
Requirements for a Temporal Logic of Daily
Activities for Supportive Technology

Malte S. Kließ? and M. Birna van Riemsdijk?

Delft University of Technology
Delft, The Netherlands

m.s.kliess@tudelft.nl, m.b.vanriemsdijk@tudelft.nl

Abstract. Behaviour support technology is aimed at helping people or-
ganize their daily routines. The overall goal of our research is to develop
generic techniques for representing people’s actual and desired behav-
ior, i.e. commitments towards themselves and others, and for reasoning
about corresponding supportive actions to help them comply with these
commitments as well as handle non-compliance appropriately. Describing
daily behavior concerns representing the types of behaviour the user typi-
cally performs, but also when, i.e. we need to take into account temporal
dimensions of daily behaviour. This paper forms a first requirements
analysis of the types of temporal dimensions that are relevant for the
purpose of supporting people’s daily activities and how these may be
formalized. This analysis forms the starting point for selecting or devel-
oping a formal temporal representation language for daily activities.

1 Introduction

Behaviour support technology [10] is aimed at helping people organize their daily
routines and change their habits. The overall goal of our research is to develop
generic techniques for representing and reasoning about people’s actual and de-
sired behavior for the purpose of providing support by means of technology [11,
15]. These expressions of desired behaviour can originate from users themselves
or from others in their social context, such as caregivers. The idea underly-
ing our approach is to model desired behaviour as norms [1] or commitments
[12] regarding people’s behaviour [9, 15, 11, 14]. Reasoning techniques are then
aimed at deriving corresponding supportive actions to help people comply with
these norms and commitments as well as handle non-compliance appropriately,
i.e. with an understanding of the social relations and the values underlying the
established agreements [11, 15, 8].

Describing (actual and desired) daily behavior concerns not only which types
of behaviour the user typically performs, which can be represented in a behaviour
hierarchy [11], but also when these activities are performed, i.e. we need to take
into account temporal dimensions of daily behaviour. This paper forms a first
requirements analysis of the types of temporal dimensions that are relevant for

? Supported by NWO Vidi project CoreSAEP.

the purpose of supporting people’s daily activities. Once we have an understand-
ing of which notions of temporality we want and need to capture for this type of
technology, we can analyze which of many existing frameworks for representing
and reasoning about norms and time we can build on, e.g. [6, 4, 2, 3, 7, 14]. This
paper forms a preliminary exploration in this direction.

We present an illustrative scenario and preliminaries regarding temporal logic
(Section 2). We identify key temporal dimensions of daily activities in Section 3.
For each of these dimensions we provide an example formalization in temporal
logic of an aspect of our scenario (Section 4). We conclude the paper in Section
5.

2 Scenario and technical preliminaries

2.1 Scenario

In this paper, we will explore examples involving temporal dimensions of daily
activities based on the following scenario, where we intend to follow a few exam-
ples of daily activities in the fictitious life of Pedro, a young person with mental
disabilities who can take care of most daily activities himself, but needs support
in order to do them in a timely fashion.

Pedro can usually take care of everyday tasks himself, like getting ready in
the morning, getting to work, going shopping and preparing meals. He needs
support and regular reminders to schedule these activities. For this he has a
support agent, which knows about Pedro’s regular activities and preferences.

We intend to address the temporal dimensions of these routines. For example,
when we describe our daily routines we would usually put these habits in some
order in which we engage in these activities. We would certainly say that we get
up before we wash ourselves, and that right next after that we have breakfast.
However, there are a lot of subtleties involved when we want to formalize this
description in a precise way so that an artificial agent is able to render efficient
support for these activities: Is there a specific order in which we prepare the
breakfast? Is it necessary to boil the water before we put in the tea bag, and
when does this happen compared to preparing the bread we want to eat?

In order to deal with these kind of questions it is not enough for an agent to
have an idea of the usual behaviour and habitual order. It also needs to ensure
that actions are performed in a coherent way. For instance, putting the kettle
on to boil water certainly needs to be done before we pour the water in a cup,
but while we wait for the water to boil we can already toast the bread. Putting
the kettle on before we go to the bathroom to wash, however, might not be a
good idea: if we take too long in the bathroom the water will be too cold for
tea, so we should start boiling the water only after we finished washing. This
means that if we want an artificial agent to help users organize their day in an
efficient way, then we need temporal reasoning with which not only the order in
which activities are done can be stated, but also temporal ‘closeness’ to ensure
that the user does not wait too long between finishing one step of an activity
and starting to do the next step.

