
Revising Institutions Governed by Institutions for
Compliant Regulations

Thomas C. King1, Tingting Li2, Marina De Vos3,
Catholijn M. Jonker1, Julian Padget3, and M. Birna van Riemsdijk1

1Delft University of Technology
{t.c.king-1, c.m.jonker, m.b.vanriemsdijk }@tudelft.nl

2Imperial College London 3University of Bath
tingting.li@imperial.ac.uk {mdv, jap}@cs.bath.ac.uk

Abstract. Institutions governing multi-agent systems (MASs) are a pervasive
means to guide agents towards the aims of the MAS (e.g. collecting data) with
regulations on the outcomes of agents’ behaviour. Yet, wider organisations/gov-
ernments often intend to guide the design of institutions governing MAS in meet-
ing different aims (e.g. preserving the rights of agents). A pervasive means to
guide the design of MAS-governing institutions (or any institution, for that mat-
ter) is to use institutions at higher tiers of governance (e.g. directives, constitu-
tions) to regulate the regulations of institutions at lower tiers of governance (e.g.
national legislation, software policies). A recent innovation has been an auto-
mated means to determine the compliance of a lower-tier institution’s regulations
with a higher-tier’s. However, for a designer of a non-compliant institution there
remains a dilemma: be punished for non-compliant regulations or arduously de-
termine and rectify the underlying causes of non-compliance. In this paper we
propose a way to automatically determine how to revise an institution to be com-
pliant that also minimises the change in the regulations’ outcomes thus keeping
as closely as possible to the institution designers’ original intentions.

Keywords: Multi-tier Institutions; Norm Revision; Institution Revision; Institutional
Compliance

1 Introduction

Legal institutions have long been used to govern Multi-Agent Systems (MAS) away
from anarchic and uncoordinated behaviour towards a collaborative society through reg-
ulations that impose norms (obligations and prohibitions) on agents, leading to many
frameworks for automated institutional reasoning (see [1] for a review). However, an
institution governing an MAS is typically designed with only the global aim of the
MAS (according to its stakeholders) in mind (e.g. collecting and aggregating data). Yet,
institutions governing MASs can operate in the realm of governments and organisations
with different aims to the MAS being governed, such as maintaining the rights of agents
(e.g. ensuring children’s personal data is not collected and aggregated). Inevitably, ten-
sions arise between the aims of institutions guiding MAS with the aims of the wider
organisations and governments they reside in.

The social-world resolves such tensions by using institutions to govern other institu-
tions, guiding institutional design towards wider aims with regulations on the outcomes
of other institutions’ regulations. Known variously as multi-tier/multi-level/vertical gov-
ernance [15], these governance structures comprise a tiering of institutions: a tier-1 in-
stitution governing an MAS by imposing obligations/prohibitions on agent behaviour,
a tier-2 institution governing through regulating the outcomes of tier-1 regulation by
obliging/prohibiting the imposition of specific obligations/prohibitions (i.e. imposing
higher-order norms), and so on. In [10] we addressed the apparent lack of frameworks
for institutions governing institutions with a formal and computational framework for
the representation and reasoning of vertical governance structures which we call multi-
tier institutions. By formalising multi-tier institutions, where institutions govern other
institutions, lower-tier institutions can automatically be checked for compliance.

However, once non-compliance has been automatically determined, the problem re-
mains for the designer of a non-compliant institution – determining how to revise the in-
stitution to be compliant and thus avoid any potential punishments for non-compliance
(e.g. fines in the case of EU Directives). The difficulty is that there can be many causes
of non-compliance due to the complexity of an institution and its multiple interacting
rules. Thus, in this paper we use the framework in [10] for multi-tier institution repre-
sentation and reasoning and propose an automated means to revise lower-tier institu-
tions to comply with higher-tier institutions. To do so, we view revising an institution to
be compliant as an Inductive Logic Programming problem where hypotheses (explana-
tions for non-compliance) are sought. In order to solve the problem, we use abductive
search implemented in Answer-Set Programming to abduce inductive explanations for
non-compliance (ways to revise for compliance).

