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Abstract
Our goal is to develop a formal knowledge repre-
sentation (KR) language oriented to capturing in a
natural way the subjective view people have of their
behaviour. We draw together Action Identification
Theory (AIT) from social psychology and research
on cognitive agent programming languages to de-
rive a set of meta-level requirements that the KR
language should satisfy. We show that the exist-
ing approaches must be extended to suit our pur-
poses, and we propose a general solution: a novel
KR language able to express Action Identification
Hierarchies (AIHs). Then, we use AIT to give a
preliminary discussion of a set of rationality con-
straints that we can use to tell pathological AIHs
from ‘good’ ones.

1 Introduction
Interactive behaviour support systems (BSS) employ various
personalisation techniques in order to be more effective in
supporting the user. However, personalisation of models of
user behaviour underlying these systems is currently limited.
User models are generally constructed at design time, mean-
ing that the basic structure of these models cannot evolve at
run-time to better fit the users or to reflect changes in them
(cf. [17; 13]).

We know from research in psychology, in particular Action
Identification Theory (AIT) [22], that the way people concep-
tualize their behaviour is subjective, i.e., differs from person
to person, and changes over time. This means that in current
behaviour support systems there may be a mismatch between
the representation of user behaviour in the system and the
way people think about their behaviour. We conjecture that
a representation (and corresponding behaviour support) that
is more in line with people’s mental model of their behaviour
will help the common grounding between user and system.
This contributes to transparency and trust [7] and supports
human-machine teamwork [12]. We envisage that this can
be done by allowing the system to construct a model of user
behaviour incrementally at run-time in dialogue with the user.
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Therefore we need a generic knowledge representation
structure (KRS) that allows the representation of a wide va-
riety of human behaviour. In this paper we discuss the re-
quirements for this KRS based on AIT (section 2) and ana-
lyze to what extent existing work already satisfies these (sec-
tion 3). Since end users rather than system developers con-
struct these representations, it is important that the system
understands which representations “make sense”, i.e., which
can be regarded as rational descriptions of behaviour. We
formally define a KRS based on the identified requirements
(section 4) and introduce informally a number of rationality
constraints to identify which behaviour models can be con-
sidered ‘good’. We show how these rationality constraints
can be motivated by AIT, resulting in a KRS for human be-
haviour that is grounded in psychological research. Finally
in section 5 we wrap up our findings and discuss some future
work.

1.1 Motivating example
Our lead example concerns a patient suffering from mild in-
tellectual disability, Pedro. He has difficulty with making
sound decisions, judging the time or sequence of steps needed
to complete a complex task, thinking things through, predict-
ing how his day will unfold or taking new events into account.
For example, he might forget to make a sandwich and bring
it along if he goes to work. In winter he may forget to dress
warmly, or to bring a coat when travelling. If he is late, he
fails to inform his boss.

These issues, in most cases, mean that he needs more-or-
less constant supervision from a caregiver throughout the day.
We do not aim to help with the mysteries of life or romantic
struggles. We aim to capturing such knowledge as the little
things of routine and daily life. We want to formalise daily ac-
tivities so as to understand with sufficient detail what is going
on. What is ‘sufficient’, will depend on the specific applica-
tion context.

Suppose that Pedro, the user of our system, says:
Every day I go home. I can either go gome

stopping for groceries, or without doing the gro-
ceries. If I go home stopping for groceries, that
simply means that I “leave”, “stop at the grocery
store”, and “arrive late”. On the other hand, if I go
home without doing groceries, then I simply leave
and then “arrive early”.



Now suppose that Pedro’s (human) caregiver adds the fol-
lowing:

Going home has three parts: leaving, arriv-
ing, and, but only sometimes, doing the groceries.
Pedro either arrives early, which happens in most
cases, or late, which happens rarely.

By the end of this paper we will have the tools to en-
code this information and dependency relations among action
identifications, enabling reasoning about the relation between
identifications and the frequency with which they occur.

