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Abstract. Behaviour support technology assists people in organising
their daily activities and changing their behaviour. A fundamental no-
tion underlying such supportive technology is that of compliance with
behavioural norms: do people indeed perform the desired behaviour? Ex-
isting technology employs a rigid implementation of compliance: a norm
is either satisfied or not. In practice however, behaviour change norms
are less strict: E.g., is a new norm to do sports at least three times a
week complied with if it is occasionally only done twice a week? To ad-
dress this, in this paper we formally specify probabilistic norms through a
variant of feature diagrams, enabling a hierarchical decomposition of the
desired behaviour and its execution frequencies. Further, we define a new
notion of probabilistic norm compliance using a formal hypothesis testing
framework. We show that probabilistic norm compliance can be used in
a real-world setting by implementing and evaluating our semantics with
respect to an existing daily behaviour dataset.

1 Introduction

Behaviour support technology [7] is aimed at assisting people in organising their
daily activities and changing their behaviour, for example to adopt a healthier
lifestyle. While numerous behaviour support frameworks have been developed,
they typically focus on a specific domain or type of behaviour, such as monitoring
our diet, emergency monitoring, or forgetting to perform certain tasks [12]. In
our work we aim to develop a generic framework for representing and reasoning
about people’s (desired) daily behaviour in order to allow an electronic partner
(epartner for short) to provide personalised behaviour support [20]. A generic
framework facilitates application across domains, and development of expressive
representation and reasoning techniques in a principled way.
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A central task an epartner needs to be able to do in order to provide person-
alised behaviour support, is determine whether the user is complying with the
desired target behaviour. The challenge we address in this paper is to formally
define the fundamental components that are (at least) required for an epartner
to perform this task, namely:

1. a description of the desired user behaviour, which can be self-reported, pre-
scribed by a caregiver, or otherwise recorded;

2. a record of the actual daily routine or behaviour of the user;
3. a measure of compliance of what is actually being done to what is expected

/ desired to be done.

Inspired by research on normative multiagent systems [2], we refer to expres-
sions of desired user behaviour as (behaviour) norms that may or may not be
complied with by the user of the epartner.

Providing a comprehensive formal framework for representation of daily user
behaviour for the purpose of behaviour support is a non-trivial task due to the
potential complexity of this behaviour and the many facets that may be consid-
ered, such as temporal aspects [6] and user values [17]. In this paper we focus
on two key characteristics. First, representing the potentially complex structure
of daily behaviour requires a way to decompose behaviour into its constituting
parts [19]. Not all of these parts need to always be executed, some are optional
while others are mandatory, and sometimes a choice needs to be made. Second,
the nature of (desired) daily behaviour is often habitual [5,9], i.e., it concerns
the frequency of a user’s repeated behaviour over time. For example, a user may
want to change his habit of having a late breakfast such that at least 80% of his
breakfasts are early breakfasts, and needs to do work in the evening on four out
of five workdays, i.e., 80% of the workdays.

Defining when a user’s behaviour is compliant with such a specification of
desired behaviour requires first of all a definition of compliance with respect to
the basic specified behaviour structure. Second, in order to define compliance
with respect to the frequency of performed behaviour, we propose a statistical
approach (probabilistic norm compliance). This is because there will typically be
some variation in user behaviour over time, which might lead to some deviations
from the precise desired behaviour frequencies. The question we need to answer
is when these deviations are still “ok”, i.e., when we can consider the user to have
adopted the specified habit. For example, if we consider the past 20 workdays
out of which the user has worked 17 evenings. Is the user compliant with the
behaviour norm, i.e, can we say the user has adopted the specified habit? What
if we consider the past 6 days out of which the user has worked 5 evenings?