In the rest of this paper, we first introduce a running example of a two-tier insti-
tution in the domain of collecting audio data in Section 2. Then, we give some back-
ground in Section 3 on the formal multi-tier institution representation and reasoning, the
computational multi-tier framework in Answer-Set Programming (ASP), and a brief re-
introduction of Inductive Logic Programming (ILP) theory revision. In Section 4 we
show how revising an institution to be compliant is an instance of an ILP problem, and
show how we can resolve it by transforming a program representing an institution in
ASP to a program for abducing revisions for compliance in ASP. The revision process
is based on [12] for revising conflicting institutions adapted for revising non-compliant
lower-tier institutions in multi-tier institutions with the following extensions: (i) creat-
ing or modifying existing rules for imposing higher-order norms, (ii) deleting existing
rules and (iii) minimising the changes in the consequences of a revised institution com-
pared to before revision. We further discuss differences with related work in Section 5
and conclude the paper in Section 6.

2 Running Example

Our running example is in the context of a system for crowdsourcing audio data from
users using specialised cellphone apps, called a soundsensing system [16]. A tier-1
soundsensing institution is designed to guide the cellphone app users (i.e. an MAS) in
collecting audio data. The soundsensing institution is described as follows:

Soundsensing Tier-1 Institution

– Users are forbidden from turning their microphone off to ensure data is collected
continuously.

– Users are obliged to provide their location on request to give the collected data
location context.

– If a user violates a norm they are obliged to pay a fine.

In turn, the soundsensing institution is governed by a tier-2 governmental institution
designed to meet different aims (e.g. maintaining agents’ rights), partly inspired by real-
world regulations [19]:

Governmental Tier-2 Institution
– It is obliged that fines are only imposed on users after they violate a norm.
– When a user is in an area that forbids audio recording, it is forbidden to forbid them

from turning their microphone off.
– It is forbidden to oblige children (users under the age of 14) to share their location

(similar regulations can be found in the United States Government’s Child Privacy
and Protection Act [19])

Putting these two institutions together, the tier-1 institution can be non-compliant for
many reasons. Due to institution designer error, users might be obliged to pay a fine
even when not violating a norm, and/or the tier-1 institution might not take into account
areas where recording is forbidden or the possibility that users are children. Even if the
tier-1 institution has, on the face of it, taken into account these factors, the interaction
between different rules can mean all things considered it does not.

3 Background

To provide context for this paper, we re-introduce the conceptualisation and operational-
isation of individual and multi-tier institutions from [10]. Then, we give an overview of
ILP theory revision which we later use to formulate the problem of institution revision
for compliance.

3.1 Formal Framework: Individual and Multi-tier Institutions

An individual legal institution acts as a mechanism to guide the behaviour of the sys-
tem it governs. Institutions define a set of constitutive and regulative rules which re-
spectively establish an institutional description and prescription of reality (see Searle’s
counts-as relation [18]). Constitutive rules describe the system governed through cre-
ating institutional facts that can represent events caused by other events (e.g. entering
a location which is private counts-as entering a private location), or they can represent
changes to the institutional state (e.g. entering a private location causes an agent to
be at a private location). Regulative rules prescribe what properties should hold/events
should occur in a system by creating obligations and prohibitions in states (e.g. when
requested an agent is obliged to share their location). An institution’s regulative rules
regulate over a social interpretation of reality constructed from brute facts by constitu-
tive rules.

Conceptually, a multi-tier institution extends the notion of an individual institution
governing an MAS to institutions governing institutions in a tiered structure. Each in-
stitutional tier governs the tier below. The first-tier imposes norms on what occurs and
holds in an MAS (first-order norms), the second-tier norms on the norms imposed by
the first (norms about first-order norms, i.e. second-order norms), and so on.

Formally, individual and multi-tier institutions are specified and reasoned about ac-
cordingly. The obligations/prohibitions which hold in states are represented as norma-
tive fluents describing an obligation/prohibition for an aim to occur before a deadline.
Formally the grammar is n := obl(a, d) | pro(a, d) where a is the aim and d the
deadline defined over a set of propositions Pr s.t. a, d ∈ Pr. The set of all express-
ible elements n is N|Pr. When Pr contains propositions denoting events (e.g. Bertrand
sharing his location share location(betrand),) and non-normative fluents, normative flu-
ents about descriptive propositions are expressible allowing first-order norms to be ex-
pressed (e.g. Bertrand is obliged to share his location before leaving it:
obl(share location(betrand), leave(betrand, street d))). When Pr contains normative flu-
ents, normative fluents about other normative fluents are expressible, allowing higher-
order norms to be expressed (e.g. it is prohibited to oblige Bertrand to share his location
until he turns 14: pro(obl(share location(betrand), leave(betrand, street d)),
birthday(betrand, 14))).