2 KR Requirements
Before we can discuss solutions, we need to take a closer look
at the problem. We are going to do it through the lens of AIT.
We choose AIT because it has proven useful for conceptual-
ising how people think and talk about their behaviour [22].

2.1 Action Identifications
In order to explain the concept of action identification, we use
the following metaphor. Imagine yesterday you had been fol-
lowed around every corner by a cameraman. Now, imagine
you were asked to go through the film depicting your whole
day and now and then you were asked “what are you doing
here”? The words with which you describe the activity/ies
you are carrying out in that bit becomes a label, that the cam-
eraman uses to annotate that clip of tape. Then, you would
go procedurally over the previously tagged clips and name
smaller fragments of those clips with other tags.

The tags we attach to clips are known as ‘action identifica-
tions’ in the context of AIT. AIT puts forward the idea that
the understanding of how we identify our activity is crucial
for determining the subjective view on what it is that we are
doing. As such, understanding it is a fundamental step to-
wards interactive systems able to handle the different factors
that determine how we address the issues we face and how we
behave. For example, When Pedro is going home, he could
call what he is doing in a variety of ways, e.g., as “leaving
office”, “going to rest”, “getting scolded” (if he expects he
will be late for supper) or “doing the groceries”.

According to AIT actions are naturally identified at differ-
ent levels of concreteness; the more familiar the action, the
more abstract the label. Therefore, we can use the label con-
creteness (its degree in the hierarchy) to predict how familiar
the action is to the actor or whether something is out of place.
Furthermore, tracking the transformation patterns of labels,
a support system can gain insight into the (evolution of the)
degree of familiarity of a behaviour. This can be used to de-
termine the type and amount of support that the user may need
with that activity.

One could say that identifications act as motivation for their
concretisations, and vice versa, they act as specifications for
the identifications they are a concretisation of. Why does Pe-
dro arrive home early? Because he didn’t stop for groceries.
How can Pedro go home? By stopping for groceries (or not).
We can ask ‘why’ and ‘how’ indefinitely, regressing to ever-
more abstract or concrete identifications, until we run out of
words or fail to find an answer.

2.2 Derivation of Requirements
AIT and the application domain (interactive behaviour sup-
port agents) impose requirements on the KR from two sides.
In this section we introduce these requirements based on our
discussion of AIT, and taking into account a number of addi-
tional considerations.

First, we need the language to represent action identifica-
tions explicitly so as to facilitate user interaction, and to be
amenable to formalisation and have a sound interpretation so
that it can be used for KR and automated reasoning.

Moreover, activities are not only characterised by the var-
ious ways in which one can identify them through different
levels of concretisation as highlighted in AIT, but also by the
many things (actions) one can do as part of the process of
(plan for) doing them.

For example, “going home stopping for groceries” may
involve “leaving” and “stopping for groceries”, and in turn
“stopping for groceries” may be broken down to smaller
pieces (entering the shop, paying...). We aim for a KRS that
can represent both concretisations over action identifications,
following AIT, as well as actions that are part of doing other
things, so we can express identifications in terms of their parts
(cfr. [22, p.48], ‘action scripts’). We envisage that the result-
ing structure forms a graph whose nodes are action identifica-
tions and whose edges determine the relations (concretisation
and part-of) between them.

While in AIT the part-of relation is seen as a special case of
the concretisation relation, we keep them apart for two main
reasons:

1. Many existing approaches from the AI and agent pro-
gramming literature do (see, e.g., [20]). Aligning our
KRS with this work will allow us to import their results
or use their reasoning algorithms.

2. Representing complex activities may require sequen-
tially breaking them down into sub-action scripts, espe-
cially for applications where the actor is not fully famil-
iar with them or tends to lose track of the progress made
so far.

Next to representing action identifications and their rela-
tions, many application domains (e.g. behaviour support) re-
quire some representation of action frequencies. This, so as to
reason about the future given what has happened in the past,
and to model and provide support for adopting desired ha-
bitual (i.e., frequent) behaviour or changing undesired habits.
The idea is that we represent this by attaching probabilities to
both part-of and concretisation relations to encode the proba-
bility that actions are executed in some way rather than some
other.