To address these challenges, this paper provides the following contributions:

1. We propose to use the well-studied formalism of Feature Diagrams [11] for
daily behaviour representation. Feature Diagrams have been used widely
in software engineering for modelling Software Product Lines [15]. In that
context Feature Diagrams represent the different parts of a software prod-
uct, and how they fit together to compose the overarching concept or final



product. We observe that this formalism also provides a natural way of rep-
resenting the hierarchical structure of daily behaviour. (Sections 2 and 3)

2. We introduce a novel extension of Feature Diagrams called probabilistic Fea-
ture Diagrams in order to represent behaviour frequencies. We provide a
formal semantics by means of hypothesis testing [10]. Hypothesis testing is
a type of statistical model checking, normally used to verify performance
characteristics of software. (Section 4)

3. We perform an experimental evaluation of our framework by implementing
the Feature Diagram semantics with respect to an existing daily behaviour
dataset [14], and show that our notion of probabilistic norm compliance can
be used in this real-world setting. (Section 5)

2 Behaviour Hierarchies

Psychological research [19] has shown that people think about their behaviour
in a hierarchical fashion, from abstract to more concrete. We have proposed to
formalise hierarchical behaviour structures with the aim of allowing a behaviour
support agent to represent the (actual and desired) daily behaviour of its user
in a way that matches how the user thinks about their behaviour [9,8,6,18].

Behaviour hierarchies can be represented as trees, with an abstract behaviour
as the root, and its nodes and leaves decomposing this behaviour into its more
concrete parts and sub-behaviours. The leaves will consist of behaviours that
do not need to be decomposed further. This type of decomposition is compa-
rable to Goal Plan Trees (GPTs) [16]. The main difference is in the semantics:
our structures are used to describe desired behaviour, yielding a logic-based se-
mantics to assess whether a structure is satisfied with respect to a user’s actual
behaviour. In contrast, GPTs are used to generate (software) agent behaviour.
Furthermore, our hierarchies should include relative frequencies to indicate how
often a sub-behaviour should be performed with respect to its parent behaviour.

Example 1. Suppose that a user, let us call him John, decides that they want to
change their daily routine at home: John has realized that he very often has a late
breakfast and thus starts his workday rather late as well. As part of improving
his daily routine for a workday, he commits to having an early breakfast most
of the time (at least 80%) – on the days that he has time for breakfast at home.
To help him achieve this, John also commits to do some work at home in the
evenings on most days (4 days per week, i.e., 80%), so he can have a breakfast
at home as well as get the work done he committed to for his job. John also
needs to take some prescribed medication several times per week (3-4 days, i.e.,
60-80%). This desired behaviour can be represented as follows:



workday

morning

breakfast

early breakfast late breakfast

evening

work take medicine

> 80% ≤ 20%

80% 60%− 80%

Fig. 1. Tree representation of Example 1

Note that this tree representation is lacking some information about the be-
haviour structure: namely, the sub-activities early breakfast and
late breakfast form two alternatives of the activity breakfast (i.e., they can-
not both occur on the same workday), while the sub-activities work and take

medicine form two options of activities that may be done during the evening.
Since for the evening activities, the rates of 80% and 60-80%, respectively, do not
sum to (less than) 100%, it is easy to spot that there may be a different character-
isation to these sub-activities as compared to the breakfast activities. However,
should John plan to take medicine in the evening only once a week, changing the
60-80% to 20%, we need to express explicitly how these sub-behaviours should
be interpreted. Similarly, we need to indicate whether an activity is supposed to
be carried out as an optional or mandatory activity. For instance, John might
occasionally skip eating breakfast at home in the morning, and take it to work,
making this an optional activity.

In order to express such structural properties, one needs a more expressive
syntactical framework, for which we propose to use Feature Diagrams.

3 Representing Daily Behaviour with Feature Diagrams

In previous work we have already proposed to formalise hierarchical behaviour
structures for behaviour support agents [9,8,6,18]. Most of these works however
do not provide formal semantics that expresses when such a structure is satis-
fied, or they do so for a structure with limited expressivity. Through our insight
that the well-studied Feature Diagram formalism is suitable for representing be-
haviour hierarchies, in this paper we are able to propose both an expressive
representation framework (Section 3.1) as well as an accompanying formal se-
mantics (Section 3.2). In this section we provide a definition of Feature Diagrams
that represents the behaviour structure. In the next section we add frequencies.

3.1 Syntax

The formal definition of a Feature Diagram we use here is based on Definition 3.2
of [11] and definitions for node types provided in [13]. In particular, the Feature
Diagrams we present here are trees; nodes in our Feature Diagram represent



(parts of) behaviours. Each node has a type associated with them from the set
NT = {or, xor, option}. The optional node type has edges that can either
be of mandatory or optional type. That is, the decomposition of behaviour
into parts is such that the sub-behaviours are either all independent parts of
the behaviour (mandatory or optional), or they are options, possibly mutually
exclusive ones (xor). The xor node is also referred to as an alternative node
in the literature.