An individual institution specification, based on the InstAL framework [4] is a tuple
I|Pr = 〈E ,F ,G, C, ∆〉 (defined over a set of propositions Pr which in places we omit).
The elements are: (i) The set of events E that occur in the institution and bring about
state change. These comprise observable events Eobs, events that have an institutional
meaning Einstact (e.g. an agent enters a private area) and events denoting a norm is dis-
charged/violated Enorm. (ii) The set of fluents F that can hold in states. These comprise
fluents used to describe the domain Fdom and normative fluents Fnorm ⊆ N|Pr. (iii) An
institutional event generation function G : X ×E → 2Einstact . The function is conditional
on the fluents that hold in a state (called a state condition represented with X = 2F∪¬F

as a set of positive fluents that hold and negative fluents that do not hold in a state)
and an event. (iv) An institutional state change function describing the fluents initiated
and terminated from one state to the next conditional on the previous state and an event
C : X ×E → 2F ×2F . The codomain is a pair of sets 〈C↑(X , E), C↓(X , E)〉 of initiated
and terminated fluents. (v) The institution’s initial state ∆ ⊆ F .

Formally, a multi-tier institution is specified as a tupleM = 〈T ,GX i, CX i〉. The
components are: (i) A tiering of individual institutions T = 〈I1|Pr1 , ..., In|Prn〉 where
we say an institution I is inM iff ∃i ∈ N : Ii = I. (ii) A function GX i for providing
the normative events occurring during a state transition in one tier to the tier above for
monitoring. (iii) A function CX i for providing the normative fluents that hold in a state
to the tier above for monitoring. The tiering of institutions restricts each institution in
only imposing ith-order norms over the behaviour of the system it governs such that
the normative fluents are defined over Pri which contains everything expressible in
the tier below (i.e. Pr2 contains first-order norms and thus I|2Pr2 imposes second-order
normative fluents over Pr2. For formal details see: [10]).

Table 1 formalises the running example as a multi-tier institution consisting of the
soundsensing system’s tier-1 institution and a governmental tier-2 institution (upper-

Soundsensing System Tier-1 Institution Governmental Tier-2 Institution

G1(X , E) :
1.1 〈{at(Loc0,Ag0)}, enter(Loc1,Ag0)〉 →
{leave(Loc0,Ag0)}

1.2 〈∅, viol(obl(share location(Ag0),
leave(Ag0, Loc0)))〉 → {norm violation(Ag0)}

1.3 〈∅, viol(pro(microphone off(Ag0),
leave soundsensing(Ag0)))〉
→ {norm violation(Ag0)}

1.4 〈∅, enter(Ag0, Loc0)〉 → {norm violation(Ag0)}
1.5 〈{private(Loc0)}, enter(Ag0, Loc0)〉 →
{enter private(Ag0)}

1.6 〈{private(Loc0)}, leave(Ag0, Loc0)〉 →
{leave private(Ag0)}

C1↑(X , E) :
1.7 〈∅, enter(Loc0, Ag0)〉 → {at(Ag0, Loc0)}
1.8 〈∅, {request location(Ag0)}〉 →
{obl(share location(Ag0), leave(Ag0, Loc0))}

1.9 〈∅, {norm violation(Ag0)}〉 →
{obl(pay fine(Ag0), leave soundsensing(Ag0))}

C1↓(X , E) :
1.10 〈∅, {leave(Loc0, Ag0)}〉 → {at(Loc0, Ag0)}
1.11 〈{child(Ag0)}, {birthday(Ag0, 14)}〉 →

{child(Ag0)}
∆1 = {private(street b), at(ada, street b),

at(bertrand, street c), child(bertrand)
pro(microphone off(ag0),

leave soundsensing(ag0))}

G2(X , E) :
2.1 〈{at(Loc0,Ag0)}, enter(Loc1,Ag0)〉 →
{leave(Loc0,Ag0)}

2.2 〈∅, viol(obl(share location(Ag0),
leave(Ag0, Loc0)))〉 →
{norm violation(Ag0)}

2.3 〈∅, viol(pro(microphone off(Ag0),
leave soundsensing(Ag0)))〉
→ {norm violation(Ag0)}