According to AIT, moreover, when conceptualizing their
activities different people will stop at different points in the
‘why’ and ‘how’ game of identifying more abstract and more
concrete actions, respectively. In practice, this means that the
user could add a concretisation or an abstraction of an iden-
tification anytime. Consequently our KRS cannot be limited
in size a priori, but needs to accommodate structures of any
depth.

Finally, since we encode both part-of and concretisation re-
lations, we aim for a KRS that allows them to be combined



in different ways. This, together with the other requirements
thus discussed, is required to ensure that the language can ex-
press sufficiently complex behaviour identification structures,
such as those represented in [22, fig. 3.1, p. 46] or [22, fig.
3.5, p. 51]

Summing up, the KRS needs to:

(1) be symbolic and explicit.
(2) have a formal semantics.
(3) model concretisation.
(4) model a part-of relation, which specialises concretisa-

tion.
(5) model behaviour likelihoods, both with respect to con-

cretisation and part-of relations.
(6) allow for arbitrarily deep (finite) hierarchies of be-

haviour identifications.
(7) allow each identification to simultaneously have both

parts and concretisations.
(8) allow each identification to simultaneously be a part of

other identifications and a concretisation of other identi-
fications.

Requirements (1), (2), (4) (in part) and (5) are technical
requirements: we need them to make something that can be
usable in practice for behaviour support. The remaining re-
quirements are prescribed by AIT.

3 Related work
In this section we discuss the knowledge representation struc-
tures of existing models for representing human behaviour,
in particular Activity and Intent Recognition approaches, and
for representing agent behaviour, in particular the agent pro-
gramming literature. We evaluate to what extent they meet
our requirements. The results are summarised in Table 1 be-
low.

Activity Recognition The field of Activity Recognition (AR)
has developed machine learning approaches to deduce what a
human being is doing based on sensor data. A few of those
approaches employ ontologies to structure their KR, and we
will treat those separately below.

In [14] a review of AR papers is presented. All of the tech-
niques discussed therein are sub-symbolic, most of them have
a clear formal definition and all of them are based on a two-
layer behaviour/features KRS. Typically, the KRS consists of
two layers: a bottom layer of features such as heart rate, ac-
celerometer status, and other sensor measurements; and a top
layer of activities such as running, sitting, eating, etc. The
layers are connected by a dependency relation that we may
conceive of as a part-of relation. This means that these ap-
proaches do not encode concretisation relations.

In [8; 9] a sub-symbolic approach is also used, with a for-
mal semantics, but their KRSs are somewhat more expres-
sive than other AR papers. This is because they focus on the
hierarchical decomposition of activities in parts, which also
means that they do not encode concretisation. They model
behaviour likelihoods and potentially they can encode arbi-
trarily deep part-of structures. The structures are tree-like,

which means that a behaviour cannot be part of multiple be-
haviours (even though the same identification could occur in
multiple trees, but it is then unclear how one could merge
them).
Ontology-enhanced AR In [10] an AR framework is pre-
sented based on log-linear description logics. The KRS they
use includes both part-of and concretisation relations. They
assume all activities can be categorised in one of four levels of
abstraction, and consequently their KR only features at most
4-deep concretisation structures. However, within each class
the part-of relation can encode arbitrarily deep structures. So
while their structures can be arbitrarily deep, this only con-
cerns part-of relationships and not concretisation, and only
the behaviours belonging to the top classes can have both
parts and concretisations.

In [19] a KRS is proposed including a representation of
sensors, devices, activities and atomic actions. Their ap-
proach shows a way of merging DL with probabilistic reason-
ing. However, the probability values they use are not founded
in the semantics and are given by prior manual labelling. Sec-
ondly, this approach models concretisation but not part-of re-
lations.

In [5] an approach is described in which DL ontologies are
used to provide a semantic characterisation of behaviours in
an assisted living scenario. Their KRS is similar to the one
presented in [19], with the difference that [5] assumes full
certainty and thus does not model behaviour likelihoods.