In Example 1, early breakfast is mutually exclusive with late breakfast,
but taking them to be optional sub-nodes of the node breakfast would still
allow both of them to be present. In this situation, we say that breakfast is of
node type xor, meaning that precisely one of the sub-nodes are to be realised.
Similarly, the node type or allows for at least one of the sub-nodes to be realised.
For instance, taking evening in the example above to be of type or would mean
that on any given evening of the workweek, John either takes medicine, or does
some work, or both, but there is never (supposed to be) an evening on which he
does not do either of these. Taking workday as an option node with mandatory

links specifies that any workday requires something to be done in the morning
and in the evening.

We formally define Feature Diagrams as follows, using a standard definition
of the notion of a tree:

Definition 1 (Tree). Let N be a set of behaviours and E : N × N a relation
on N . We say that 〈N,E〉 is a tree, if E is antisymmetric, irreflexive and such
that for any a, b, c ∈ N , if (a, b) ∈ E and (c, b) ∈ E, then a = c. We use r to
denote the root of a tree, i.e., the node m ∈ N such that there is no n ∈ N with
(n,m) ∈ E. There can be precisely one such root node in any tree.

Definition 2 (Feature Diagram, FD). A Feature Diagram D is a structure
D = (N,E, λ, µ) such that

– N is the set of nodes;
– E ⊆ N × N is the set of decomposition edges and N∗ ⊆ N is the set of

nodes that are not leaves, i.e. ∀n ∈ N∗ ∃m ∈ N (n,m) ∈ E;
– 〈N,E〉 is a tree;
– λ : N∗ → NT is a labelling of the nodes, where NT = {or, xor, option} is

the set of node types;
– Let Nopt ⊆ N be the set of nodes with label option, i.e., {n | n ∈ N,λ(n) =

option}, and Eopt be the set of edges emerging from these nodes, i.e.,
{(n,m) | (n,m) ∈ E,n ∈ Nopt}. Then µ : Eopt → {mandatory, optional}
is a labelling of these edges.

For a given node n, we will write n ∈ D as shorthand for n ∈ N .

Usually, the formal Feature Diagrams are provided in graphical form; the
relationships or, xor / alternative, optional, and mandatory are expressed
using the following graphical representation:



A

B C

or

A

B C

xor / alternative

A

B

optional

A

B

mandatory

Fig. 2. Common representation of Feature Diagrams

Example 2. On th basis of the tree given in example 1, we define the following
Feature Diagram for the workday of John:

early breakfast late breakfast

breakfast

morning

workday

evening

work take medicine

Fig. 3. Feature Diagram representing the workday from Example 1

Note that the definition of Feature Diagrams as provided by Definition 2 does
not allow for the representation of frequencies of example 1, and thus we omit
them here.

3.2 Semantics

The behavioural norms represented by Feature Diagrams are the ideal that the
actual behaviour of the user will be compared to. We will therefore need to
introduce what we mean by an observation or model of behavioural norms rep-
resented by a Feature Diagram. We can limit the observation to those behaviours
that have a corresponding node in the Feature Diagram: behaviours that do not
get mentioned in the diagram can be considered irrelevant for the question of
whether a norm is complied with – any behaviour that is relevant for norm
compliance should be recorded in the Feature Diagram right from the start.

Definition 3. [Model / valid model] Let D = (N,E, λ, µ) be a Feature Diagram.
A model of D is a subset M ⊆ N of the nodes of D.

A valid model is a subset M ⊆ N such that

– the root r ∈M ;
– if n ∈ M and λ(n) = or, then for at least one m ∈ N with (n,m) ∈ E,
m ∈M ;



– if n ∈ M and λ(n) = xor, then for precisely one m ∈ N with (n,m) ∈ E,
m ∈M ;

– if n ∈ M and λ(n) = option, then for all m ∈ N with (n,m) ∈ E and
µ((n,m)) = mandatory, m ∈M ;

– if m ∈M with m 6= r, then also n ∈M for the unique n with (n,m) ∈ E.

We will write M |= D to indicate that M is a valid model of D.