C2↑(X , E) :
2.4 〈∅, enter(Loc0, Ag0)〉 → {at(Ag0, Loc0)}
2.5 〈∅, disch(obl(pay fine(Ag0),

leave soundsensing(Ag0)))〉 →
{obl(norm violation(Ag0), obl(pay fine(Ag0),
leave soundsensing(Ag0)))}

2.6 〈{private(Loc0)}, enter(Loc0)〉 →
{pro(pro(microphone off(Ag0),
leave soundsensing(Ag0)), leave(Loc0))}

C2↓(X , E) :
2.7 〈∅, {leave(Loc0, Ag0)}〉 → {at(Loc0, Ag0)}
〈{child(Ag0)}, {birthday(Ag0, 14)}〉 →
{child(Ag0)}

∆2 ={obl(norm violation(Ag0),
obl(pay fine(Ag0),

leave soundsensing(Ag0)),
pro(obl(share location(bertrand),

leave(Ag0, Loc0)),
birthday(bertrand, 14))} ∪∆1

Table 1. Formalisation of the tier-1 soundsensing institution and tier-2 governmental institution.

case symbols stand for variables and for brevity we leave out the set of events and
fluents for each institution). Both institutions consist of rules describing the domain
(e.g. an agent entering a new location causes the agent to be at that location) and con-
sider the location ‘street b’ to be private and the agent ‘Bertrand’ to be a child (see the
initial states). The formalised example has three issues of non-compliance between the
two institutions. Firstly, when an agent enters a new location this causes a generic norm
violation event in the soundsensing institution (1.3) due to designer error and which in
turn initiates an obligation to pay a fine (1.9). However, the governmental institution
only recognises actual norm violation events as causing a generic norm violation event
(2.2 and 2.3) and obliges an actual norm is violated before an obligation to pay a fine
is imposed (2.5 and ∆2). Secondly, in the sounsensing institution agents are uncondi-
tionally prohibited from turning their microphone off (∆1), however the governmental
institution prohibits such a prohibition when an agent enters a private location (2.6).
Thirdly, when an agent is requested to provide their location the soundsensing institu-

Nth-tier Institution

Sn
0

En
0

Sn
1 Sn

k+1...
Nth-order
norms

Second-tier Institution

S2
0

E2
0

S2
1 S2

k+1...
Second-order
norms

First-tier Institution

S1
0

E1
0

S1
1 S1

k+1...
First-order
norms

eobs
0 eobs

1 eobs
k...

Observable
Event Trace

Model Input

Monitoring Input

Fig. 1. Schematic view of a multi-tier institution model

tion obliges them to do so (1.8), but this is forbidden by the governmental institution if
the agent is a child (∆2), such as Bertrand.

The operational semantics of a multi-tier institution, first presented in [10], allow
such non-compliance to be determined by checking a multi-tier institution model for
norm violations. Depicted in Figure 1, the model describes how each ith-tier institution
evolves over time, as an event-state sequence, in response to the evolution of the tier
below. The first-tier evolves in response to a trace of observable events that could occur
in an MAS (i.e. produced for a pre-runtime check). Each tier above the first evolves in
response to the event-state sequence of the institution they govern (i.e. the tier below).
States contain domain fluents describing the MAS and normative fluents prescribing the
events that should occur and fluents that should hold in the tier below (including other
normative fluents). Each state transition is caused by events occurring in the institution
from the previous state, which are in turn driven by the events and states from the tier
below. If a normative fluent in a state is violated by an event or fluent in the tier below
(including another normative fluent) a norm violation event occurs in the transition to
the next state. Thus, model-checking can be used to compliance-monitor one institution
with another by checking for higher-order norm violation events.

3.2 Computational Framework for Multi-Tier Institutions in ASP

The formal framework described is complemented by a corresponding computational
framework in ASP (see [10]) for automatic compliance checking of lower-tier institu-
tions with higher-tier institutions. ASP [2] is a non-monotonic logic programming lan-
guage for representing problems where solutions to those problems, known as answer-
sets, are computed according to the stable model semantics [8] using an answer-set
solver (e.g. [7, 11]). An ASP program is built from first-order atoms which can be
weakly negated with not. In an ASP program facts are of the form p0.. Rules are horn
clauses of the form p0 : −p1, ..., pn., which states the head p0 is true when p1, ..., pn are