2.2 Temporal logic

We will formalize the logical framework in the following definition. We will
roughly follow the definitions given in [11] for the HabInt habit support agent.

Definition 1. Let LStr be a propositional language over strings. Let Act ⊆ LStr

be the set of activities or actions. Let Part be a function Act → P(Act), with b ∈
Part(a) if the action b is a part1 of doing action a. For the sake of readability we
introduce predicates start, stop and doing on Act, signifying when an activity
is started, stopped, or being done, but we will still treat Act as atomic. We close
these atomic sentences as usual under ¬ and ∨, and interpret all other logical
connectives in the usual way.

As for the temporal dimensions, we will use notions from Linear Tempo-
ral Logic [5] as a way of sketching formalizations for the temporal dimensions
discussed. In particular, we will have in mind trace semantics and the usual
connectives �, ♦, R, U , © (to be read as always, eventually, Release, Until and
Next, respectively). We will take this as a form of ‘proof of concept’, showing
that some of the dimensions we have in mind may be expressed using notions of
already existing frameworks.

3 Key temporal dimensions

In this section we will explore five temporal dimensions we believe are key to
modelling human behaviour for supporting agents. We will provide examples
demonstrating how each aspect covers part of an every-day behaviour pattern
an agent should be able to support. Note that the examples are intentionally
formulated very strictly: if a person states they are having dinner at 6 pm,
then this should be formulated in the language just like that. Even though in
reality, this will likely almost always be violated2, it is important for the agent
to recognize this. Whether an intervention is necessary, and if so, how the agent
should intervene, should be delegated to the Norm Compliance Support system
of the agent. Our intention is to provide the necessary formalization to state
norms and thus give an agent the ability to detect deviance from these norms.

The five key dimensions are:

1. Clocktime. A supporting agent will no doubt have to be able to deal with
clocktime. This is particularly important for keeping certain deadlines, as
well as ensuring that scheduled actions are executed at the given time.

2. Ordering. Some behaviours require multiple distinct actions to be executed
in a certain order, e.g. washing vegetables before cutting them. However,
human behaviour is much more flexible than a deterministic routine; it is
enough to know that vegetables should be cut after they have been washed,

1 For example, brewing tea is an action in its own right, but may also be considered
as part of ‘preparing breakfast’.

2 E.g., starting dinner five seconds after 6 pm.

but not necessarily directly after (partial order): it should be acceptable
behaviour to wash all of the vegetables first, and then cut them.

3. Coherence. When describing behaviour with multiple parts it is not enough
to state that they will all eventually be done. When cooking vegetables it is
not good enough to wash them today, cut them tomorrow and finally cook
them next week. Rather, these actions should be performed coherently, i.e.
without too much delay. An immediate ‘next’ step, however, may be too
rigid, so we need a notion that allows us to state that a set of actions form
a coherent unit.

4. Duration. The duration of actions is a two-fold notion. On the one hand
certain actions have a fixed or typical duration, e.g. ‘pasta takes 8 minutes
to cook’. On the other hand, an agent should be able to infer the duration
of an action that is being performed, i.e. the actual duration of a specific
instance of action execution, so that it can support the user in achieving the
desired habitual goals. This becomes important, e.g. when supporting the
user with keeping deadlines or making sure they do not exhaust themselves
with certain exercises.

5. Repetition. The agent should be able to deal with repetition. This involves
both regularly scheduled events and the cyclic nature of weeks and days. If
a user wants to be supported having dinner at 6 pm every day, then this
event regularly resets. The same is true for weekly exercises.

In the usual formalization, LTL semantics consists of a linear trace with one
end point, namely the starting point of the trace. However, as one easily sees
particularly in the clocktime example we have to deal with cyclic time: every
night at 11.59 pm, when the time progresses one minute, the clock resets to
12.00 am, and a new day begins. Similarly, starting the week with Monday,
the weekday variable changes each day until Sunday is reached, whereafter the
variable resets to Monday again.