We have omitted mentioning the optional edge type, since optional nodes
need not be realized. Furthermore, the last point closes the model under prede-
cessors in the tree: it guarantees that, e.g., if late breakfast as a subnode of
breakfast, which in turn is a subnode of morning is present in a given model,
then breakfast and morning are both guaranteed to be present.

A model of a Feature Diagram expresses the satisfaction of behaviour norms
for a single instance of the behaviour represented by the tree. To formalise re-
alisation of daily routines, i.e., satisfaction of Feature Diagrams over time, we
introduce traces of models: each point in the trace will represent a single instance
of user behaviour. E.g., if the behavioural norm the user wants assistance with
is having early breakfasts on workdays, then a trace will consist of a sequence
of valid models of the Feature Diagram representing this routine, one for each
workday of the week. Note that the root of the Feature Diagram will be present
in each sequent of the trace. Thus if the Feature Diagram represents a routine
that is not done every day, we can either introduce a new root representing the
day, which then occurs in every sequent of the trace – sometimes without any
other element – or the sequents of the trace represent only those days on which
the routine is – at least partially – executed in accordance with the specified
Feature Diagram.

Definition 4 (Trace). Let D be a Feature Diagram and let σi for i ∈ N be
models of D. A trace on D is a sequence ~σ = 〈σ0, σ1, . . . , σn, . . . 〉. A trace ~σ on
D satisfies D if for each i ∈ N, σi |= D.

There is an implied temporal ordering in this notion of trace: viewing the
trace as a recording of observed behaviour, one can see the first sequent as the
earliest observation, etc. Although we do not explicitly associate each index with
a specific time, in most cases of monitoring daily behaviour it will be convenient
to assume that each index stands for a specific day. Furthermore, we take traces
in the formal definition to be countably infinite. In all practicality, we will then
only be dealing with finite initial parts of traces. However, since we do not want
to specify a maximal length, nor limit the number of times a specific behaviour
can be recorded, we opt for N as the index set.

4 Probabilistic Feature Diagrams

The next step is to add frequencies into the Feature Diagrams. We do this
by extending Definition 2 by a corresponding new component (Section 4.1).



Then we define the semantics of these probabilistic Feature Diagrams through
hypothesis testing (Section 4.2) by providing our new notion of probabilistic
norm compliance (Section 4.3).

4.1 Syntax

Frequencies apply to edges of a Feature Diagram individually. An edge (n,m)
with frequency p represents the norm to execute the behaviour represented by
m with frequency p, relative to behaviour n. Frequencies may not only be seen
as a point p ∈ [0, 1], but could also refer to an interval in [0, 1], e.g. (1/2, 1] or
[1/3, 2/3], representing that the corresponding behaviour should be performed
within this range. Edges are not required to have a frequency attached.

Definition 5 (probabilistic Feature Diagram, pFD). Let D = (N,E, λ, µ)
be a Feature Diagram. Let freq : E → I([0, 1]) be a partial function assigning
(relative) frequency intervals to edges in E.

A probabilistic Feature Diagram D = 〈D, freq〉 then is a Feature Diagram
with the additional frequencies on the edges given by the function freq.

In case that q is either a singleton [p, p], or of the form [0, p), (p, 1] (or their
corresponding closed variants), we will simply denote these as p, < p, > p (resp.,
≤ p, ≥ p).

We impose a number of restrictions on frequencies, to avoid introducing con-
tradictory information into the Feature Diagram. In particular, for xor nodes,
we need to impose the restriction that the lower bounds of frequency intervals
of its children add up to at most 1, and the upper bounds add up to 1. We
can see frequencies as a normalised measure on the subnodes, relative to that
node. The children of an xor node can be seen as a disjoint partition of the
node, and thus frequencies summing up to some value larger than 1 would con-
tradict this partition of the node. Since the frequency of the subnodes of some
xor node are recording relative occurrence of the subnodes, having this restric-
tion on the upper bounds guarantees that precisely one subnode will be done
whenever the parent node is done. Furthermore, we do not allow a frequency
[0, 0] to be specified for an edge. This would indicate that the corresponding
sub-behaviour should never be executed, which could contradict what are con-
sidered valid models according to Definition 3: a valid model might include the
behaviour m of an edge (n,m), while adding a frequency [0, 0] to this edge would
express the contradictory information that this model is actually invalid. Third,
we require that mandatory edges have frequency [1, 1], as any other frequency
would be contradicting the mandatory nature of the edge. We call probilistic
Feature Diagrams that adhere to these restrictions well-formed.