M = 〈T ,GX i, CX i〉, T = 〈I1, ..., In〉,∀i ∈ [n], (Ii = 〈Ei,F i, Ci,Gi,∆i〉) :

Ii ⇔ tier(In,i). inst(In). ∈ PIi

e ∈ Eiobs ⇔ evtype(e,In, ex). ∈ PIi
f ∈ F i ⇔ ifluent(f,In). ∈ PIi

e ∈ Eiinstact ⇔ evtype(e,In, in). ∈ PIi
f ∈ F i ⇔ ifluent(f,In). ∈ PIi

Ci↑(X, e) = P ⇔ ∀p ∈ P : initiated(p,In, I) : − occurred(e,In, I), EX(X, In, I). ∈ PIi
Ci↓(X, e) = P ⇔ ∀p ∈ P : terminated(p,In, I) : − occurred(e,In,I), EX(X, In, I). ∈ PIi
Gi(X, e) = E ⇔ ∀e′ ∈ E : occurred(e′,In, I) : − occurred(e,In, I), EX(X, In, I). ∈ PIi

f ∈ ∆i ⇔ holdsat(f,In, I) : −start(I). ∈ PIi
Table 2. Multi-tier institution translation to ASP.

true. Constraints on answer-sets produced can be represented as : −p1, ..., pn. meaning
falsity is in the head of the rule and thus p1, ..., pn is not true in any answer-set. Finally,
choice constructs of the form l{p1, ..., pn}uwhere l and u are positive integers state that
at least l and at most u members of the set can arbitrarily be included in an answer-set
(when omitted, l is 0 and u is infinity).

The computational framework consists of several components which we refer to
later in this paper (i) an implementation of the operational semantics, the reasoning
program Preas (ii) a program representing the trace of observable events used as input
for producing multi-tier models, the timeline program Ptime and (iii) a representation in
ASP of a multi-tier institution M = 〈T ,GX i, CX i〉 according to the translation given
in Table 2, which produces an ASP program PIi for each individual institution Ii in
the multi-tier institutionM. For brevity we leave out the details of the translation, but
note that (i) In is a unique name for the institution Ii, (ii) initiated(p, In, I) and
terminated(p, In, I) means the fluent p is initiated/terminated at time I in institu-
tion In, (iii) occurred(e, In, I) means the event e occurs at time I in institution In,
(iv) holdsat(f, In, I) means a fluent f holds at time I in institution In, (v) start(I)
means I is the initial time interval according to the timeline program, and finally,
(vi) EX(X, In, I) is shorthand for translating a state condition X ∈ X i into a corre-
sponding set of ASP body literals holdsat(f, In, I) for all positive elements of X and
not holdsat(f, In, I) for all negative elements of X .

3.3 Inductive Logic Programming: A brief overview

We view the problem of revising lower-tier institutions to be compliant with higher-
tier institutions as a theory revision (TR) problem that can be solved using Inductive
Logic Programming (ILP). ILP [17] is a machine learning technique concerned with
the induction of logic theories that generalise (positive and negative) examples with
respect to a prior background knowledge. In non-trivial problems it is crucial to define
the search space accurately. This is done by a language bias, that can be expressed using
the notion of mode declarations [17], describing the structure of the elements in the
target theory. In the case presented here, we want to find ASP rules that contain certain
elements in the head and body. So we will have head and body mode declarations.

An ILP theory revision task is a tuple 〈P,B,M〉 where P is a set of conjunctions
of literals, called properties, B is a normal program, called the background theory, M
is a set of mode declarations describing the form that rules in the revised theory can
take and s(M) is the set of rules adhering to M . A theory H , called a hypothesis, is an
inductive solution for the task 〈P,B,M〉, if (i) H ⊆ s(M), and (ii) P is true in all the
answer sets of B ∪H .

Our approach to making a lower-tier institution in a multi-tier institution compliant
is based on the introduction of new rules, and deleting and revising existing ones. As
discussed in [5], non-monotonic inductive logic programming can be used to revise an
existing theory. The key concept is that of minimal revision. In general, a TR system is
biased towards the computation of theories that are similar to a given revisable theory.
The difference between two programs T and T ′ is denoted as c(T, T ′).