In [16; 6] an approach is proposed where [5] is one of the
steps of an iterative process where a limited set of high-level
activities’ DL descriptions is given in advance, and the low-
level ones are learned through user interaction. Many of the
limitations of [5] for our purposes are overcome here, but
some still remain. For one, the concretisation structure can
be finitely deep, but the part-of relation is restricted to the
leaves of the concretisation tree and is not allowed to branch
further. This results in limited flexibility in how part-of and
concretisation relations can be interwoven.
Goal and Intent Recognition In [24], the authors argue for
the need to recognise the goals of humans. It is part of a
research line that tries to recognise more abstract aspects of
behaviour such as goals and intentions. It uses plan and ac-
tivity recognisers (see above), and maps goals to observable
activities that come from such recognisers. In that sense they
already do part of what we suggested above. The KRS are
based on goals, observations, timeframes, and plans. The fol-
lowing approaches fall in this category and share one more
common attribute: they use sub-symbolic techniques.

Suspicious and anomalous activity recognition is related to
intent recognition, and is studied in e.g., [1; 3]. Relevant for
us is that these approaches can recognise types of behaviour
that cannot be classified by observing a single event, but re-
quire instead the observation of multiple events, just like most
complex behaviours.

Similar approaches include [15], which presents a super-
vised machine learning approach based on Markov Models
that can be trained to classify raw data into labelled sets that
correspond to activities at a few levels of concretisation. The
depth of their concretisation hierarchy, however, has to be de-
termined before the training of the model and is hence not



quite dynamic enough for our purposes.
From our discussion we conclude that some of the available

activity and goal or intent recognition techniques can be used
in the monitoring component. In particular, that of [23], and
[2] have KRS that can be (partially) mapped to the hierarchi-
cal identification structures we develop. Their approaches can
furthermore be used to gather information on the frequency of
the recognised behaviours.

However the fact that these approaches are sub-symbolic
means they are unsuitable for doing KR in our domain, where
user interaction is fundamental and it is precisely symbols
that are central for effective user interaction and support.
Agent Programming Knowledge representation structures
for goals, plans, and actions have been extensively inves-
tigated by the agent-programming community, cfr. [4] for
a comprehensive overview. In particular Goal-Plan Trees
(GPTs) [20] are similar to our KRSs. A GPT is a hierar-
chical tree of goals and known plans to achieve those goals.
The knowledge structures can be arbitrarily deep, but branch-
ing is restricted: goals can only concretise to plans and each
plan can only be decomposed into a sequence of goals (part
of). We relax this constraint and allow indiscriminate chain-
ing of part of links and/or concretisation links. Overall, the
KR structure we propose is similar to GPTs, but with less
structural constraints so we can be flexible enough to match
the user’s behaviour identification structure.

In our previous work [18] a basic definition of behaviours
is provided in terms of goals and activities that aims at cap-
turing the subjective view of people on their behaviour. The
KRS represents concretisation and part-of relations, however
these cannot be combined in the expressive way we envis-
age here, i.e., concretisation and part-of relations cannot be
chained freely. Moreover, the paper does not comprise a dis-
cussion of rationality constraints, nor does it ground the KRS
in psychological literature as we do here using AIT.

We summarize this discussion of related work in Table 1.

requirements
(1) (2) (3) (4) (5) (6) (7) (8)

[14] 7 3 7 3 3† 7 7 7
[8; 9] 7 3 ? 3 3† 3† 7 7
[10] 3 3 3 3 3 3† 7− 7−

[19] 3 3 3 7 3‡ 3‡ 3‡ 7
[5] 3 3 3 7 7 3‡ 7 7

[16; 6] 3 3 3 3 3 3‡ 7 7
[1; 2; 3]
[15; 23] 7 3 7 3 7 7 7 7

[20] 3 3 3 3 7 3 7 7
[18] 3 7 3 3 3 3‡ 3‡ 3‡
us 3 7f 3 3 3 3 3 3
†= only part-of, ‡= only concretisation ?= unclear,
−= only for some identifications, f = future work

Table 1: Summary of relevant literature matched against our
requirements.