Definition 6 (Well-formed probabilistic Feature Diagram, wpFD). Let
D = 〈D, freq〉 with D = (N,E, λ, µ) be a probabilistic Feature Diagram. We say
that D is a well-formed probabilistic Feature Diagram iff it satisfies the following
constraints:



– if λ(n) = xor for some n ∈ D, then
∑

(n,m)∈E inf freq((n,m)) ≤ 1 and∑
(n,m)∈E sup freq((n,m)) = 1;3

– There is no e ∈ E such that freq(e) = [0, 0].
– If e ∈ E and µ(e) = mandatory, then freq(e) = [1, 1].

Example 3. Revisiting the Feature Diagram of Example 2, we are now able to
work the frequencies back in, as given in Figure 1, replacing the percentages
given above by the corresponding frequency intervals:

early breakfast

(0.8, 1] [0, 0.2]

late breakfast

breakfast

morning

workday

evening

[0.8, 0.8] [0.6, 0.8]

work take medicine

Fig. 4. Well-formed probabilistic Feature Diagram for the workday example

4.2 Hypothesis Testing for probabilistic Feature Diagrams

Defining a semantics for the frequencies of a (well-formed) probabilistic Feature
Diagram D = 〈D, freq〉 requires a specification of the satisfaction of an edge
(n,m) of D with frequency p with respect to a trace on D that represents the
recorded behaviour of the user of the epartner over time. If these traces were
infinite, we could calculate exactly whether the user behaviour indeed complies
with the specified frequency by taking the ratio of the occurrence of m relative
to n in the limit.

In practice however we need to evaluate compliance over varying finite time
horizons, for example one week after the user has specified a new behaviour
norm, but also after one month of trying to adopt a new habit, and possibly
many other times. The observed frequencies will rarely be exactly equal to the
desired frequency4, since habitual user behaviour will often vary somewhat over
time. In addition our sample size may prevent the possibility of exact compliance,
e.g., if the desired frequency is 0.8 but we evaluate compliance over a trace of
length 7. Nevertheless we want our epartner to be able to assess compliance in
these cases.

To address these challenges, we employ a statistical technique called hypoth-
esis testing [10]. Hypothesis testing is a type of statistical model checking to

3 Note that we need to use the infimum here instead of the minimum, since the interval
might be left-open.

4 At least when this frequency is a point. However also in case of an interval we need
to ask whether it is justified to conclude (non-)compliance if the observed behaviour
frequency is close to the edges of the interval.



verify whether a system model satisfies a property of interest with a probabil-
ity above or below a certain threshold value: the hypothesis. The core idea of
statistical model checking is to use a computer program to repeatedly simulate
the behaviour of the system model. For each of these simulations (samples), one
can check whether or not the property of interest holds. One might see each
such sample as a coin toss for which we can check whether it satisfies a certain
property (let’s say ‘heads’). Using statistical techniques one can then determine
whether it is justified to reject or accept the stated hypothesis, i.e., whether
the true probability of the system exhibiting the property of interest can be
assumed to be as stated by the hypothesis. For example, whether we can accept
the hypothesis that the probability of the coin turning up heads is bigger than
0.7.

The idea of using hypothesis testing for defining the semantics of a proba-
bilistic Feature Diagram now is to treat each state of a trace on the Feature
Diagram as one possible sample: each state represents one instance of the user
executing the behaviour specified by the Feature Diagram. Thus instead of re-
peatedly simulating a system model, we use repeated observations of the type
of user behaviour expressed by the Feature Diagram. Recalling the user’s in-
tended behaviour of Example 1, the idea is that the epartner will construct a
sequence 〈σ0, σ1, . . . , σt〉 of length t after running for t days, monitoring only
behaviour that is recorded in the Feature Diagram and thus relevant for mon-
itoring norm compliance, and recording a separate model σj for each new day.
The property of interest in our case is the occurrence of a behaviour m for a link
(n,m) with some frequency, e.g., the user having early breakfast, in those
states where n (breakfast) occurs (the sample size). This means we assume
that these models are obtained via independent, identically distributed random
processes as described above. Investigating to what extent we need to address
possible dependencies between the creation of these models (e.g., once a user
starts exhibiting non-compliant behaviour it is more likely that it will continue
to do so) is left for future work.