The theory T ′, called a revised theory, is a TR solution for the task 〈P,B, T,M〉
with distance c(T, T ′), iff (i) T ′ ⊆ s(M), (ii) P is true in all the answer sets of B ∪ T ′,
(iii) if a theory S exists that satisfies conditions (i) and (ii) then c(T, S) ≥ c(T, T ′),
(i.e. minimal revision).

4 Revising Institutions For Compliance

In this section we give the details of the paper’s main contribution: a system for revis-
ing a lower-tier institution to be compliant with a higher-tier institution in a multi-tier
institution. In particular, we are interested in revising the institution which the system
user (an institutional designer) has the power to effect change. We call this institution
to be revised a mutable institution. We are interested in revising a mutable institution to
meet two properties:

– Success meaning that a formerly non-compliant institution for an event-trace is
compliant for the same event trace after being revised. This means when normative
fluents are obliged to be imposed they are, and conversely any prohibited normative
fluents are not imposed.

– Minimality is a requirement for any revision to minimise the change in conse-
quences of the new institution compared to the old one. That is, following changes
to the institution the institution’s states are as close as possible to the states prior
to the change(s) for a trace of events. To give an example, the soundsensing in-
stitution prohibits agents to turn their cellphone microphone off, whilst the gov-
ernmental institution prohibits such a prohibition in areas deemed ‘private’. In this
case, an institution revision can be successful by removing the soundsensing insti-
tution’s prohibition altogether, but only successful and minimal by removing the
prohibition in just those cases where an agent is at a private location.

We instantiate the problem of revising a mutable institution as an ILP theory revi-
sion task in Section 4.1. Then, we take a computational approach to solving the ILP
theory revision task by performing abductive search in ASP [6]. Abductive search is
achieved by transforming the mutable institution represented in ASP to an ASP repre-
sentation encoding the space of ILP theory revisions and enabling different revisions
to be tried. We describe our computational approach using ASP in Section 4.2, and the
implementation and revision results for our running example in Section 4.3.

4.1 Revising Institutions to be Compliant is an ILP Theory Revision Task
Instance

In this section, we define the revision for compliance task as an ILP revision task ac-
cording to the revision for compliance requirements outlined previously. We begin by
formally defining the search space of possible revisions with mode declarations. Mode
declarations define the literals that can appear in the head and body of rules. In the case
of revising a mutable institution in a multi-tier institution, the mode declarations de-
scribe the valid rules for: generating non-normative institutional events, initiating and
terminating domain fluents, and given the mutable institution is the ith-tier, initiating
and terminating ith-order normative fluents (i.e. restricted to only initiating/terminating
a normative fluent f if it is not in the language of normsN|Pri−1 of the tier i−1 below).

Definition 1. Mode Declarations. Let Ii = 〈E i,F i,Gi, Ci, ∆i〉 be a mutable institu-
tion for which In is a unique label. The mode declarations for Ii are a pair M =
〈Mh,M b〉 where Mh is the set of head mode declarations and M b the set of body
mode declarations, defined as:

Mh = {initiated(f, In, I), terminated(f, In, I) : f ∈ F \ N|Pri−1}∪
{occurred(e, In, I) : e ∈ E iinstact}

M b = {holdsat(f,In, I),¬holdsat(f,In, I) : f ∈ F i}∪
{occurred(e, In, I) : e ∈ E i}

The set of compatible rules with the head and body mode declarations are also
required to contain one event in the body and are defined as:

Definition 2. Compatible Rules. Let M = 〈Mh,M b〉 be the mode declarations for
a mutable institution Ii = 〈E i,F i,Gi, Ci, ∆i〉. An ASP rule l0 : − l1, ..., ln. where
n ∈ N is compatible with M iff l0 ∈ Mh, ∀i ∈ [1, n] : li ∈ M b and |{l1, ..., ln} ∩
{occurred(e, In, I) : e ∈ E i}| = 1. The set of all compatible rules with M is s(M).

Having described the search space of revisions, a theory revision task TR needs to
be instantiated with the properties P that a solution must meet. These properties are
typically positive examples (formulae that are true following a revision) and negative
examples (formulae that are false following a revision). In our case we are only inter-
ested in supplying negative examples, stating that non-compliance is eradicated in a
solution to TR. The negative examples in P are represented as ASP integrity constraints
requiring a revised mutable institution is compliant with all higher-order norms it can
violate – including those it does not violate before revision – ensuring revision does not
cause further non-compliance.

