of trust. The use of VR provides a means to effectively induce a sense of threat in 

a controlled and safe manner. 

Potential for collecting behavioural measures  

Placing a greater focus on behavioural measures potentially related to trust could significantly contribute 

to the field of HRI by providing more quantitative metrics to assess trust. The VR environments we 

developed are ideally suited for such purposes [37]. For instance, walking speed can be measured, which 

may indicate hesitation. Additionally, eye movements tracked through the VR headset in both scenarios 

could reveal excessive monitoring. Both hesitation and excessive monitoring might point to lowered trust. 

Incorporating these objective measures into HRI trust research would be worthwhile, as it can increase the 

accuracy and reliability of trust measures. Due to technical constraints, we were not able to capture walking 

speed and eye-movement. However, VR offers great potential for combining self-report, behavioural, and in 

time perhaps physiological measures as possible proxies for trust. 

4.3. Conclusion 

In this study, we set out to explore the dynamics of trust in HRI, focusing on how trust forms, breaks down 

and recovers, using an novel, high-fidelity VR task environment that simulated a realistic military HRI 

scenario. Results indicated that, although the anthropomorphic cues used in the agent type manipulation were 

subtle, participants perceived the human-like robot as significantly more human-like than the machine-like 

robot. However, neither the anthropomorphic cues nor the presence of an explanation had a significant effect 

on trust development. Despite the challenges we encountered using VR as a research tool, we aim to provide 

insights for fellow researchers examining HRI trust dynamics and hope to initiate new investigations by 

sharing our research design, paradigm and the methodological challenges. 
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7. Appendix 

7.1. Appendix A 

Table A1. Results of the one-way analysis of variance (ANOVA) comparing agent types in the online pilot study. 

Variable 

Human-like  
(n = 15) 

Machine-like   
(n = 17) 

 

M SD M SD p 

Perceived anthropomorphism 3.27 0.75 1.86 0.64 .045* 

Perceived intelligence 3.79 0.60 2.82 0.82 .001** 

Perceived likeability 3.44 0.91 2.80 0.63 .026* 

Perceived Agentic Capabilities (agency) 3.40 0.89 3.19 0.71 .471 

Task-independent Relationship Building 3.91 0.42 3.32 0.54 .016* 

Perceived Benevolent Intent (altruism) 3.43 0.74 2.69 1.08 .035* 

Perceived trustworthiness 3.91 0.42 3.32 0.54 .002** 

 

7.2. Appendix B 

Table B1. Items of the trust scale administered after the task. 

Subscale Item 

Ability The drone is a real expert in detecting danger. 

Ability The drone gives me good advice. 

Ability The drone knows what I need in order to decide properly. 

Ability The drone has a lot of knowledge about how to navigate in this environment. 

Benevolence The drone puts my interests first. 

Benevolence The drone takes my objective into account. 

Benevolence The drone understand my needs. 

Integrity The drone gives me pure advice. 

Integrity The drone is honest. 

Integrity The drone has integrity. 
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