Since hypothesis testing can only be used to verify whether the true prob-
ability is above or below a certain threshold value, for a frequency p that is a
point we cannot conclude that the user behaviour is compliant. However, we can
conclude that it is non-compliant, if it is (sufficiently) above or below p.

Hypothesis testing has previously been applied in the context of multi-agent
systems to let agents hypothesise the likelihood that other agents will choose
certain actions, based on their interaction history [1]. Instead, our work allows
a behaviour support agent to assess whether observed user behaviour complies
with given behaviour norms.

4.3 Semantics

In this section we formally define the semantics of probabilistic Feature Diagrams
through hypothesis testing. Along the lines of [3,4], we first introduce the notion
of a j-sample that takes the first j elements of the trace under consideration,
allowing to select the sample we want to assess. Here, it is important that we



do not ‘mix and match’ any specific parts of the trace, but pick j consecutive
elements, without any discrimination. In a second step, the sample is processed
through a statistic function T , which counts the number of times a node is
included in the states of the selected part of the trace.

Definition 7 (j-Sample and Statistic). Let D = 〈D, freq〉 be a probabilistic
Feature Diagram with D = (N,E, λ, µ), and let ~σ be a trace on D that satisfies
D. The j-sample of ~σ is the initial sequence 〈σ0, σ1, . . . , σj−1〉 of ~σ of length j.
We denote the j-sample by ~σ(j).

Let Σ(D) be the set of traces on D and Σ(j)(D) be the set of j-samples of
the traces. We define the statistic T on Σ(j)(D) and the nodes N of D by

T : Σ(j)(D)×N → N

T (~σ(j),m) =

j−1∑
s=0

1m(σs),

where

1m(σ) =

{
1 if m ∈ σ,
0 otherwise.

We can now use the statistic T to test for the hypothesis that the trace gen-
erated by the user’s behaviour is compliant with the information in the proba-
bilistic Feature Diagram D provided by the user. We opt here to use a test based
on constructing confidence intervals for standard normally distributed random
variables, which we will call Gauss-CI test, following the reasoning given by [10].
Given the properties of various tests described in [10], we opted for the Gauss-CI
test since it works with a fixed sample size; in contrast to the model checking
discussed there, the behavioural traces we deal with in this situation are indi-
cating past behaviour, and we need our test to provide us with some answer
towards (non-)compliance, so that a support system using the test can respond
appropriately. This comes at the trade-off of drawing the wrong conclusion, or
no conclusion at all, should the actual frequency of an activity be very close
to the desired frequency. Since we would argue that a support system should
not need a large sample of past behaviour before it can operate, we deem this
acceptable.

Definition 8 (Gauss-CI test). Let ~σ, ~σ(j), D and T be as in Definition 7
above and let α ∈ [0, 1].

Let (n,m) ∈ E with freq((n,m)) = pm = [p0,m, p1,m]. Let T (~σ(j), n) = k,

Sl(~σ(j), (n,m)) = (T (~σ(j),m)− k · p0,m),

Su(~σ(j), (n,m)) = (T (~σ(j),m)− k · p1,m).

– Let l = l(α, p0,m) = Φ−1(α) ·
√
k · p0,m · (1− p0,m) and u = u(α, p1,m) =

Φ−1(1 − α) ·
√
k · p1,m · (1− p1,m), where Φ is the cumulative distribution

function of the standard normal distribution.



We say that with confidence (1 − α), we reject the hypothesis that p ≥
p0,m if Sl(~σ(j), (n,m)) < l, and we reject the hypothesis that p ≤ p0,m if
Sl(~σ(j), (n,m)) > −l.
We say that with confidence (1−α), we reject the hypothesis that p ≥ p1,m
if Su(~σ(j), (n,m)) < −u, and we reject the hypothesis that p ≤ p1,m if
Su(~σ(j), (n,m)) > u.

– We say that the test is inconclusive in all other cases.