To conclude, we note that most existing work covers the
first four requirements; the main limitations are in the latter
ones, i.e. the expressivity of the KR, which is limited by the

freedom with which one can interweave concretisation and
part-of relations.

4 Action Identification Hierarchies
In this section we present the knowledge structure we pro-
pose, called Action Identification Hierarchies (AIHs) and ra-
tionality constraints for characterizing when these can be con-
sidered rational representations of behaviour.

4.1 Definition
The central component of the structure is precisely identifica-
tions. We introduce two relations over identifications. First,
the relation represents the ‘is a concretisation/way of’
relation between identifications. For example, “go home do-
ing groceries” is a concretisation of “go home”: going home
doing anything is a way of going home. The relation, as
we have seen, orders identifications by generality/specificity.

Adding probabilistic information to this, a user might go
home (h) without doing groceries (j) nearly every day, but
still go home doing the groceries (f ) once in a while. In this
case the knowledge structure representing user behaviour will
contain h x j and h z f for some x > z. The intuition is
that these numbers represent the ratio of h-clips to j- and f -
clips respectively, where h-clips are a subset of the j-clips
and the f -clips.

Second, the relation expresses the part-of relation be-
tween an identification and its parts. More specifically,
specifies a (non-necessary) strict ‘part of’ relation: a b
holds iff b can be executed as part of carrying out a1, but car-
rying our b does not completely carry out a too. So not nec-
essarily b is a required step towards a (there might be other
ways to achieve a without going through b); furthermore, a
cannot be equal to b. Similarly to , h p j means that p
of all h-movies have some j-clip as a part.

A way of going home, for example, may include the sub-
plan of stopping at the grocery store. In this case, “stop at
grocery store” is part of the “go home” identification. Still,
it is possible to go home without doing the groceries (Pedro
maybe does not need them every day). Adding probabilistic
information to this relation is to specify the ratio of clips in
which the user goes home stopping at the store to the total
number of clips depicting him going home (in any way).

We formalize AIHs as follows:
Definition 1 (Action Identification Hierarchies (AIHs)). Let
B be a set of action identifications. Then an AIH is a structure
〈B, , 〉 where:

:= B2 × [0, 1]

:= B2 × [0, 1]

Furthermore, we postulate that no pair b, b′ occurs more
than once in or . ∀b, b′ ∈ B:

∃x.〈b, b′, x〉 ∈ ⇒ ∃!x.〈b, b′, x〉 ∈
∃x.〈b, b′, x〉 ∈ ⇒ ∃!x.〈b, b′, x〉 ∈

And we introduce the following short-hand notation:
b x b′ := 〈b, b′, x〉 ∈

and + := x where x > 0; and the same for .
1Can also read: while carrying out a.



go home

groc ¬groc arrive

leave late early stop

Figure 1: Graph of the ‘get up’ identification. groc = go
home doing the groceries, late = arrive late, stop = stop at the
grocery store, and so on.
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Figure 2: Irrational AIHs.

The AIH of the example presented above can be repre-
sented as the graph depicted in fig. 1 (probability values omit-
ted)2. Each node is an identification. The information pro-
vided by the caregiver is highlighted by means of dashed
lines.

4.2 Rationality constraints
In contrast with most other approaches, where the behaviour
model is built at design time by the system developer, or con-
structed by labelling human-generated data, the intent of our
KRSs is to let the model be built interactively with the user.
However, users can make mistakes and say irrational things.
So we need a way of characterising what a rational AIH is, so
that we can support the user in constructing a model that can
be a representation of actual behaviour.

We introduce a number of rationality constraints (in the
sense of [11]), that are derived from AIT and probability the-
ory (for the probabilistic part of the framework). We infor-
mally describe each constraint, provide some explanation and
illustrate it using an example.
rc1 The relation is reflexive, and the weight of the re-

flexive edge is always 1.
Motivation: Every identification, even though in an ab-

stract sense, is a way of doing itself.
Example: By going home, you are going home. b 0.5 b is

irrational: it is impossible that only 50% of the times you
go home you go home: it cannot be but 100%.

rc2 No identification is both a concretisation and a part of
some other identification.