Linearity is not completely lost, though: we cannot repeat the actual day or
week, but irrevocably progress into the future. The idea is, thus, to model this
using two separate notions of time: micro-time, which is of cyclic nature and
models the time passing each day, and macro-time, which is linear and models
the fact that each day that has passed is certainly not coming back.

The way we suggest to model this is by using a two-dimensional trace index:
we will write each separate point in the trace s as s〈a,b〉, where the first compo-
nent refers to macro-time, and the second component refers to micro-time. We
will use lexicographic ordering on the pairs 〈a, b〉: today at 5 pm is earlier than
tomorrow 5 am.

While one can think of macro- and micro-time as separated into days pass-
ing and the time of the current day, respectively, this need not be the desired
separation: there are larger cycles common in every-day life: weeks, months and
years share a cyclic nature as well. It may depend on the specific task or use
case how fine-grained one wants to make this separation. For the sake of this
scenario, days and time of day are sufficient.

4 Scenario Formalization

In the following examples we will explore how the key dimensions identified
above can be formalized in the framework outlined in Definition 1.

Example 1 (Clocktime).
Scenario: Pedro intends to have his dinner at 6 pm every day.
Formalization: Introduce a variable t ranging over time. Abusing notation,

we will write t = 6pm to mean that t has the value corresponding to real-world
time of 6 pm. Then the statement above can be formalized as

�
(
t = 6pm → start(HavingDinner)

)
.

Discussion: The statement above is very sharp: each day there is precisely
one point in time when t has the value of 6 pm. So how do we then deal with
situations when Pedro starts his dinner slightly earlier or later? We would argue
here that this may be deferred to norm compliance: if we casually state ‘I have
my dinner each day at 6pm.’, then we would argue this is meant precisely in the
sense of the formal statement above.

Example 2 (Ordering).
Scenario: Pedro wants to bake a pizza for dinner. He already has a pizza

dough prepared, and wants to decorate the pizza with tomato sauce, mushrooms
and cheese.

Formalization: We want to express certain orders in the execution of an
action, when that action is itself composed of smaller parts. As an example, take
baking a pizza. For that we have to first prepare all ingredients, then put the
toppings on the pizza, and finally put it in the oven. There is a strict ordering
implicit here: we cannot3 put the pizza in the oven and then afterwards put the
(unprepared) toppings on the pizza dough, and finally prepare the toppings by
washing and cutting them.

Take the LTL-formulation of before, as in e.g. [13], i.e. φ before ψ ≡ ¬ (¬φUψ),
where U is Until. Then the situation in the scenario above can be formalized by

apply tomato sauce before decorate with mushrooms, (1)

apply tomato sauce before decorate with cheese, (2)

decorate pizza before bake pizza. (3)

Discussion: As an alternative formulation one could think of using after :
φ before ψ should be (almost) the same as ψ after φ – both give a temporal link
between φ and ψ, φ is the first statement that should come true, and ψ the
second. Switching the roles of φ and ψ and negating the statement, however,
will not turn before into after : we would be introducing the possibility of syn-
chronicity, i.e. φ and ψ being executed simultaneously. Another problem is what
to do once the second event, ψ, has occurred. From the definition using U , this

3 Or rather: should not attempt, as it gives undesired results.

does not prevent us from witnessing another φ later. While we certainly do not
want to prevent Pedro from ever washing mushrooms again, the same mushroom
should not be washed again once it has been cut.

Example 3 (Coherence).

Scenario: We will use the same scenario as for example 2, and focus on what
it means to be ‘coherent’.

Formalization: Using the example of preparing a pizza for dinner, what does
it mean to ‘coherently bake a pizza’? The dough has to be spread out, the
ingredients put on it, and finally the pizza needs to be baked. While we also
have the constraints that the toppings should first be washed, then cut, then
put on the dough, we face the same issue of multiple instances as above: do we
allow each mushroom to be washed, and then cut them all, or individually first
cut, then wash, and repeat the process for each mushroom until we are done?
We would argue here that this should not make a difference for the process
of ‘baking pizza’, as long as we are not putting other activities in between,
e.g. taking out the trash. So ‘coherent’ should mean that we do not engage in
unrelated activities.