We will use the test defined above to give a formalization for our notion of
probabilistic norm compliance. In essence, given some interval [p0,m, p1,m], we
want to be certain that the frequency p in our sample is not too low or too high,
i.e. we want to rule out that p < p0,m or p > p1,m. For this, we obtain ‘confidence
intervals’ [l,−l] and [−u, u]5 for the values of p0,m and p1,m, respectively. That is,
if the statistic Sl is larger than −l, then we may assume – with error level α – that
p > p0,m, and similarly, we may assume p < p1,m if Su < −u. If both inequalities
hold, we can safely assume that the norm of doing the specified activity m with
a frequency in the interval [p0,m, p1,m] is complied with. Furthermore, if Sl < l,
we may safely assume that the norm is not complied with, with a frequency that
is too low, or similarly, we may assume that the frequency is too high in case
Su > u. In all other cases, the frequency p is too close to one of the endpoints
p0,m, p1,m to be certain that it is on the right side of the endpoint, and therefore
the test will be inconclusive.

Definition 9 (Probabilistic Norm Compliance). Let D = 〈D, freq〉 be a
probabilistic Feature Diagram with D = 〈N,E, λ, µ〉, ~σ a trace on D satisfying
D and α ∈ [0, 1] an error level. Let (n,m) ∈ E be an edge with freq((n,m)) =
[p0, p1], we say that

– ~σ is compliant with D for (n,m), if the test defined in Definition 8 rejects
the hypotheses p ≤ p0 and p ≥ p1;

– ~σ is non-compliant with D for (n,m), if the test either does not reject p ≤ p0
or p ≥ p1;

– ~σ is inconclusive for (n,m) otherwise.

With Sl(~σ(j), (n,m)) and Su(~σ(j), (n,m)), l(α, p0), u(α, p1) given as above,
let the compliance function be the function R(D, ~σ, j, α, (n,m)) defined by

R(D, ~σ, j, α, (n,m)) =



compliant if Sl(~σ(j), (n,m)) > −l(α, p0)

and Su(~σ(j), (n,m)) < −u(α, p1),

non-compliant-too-high if Su(~σ(j), (n,m)) > u(α, p1),

non-compliant-too-low if Sl(~σ(j), (n,m)) < l(α, p0),

inconclusive otherwise.
5 Note that we will have l < 0 < u, so the intervals are indeed sound.



Note that in the special case of p0 = p1 = p̄, i.e. the interval is a singleton,
the compliance function can never provide the value compliant, since we need
to reject both p ≥ p̄ and p ≤ p̄, and thus in particular reject p = p̄.

5 Experimental Evaluation

5.1 Experimental Setup – Obtaining the Feature Diagram and
Models

We will now proceed to put the formal definitions of the previous sections to
the practice. Namely, we will evaluate an existing daily behaviour dataset [14]
with our compliance function R given in Definition 9. The dataset consists of
data about the execution of activities of daily living – e.g., eating and drinking,
sleeping, working, watching tv, taking medicine, etc. – of several individuals
(workday and weekend), over about 2 months. For this paper we have used the
data in the file data/edited hh104 labour.xes.gz, which has workday data of
43 days of user hh104. A typical entry for a single activity consists of a start

event and a corresponding complete event (not shown here):

<event>

<string key="concept:name" value="eatingdrinking"/>

<string key="lifecycle:transition" value="start"/>

<date key="time:timestamp"

value="2011-06-15T07:11:45.000+02:00"/>

<string key="work" value="eatingdrinking"/>

</event>

Since the dataset does not provide the Feature Diagrams corresponding to
the desired behaviour of the user, we have reconstructed a possible Feature
Diagram from the events given in the dataset. The sample entry above, for
instance, indicates that the user had a meal on the morning of 15 June 2011,
between 7:11 and 7:23. Thus we can take this entry as representing an instance
of breakfast. We would separate the breakfasts into early breakfast in case
the time of day is between 6 a.m. and 9 a.m., and classify a meal in the morning
as late breakfast in case it takes place later than that but before noon. For
this classification we only consider the start times of events.

Note that not all event entries of the dataset have been represented in the FD:
for instance, we did not take any patterns for sleep into account here. We have
picked values for the frequencies that might be considered desired behaviour for
this user. For example, we noticed this user typically has breakfast rather late
after doing some other activities, while it may be considered more healthy to
start the day with breakfast. The resulting reconstructed probabilistic Feature
Diagram is then that of Figure 3.