Motivation: The concretisation relation links identifica-
tions that represent the same underlying action. The part-
of relation represents a strict part-of, i.e., refers to a
different action. Hence the and relations must
be disjoint.

2We also omit the redundant links, that can be obtained by clos-
ing the graph under the rationality constraints to be explained below.

Example: Going home doing groceries can also be identi-
fied as ‘going home’. They are in some sense the same
action, as one is a way of achieving (the whole of) the
other. However, ‘leaving’ is not the same as ‘going
home’ (if not in a metonymy sense), but part of it.

Remarks: As we will see below (cf. rc8), is such
that b + b′ ∧ b′′ + b ⇒ b′′ + b′. So, to ensure that
b + b′ ⇒ b 0 b′ it suffices to ensure that b x b′ holds
for some x, and then by rc8 we obtain that if x = +,
then b + b, which contradicts rc4. Hence it suffices to
require that b + b′ ⇒ b x b′ ∧ b + b′ ⇒ b x b′. The
other constraints will ensure that such x cannot be other
than 0.

rc3 Two identifications can be equivalent (i.e. b + b′ ∧
b′ + b) if and only if they are the same identification.

Motivation: In AIT, low-rank identifications in the hierar-
chy detail how the identification is done, while high-rank
identifications detail why it is done, or what its implica-
tions are. It has been shown in the context of AIT that the
concretisation relation is commonly understood by peo-
ple to be asymmetric (cfr. [21, p.4], [22, p.45]).

Example: If doing groceries were a way of going home
then going home cannot be a way of doing groceries.

Remark: This constraint can in fact be derived from rc1
and the transitivity of .

rc4 No identification is part of (some identification which is
part of(...)) itself.

Motivation: This property is a standard assumption in the
literature on activity representation. This intuition is also
supported by the clip metaphor we introduced earlier: the

relation links clips to their subclips (proper parts of).
The relation is a strict ordering of identifications,
hence it is acyclic.

Example: If b + b′ + b, this means that b′ is a part of
b and vice versa. Because of the strict part-of interpreta-
tion of , we would reach the paradoxical conclusion
that b is a part of itself (and is thus infinitely complex or
infinitely simple).

rc5 If two identifications are concretisations of the same
identification, then the one cannot be part of the other.

Motivation: If two identifications are concretisations of
something, then executing either will achieve that thing
(fully). So it makes no sense to say that either one is part
of the other, as we know that they are the same thing.

Example: Suppose “going home by train” was another
way of going home for Pedro. Since going home doing
the groceries and going home by train are both ways of
going home, it is impossible that going home doing the
groceries is part of going home by train, since if you go
home doing the groceries that means that by the time you
are done you are home already, and it makes no sense to
take the train to go home (again). The same applies for
the converse.

Remarks: rc1, in conjunction with the fact that by defi-
nition (of AIH) no pair of identifications can occur twice



in or , plus rc2, entail that no identification
can be part of itself. It is not enough, however, to ensure

-acyclicity.
What is missing is to require that for all identifications
b, b′ with a common parent it holds that b x b′ ∧ b′ y b.
Then rc3, rc8 and rc9 will ensure that x = y = 0.

rc6 The probability values on arrows must be consistent.

Motivation: The probability values on links are inter-
dependent, because not all identifications can refer simul-
taneously to the same underlying activity ( 0 tells us
which ones cannot).
We regret that rc6 and rc7 are too technically complex
to discuss here in full detail.

Example: Assuming one cannot do and not do the gro-
ceries, it is impossible that 2

3 of the times Pedro goes
home doing groceries, and 2

3 of the times he does not do
groceries; cf. fig. 2.(1).

Remark: In fact, the bounds on the probabilities of each
b x b′ are also dependent on : you can see it in
fig. 2.(2), where it is implied that, paradoxically, 2

3 of the
a-clips have a d-part, and 2

3 do not.

rc7 The probability values on links must be consistent.