This seems to suggest an ‘Axiom of Coherence’:

(Coh) :∀a ∈ Act . [doing(a)→ (¬wait(a)→ ∀b /∈ Part(a).¬start(b))] .

This statement says that as long as we do not have some mandatory waiting
time on our hand, e.g. when the pizza is in the oven, we should not start any
other unrelated activity.

Discussion: ‘Coherence’ should also mean ‘close together temporally’, which
is currently not encoded in the Axiom above. We can still have arbitrary idle
time between washing the mushroom and putting it on the pizza. Setting a strict
time limit for the distance between stopping some part of an activity and starting
the next one may be too strict. In the pizza example, we may get some help via
deadlines to solve this: if Pedro wants to have pizza for dinner, and have his
dinner at 6 pm tonight, then this deadline already forces him to have shorter
breaks. The question is then whether Coherence actually is a derived notion, and
the Axiom stated above is implicitly given by the other temporal dimensions.

Example 4 (Duration).

Scenario: Pedro usually takes 20 minutes to prepare a pizza, and then puts
it into the oven for 20 minutes. Thus the activity ‘make pizza’ has a duration of
40 minutes.

Formalization: We can equip any action a with an attributed duration d ∈ N,
given in minutes, to form the ordered pair 〈a, d〉. Assuming that no action can
be done instantaneously, we allow d = 0 to indicate that no duration has been
stated for the current action.

In the scenario above, we would then have 〈make pizza, 40〉 in the model,
stating that preparing pizza has a duration of 40 minutes.

For the model, assume we are looking at traces4 s = 〈s0, s1, . . . , si, . . . 〉,
where si is the state of the model at minute i, and s0 is the initial state. Then
‘preparing pizza takes 40 minutes’ would be modeled by

si |= start(make pizza)⇒ ∃j ≥ i+ 40 .sj |= done(make pizza).

Discussion: This example sees duration as an explicit notion present in the
model. One could also see it as an implicit notion, where ‘duration’ is nothing
but the difference of the two end-points of an activity, i.e. the difference between
start(a) and stop(a). The explicit notion is needed for planning and norm
compliance: if the agent knows that baking a pizza takes 40 minutes, then this
needs to be started at least 40 minutes before the planned dinner time; similarly,
the norm of ‘having dinner at 6 pm’ is certainly violated if Pedro starts preparing
the pizza at 10 to 6. How does the implicit notion fit in here? Is it just used to
update the explicitly given duration by experience, or as a monitoring tool to
make sure the pizza stays in the oven for just the right time? Or does it have
some importance in its own right, other than being checked against the recorded
duration while doing an instance of an activity?

Example 5 (Repetition). Scenario: Pedro has a ‘Pizza Day’: every Monday he
has pizza for dinner.

Formalization: Introduce a variableD for the weekday. Then we can formalize
the above by:

�(D = Monday → pizza for dinner).

Discussion: There seems to be nothing much needed for this except for
variable types that allow access to the trace time. One could expand this ex-
ample to ‘pizza every other week’, in which case one can then check against
the past week. Letting W range over weeks, we then would obtain (W = n ∧
pizza for dinner)→ (W = n+ 1 ∧ ¬pizza for dinner), and similarly swap-
ping the negation in front of pizza for dinner on both sides of the implication.

5 Discussion and future work

The examples above can all be expressed using LTL, using a two-dimensional
index for the temporal trace; essentially, it is still discrete, linear, but it has
the added benefit that we are now able to code daily routines using the second
component of the trace index only. This suggests that LTL may be a suitable
language for encoding temporal aspects of everyday activities. However, there
are still many open questions such as those discussed in Section 4. In particular,
we have not adressed the issue of expressing ‘temporal closeness’, or: ‘how late
is too late?’. A hard restriction on temporal distance between two activities that
should be performed ‘closely together’ may be too strict for practical purposes.
On the other hand, this may be an issue that can be dealt with by defining

4 For the sake of simplicity, we omit the ‘macro-time’ component for the moment,
looking at a one-dimensional trace.

norm compliance appropriately. Using a temporal language for reasoning about
compliance support may require adaptations to the temporal language to make it
tractable. As in [14] we use LTL without deontic operators. Whether this suffices
for expressing norms regarding desired daily behaviour is also to be explored in
future research.