To obtain the models, i.e., states of our trace and number of occurrences of
the nodes in our Feature Diagram over this trace (the function T of Definition
7) we have made an implementation in the knowledge graph language Grakn



(version 1.5.3 for Mac). The language allows to define an expressive schema in
graph form over a given dataset. The tree structure of our Feature Diagrams
lends itself well to implementation using knowledge graphs. We implement the
Feature Diagram syntax and semantics as a Grakn schema. In order to obtain the
models to make up our trace, we need to define when the nodes of our example
Feature Diagram are satisfied with respect to the dataset, e.g., early breakfast

holds on a certain date if the above event occurs in the dataset for that date. We
specify this using Grakn rules. We obtain the number of occurrences of nodes
in our trace using a query over our schema and the imported dataset.6 With
j = 43, i.e., taking all workdays present in our dataset, we obtain the following
number of occurrences of nodes of our Feature Diagram: workday, morning,
evening, breakfast: 43; early breakfast: 11; late breakfast: 32; work: 38;
take medicine: 33.

5.2 Results in Probabilistic Norm Compliance

Given the numbers of occurrences, and the desired frequencies, we apply the
testing framework given above. First we apply the statistic of Definition 7. Note
that in this case, we have j = k = 43, since both the breakfast and evening

nodes occur 43 times. Note that the nodes for workday and morning are left out
here, since our Feature Diagram only specifies frequences for the leaf nodes with
respect to their parents. We use Definition 8 to obtain confidence intervals for the
values of the statistics. We calculate those values to two decimal places, using the
norm.ppf function of Python’s scipy.stats package to obtain values for Φ−1.
Finally, we use the Probabilistic Norm Compliance function R from Definition
9 in order to determine whether the sample data indicates compliance with the
relative frequencies of the Feature Diagram. As an error level for our test, we
pick a value of α = 0.05, or 5%.

Node k T α p0 p1 l Sl u Su R(esult)

early breakfast 43 11 0.05 0.8 1 -4.31 -23.4 0 -32 non-compliant-too-low

late breakfast 43 32 0.05 0 0.2 0 32 4.31 23.4 non-compliant-too-high

work 43 38 0.05 0.8 0.8 -4.31 3.6 4.31 3.6 inconclusive

take medicine 43 33 0.05 0.6 0.8 -5.28 7.2 4.31 -1.4 inconclusive

take medicine 43 33 0.3 0.6 0.8 -1.68 7.2 1.36 -1.4 compliant

We can see that for breakfast, the test result clearly indicates that the ratio
of early breakfast is far too low, and symmetrically, late breakfast occurs
too often in the data. However, for work and take medicine the test result
indicates an inconclusive result. For take medicine the values indicate that
this node is realized with a ration of at least 60%, but the actual rate is likely
too close to the upper bound of 80% for the test to return meaningful results. In
fact, as the last line in the table above shows, we can obtain a compliant result
if the error level is substantially increased (to 30% in this case).

6 The code is available from GitHub repository [21].



6 Conclusion

We have introduced Feature Diagrams as a way of expressing and assessing
compliance with desired user behaviour. In order to represent relative frequencies
we proposed a probabilistic extension of Feature Diagrams. Interpreting such a
probabilistic Feature Diagram as a record of behavioural norms, we can use
Hypothesis Testing methods to monitor compliance with these norms in daily
behaviour. The methods demonstrated here allow not just to measure compliance
itself, but also allow to give an estimate of whether non-compliant behaviour
occurs with too low or too high a frequency, compared to the recorded values in
the Feature Diagram.

Our experimental evaluation is based on a dataset that consists of such
records of daily behaviour. While the Feature Diagram corresponding to this
data was a reconstruction, the results presented in Section 5 nonetheless demon-
strate that the concepts and methods used in this paper provide meaningful
answers to the question of whether a pre-recorded behavioural norm is complied
with by a user. The framework of probabilistic Feature Diagrams and Hypothe-
sis testing methods can also provide us with meaningful results in the presence
of a rather small set of data points.

Expanding from this proof of concept, we intend to investigate formal prop-
erties of this framework. We further plan a user study, investigating ease of use
of the framework in the intended field of application, and assessing intuitive-
ness of the notion of probabilistic norm compliance for assessing satisfaction of
behaviour norms.
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