Motivation: Similarly as we saw in rc6, the interaction
between and and their probability values means
that the bounds on each x link depend in a complex
way from other information.

Example: Suppose that 9
10 of the times Pedro goes home

he does the groceries. Then suppose that both going
home and going home stopping for groceries were in
Pedro’s mind parts of some other identification, say,
“spending the evening with grandma”. It is impossible
then that 2

3 of the times Pedro spends the evening with
grandma he goes home stopping for groceries, but only
1
5 of the times he spends the evening with grandma he
goes home (no matter how). Cf. fig. 2.(3).

rc8 If an identification b′ is a way of b, and b′ has a part b′′,
then b′′ is also part of b′.

Motivation: In AIT the part-of relation is a specialisation
(a ‘subset’, cf. [22, p. 49]) of the concretisation relation.
This is because achieving a part of something is, stretch-
ing a bit, a way of achieving that thing (albeit only part
of it). Consequently each identification inherits the parts
of its children.

Example: If as part of, say, going to the cinema, some-
times you buy popcorn, then also as part of whatever
going to the cinema is a way of doing, you sometimes
(proportionately less times) buy popcorn.

rc9 If an identification b′ is a way of b, and b′ is a part of b′′,
then also b is a part of b′′.

Motivation: This is another consequence of being a
specialisation of .

Example: If buying popcorn is a way of buying food, then
definitely as part of going to the cinema you sometimes
buy food (specifically, popcorn).

Remarks: While specialises , the opposite is not
true. Therefore a + b + c does not imply that a + c,
and in fact it implies that a 0 c in our formalisation.

rc10 is transitive, and the probability of the transitive
links is the product of the probabilities of the constitut-
ing links.

Motivation: Studies in AIT show that is transitive (cfr.
[22, p.51]). As the probability values encode dependency
among identifications, we expect transitive links to have
probabilities equal to the product of those of the inter-
mediate links. This is a consequence of the probabilistic
interpretation of the weights over the links.

Example: If 0.2 of the times Pedro goes home he does
the groceries, and, suppose, 0.2 of the times he does the
groceries he does the groceries in a hurry, then exactly
0.2 · 0.2 of the times Pedro goes home he does groceries
in a hurry.

rc11 If two identifications are known to have a common con-
cretisation, then they cannot be disjoint.

Motivation: If b, b′ have a common concretisation b′′, that
means that b′′ is a set of clips labelled with both parent
identifications. The parents can be 0 -related only if
they label entirely disjoint sets of clips, and b′′ is in fact
witnessing the contrary. So neither b 0 b′ nor b′ 0 b can
be the case.

Example: Suppose doing the groceries is, beside being
a way of going home, also a way of “taking care of
grandma”. Then it is impossible that there is no way in
which you can go home and take care of grandma at the
same time.

In summary, each constraint is motivated by AIT or probabil-
ity theory. This makes each one of them necessary for deter-
mining when an AIH is rational. Once formalised, these con-
straints can be used for automatically checking at run-time
whether an AIH that is being constructed in interaction with
the user is good or not.

5 Discussion and Future Work
We have presented a KRS called AIH based on Action Identi-
fication Theory. AIT, probability theory and technical neces-
sity led us to define rationality constraints that each rational
AIH should satisfy.

We have argued that these constraints are necessary, how-
ever, the question remains whether they are sufficient for ad-
equately capturing what we mean by rational descriptions of
behaviour. In future work we will formally specify these con-
straints and develop a formal semantics for AIHs. We will use
this to prove that the constraints we provide are sufficient to
characterise rational AIHs. Specifically, we envisage transla-
tion of our KRS to Description Logic (DL) and proving that
AIHs satisfying our rationality constraints yields a consistent
DL theory. Moreover, since action identifications are contex-
tual and evolve over time (cf. [22]), in future work we plan
on showing how AIHs can be combined with contextual and
temporal information representation. We plan to evaluate the
resulting framework against existing data on human action
identification hierarchies.
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