Acknowledgements. We would like to thank two anonymous referees and the
participants of the CARe-MAS workshop for insightful comments and discussions
that helped improve the work presented in this paper.

References

1. G. Andrighetto, G. Governatori, P. Noriega, and L. van der Torre, editors. Nor-
mative Multi-Agent Systems, volume 4 of Dagstuhl Follow-Ups. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2013.

2. J. Broersen, F. Dignum, V. Dignum, and J.-J. Ch. Meyer. Designing a deontic
logic of deadlines. In Proceedings Seventh International Workshop on Deontic Logic
in Computer Science (DEON’04), volume 3065 of LNCS, pages 43–56. Springer-
Verlag, 2004.

3. S. Cranefield. A rule language for modelling and monitoring social expectations in
multi-agent systems. In Coordination, Organizations, Institutions, and Norms in
Multi-Agent Systems (ANIREM’05 and OOOP’05), volume 3913 of LNCS, pages
246–258, 2006.

4. F. Dignum and R. Kuiper. Specifying deadlines with dense time using deontic and
temporal logic. International Journal of Electronic Commerce, 3(2):67–86, 1998.

5. E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B: Formal Models and Semantics, pages
996–1072. Elsevier, Amsterdam, 1990.

6. G. Governatori, J. Hulstijn, R. Riveret, and A. Rotolo. Characterising deadlines
in temporal modal defeasible logic. In Proceedings of the 20th Australian joint
conference on Advances in artificial intelligence, pages 486–496. Springer-Verlag,
2007.

7. K. V. Hindriks and M. B. van Riemsdijk. A real-time semantics for norms with
deadlines. In Proceedings of the twelfth international joint conference on au-
tonomous agents and multiagent systems (AAMAS’13), pages 507–514. IFAAMAS,
2013.

8. A. Kayal, W.-P. Brinkman, R. Gouman, M. A. Neerincx, and M. B. van Riems-
dijk. A value-centric model to ground norms and requirements for epartners of
children. In Coordination, Organizations, Institutions, and Norms in Agent Sys-
tems IX (COIN’13), volume 8386 of LNCS, pages 329–345. Springer, 2014.

9. A. Kayal, W.-P. Brinkman, H. Zoon, M. A. Neerincx, and M. B. van Riemsdijk.
A value-sensitive mobile social application for families and children. In Posters,
Demos, Late-breaking Results and Workshop Proceedings of the 22nd Conference on
User Modeling, Adaptation, and Personalization (UMAP’14), volume 1181. CEUR,
2014.

10. H. Oinas-Kukkonen. Behavior change support systems: A research model and
agenda. pages 4–14, 2010.

11. P. Pasotti, M. B. van Riemsdijk, and C. M. Jonker. Representing human habits: to-
wards a habit support agent. In Proceedings of the 10th International workshop on
Normative Multiagent Systems (NorMAS’16), LNCS. Springer, 2016. To appear.

12. M. P. Singh. An ontology for commitments in multiagent systems: toward a unifi-
cation of normative concepts. Artificial Intelligence and Law, 7(1):97–113, 1999.

13. M. B. van Riemsdijk, L. Dennis, M. Fisher, and K. V. Hindriks. Agent reason-
ing for norm compliance: a semantic approach. In Proceedings of the twelfth in-
ternational joint conference on autonomous agents and multiagent systems (AA-
MAS’13), pages 499–506. IFAAMAS, 2013.

14. M. B. van Riemsdijk, L. Dennis, M. Fisher, and K. V. Hindriks. A semantic
framework for socially adaptive agents: Towards strong norm compliance. In Pro-
ceedings of the fourteenth international joint conference on autonomous agents and
multiagent systems (AAMAS’15). IFAAMAS, 2015.

15. M. B. van Riemsdijk, C. M. Jonker, and V. Lesser. Creating socially adaptive
electronic partners: Interaction, reasoning and ethical challenges. In Proceedings of
the fourteenth international joint conference on autonomous agents and multiagent
systems (AAMAS’15), pages 1201–1206. IFAAMAS, 2015.