Definition 3. Compliance Properties. Let Ii be a mutable institution and Ii+1 =
〈E i+1,F i+1, Ci+1,Gi+1, ∆i+1〉 be the institution with unique name Ini+1 governing
Ii where i ∈ N. The compliance properties for Ii is the set of constraints:

P = {: − occurred(viol(n), Ini+1, I), instant(I). : n ∈ F i+1
norm}

We can now instantiate an ILP theory revision task, as a compliance theory revision
task in a multi-tier institution according to the previous definitions:

Definition 4. Compliance Theory Revision Task. Let Ii be a mutable institution in the
multi-tier institutionM. An ILP theory revision task TR = 〈P,B, T,M〉 is a compli-
ance theory revision task for Ii iff: (i) P is a set of compliance properties for Ii, (ii) B
is the normal program comprising (a) a multi-tier reasoning program Preas, (b) the
timeline program Ptime and (c) the institution representation program PIj for each
institution Ij inM apart from the mutable institution Ii, (iii) T is the institution rep-
resentation program PIi for the mutable institution Ii, and (iv) M is the set of mode
declarations for Ii.

As outlined previously, we require solutions to theory revision to minimise the re-
vision cost in order to remain as close to an institution designer’s original intentions
as possible. More precisely, the requirement is that the changed, mutable, institution’s
model for a composite trace contains as many similarities between states compared to
before the changes were made (i.e. minimising the changes to consequences). We de-
rive the cost of revision from the changes in consequences rather than the number of
rule changes – as used in [12] – since due to non-monotonicity, as the changes in con-
sequences between two versions of a mutable institution increases, the number of rule
changes does not necessarily monotonically increase. The changes in consequences are
the number of added and deleted fluents in the answer set for B ∪ T compared to the
answer-set B ∪ T ′ for some revised institution T ′ (i.e. the symmetric set difference
between the answer-sets for B ∪ T and for B ∪ T ′).

Definition 5. Theory Revision Cost Let TR = 〈P,B, T,M〉 be a compliance theory
revision task for a mutable institution I with unique label In, T ′ be a solution to TR,
ans be the answer-set for B ∪T and ans′ be the answer-set for B ∪T ′ and ⊕ be the set
symmetric difference operation. The cost c(T, T ′) is defined as:

c(T, T ′) =
∣∣{f = holdsat(p, In, i) : i ∈ N, f ∈ ans⊕ ans′

}∣∣
4.2 Solving ILP Institution Revision in ASP

Based on [12] we use abductive search in ASP to solve an ILP theory revision task
TR = 〈P,B, T,M〉 instantiated as institutional revision for compliance. The approach
we take is to transform the theory to be revised T (a mutable institution) into an ASP
program where different changes to the theory can be tried/abduced (body literal and
rule addition and deletion) that fit into the space of possibilities s(M). We call this
program the revision program Prev. The background theory B remains unchanged and
provides both the unchangeable parts of the multi-tier institution and multi-tier reason-
ing. The background theory allows the effects of different revisions to be determined.
The properties to be met, P , constrain any revisions found by the ASP program Prev

to result in a compliant institution. The cost measure between a revisable T and re-
vised theory T ′, c(T, T ′) is encoded as an ASP optimisation statement. Computing the
answer-sets for these components as a single ASP program explores the search space,
with each answer-set representing an outcome (revised theory) that meets the properties
P and with those that minimise the difference (changes in consequences) ranked high-
est and presented to the user for selection. The advantage of this approach is that the

Rules Describing Institution Changes Explanation
l0: − l1, ..., ln, rev(In, i,details(rDel)).
{rev(In, i,details(rDel))}.

Rule deletion: Existing rules are extended with an ab-
ducible rev(In, i,details(rDel)), which when in-
cluded in an answer-set has the effect of deleting the
rule with index i.

l0: − l1, ..., lj−1, try(i, j, B
+
−(lj), lj),

lj+1, ..., ln.

try(i, j, B+
−(lj), lj): − lj ,

not rev(In, i, details(bDel, j)).
try(i, j, B+

−(lj), lj): −
rev(In, i, details(bDel, j)).

{rev(In, i, details(bDel, j))}.

Body literal deletion: Each body literal lj of an ex-
isting rule is replaced with the literal try/4 for
trying to delete the body literal lj . When the ab-
ducible rev(In, i, details(bDel, j)) is included in
an answer-set the effect is to make the try literal true
and thus effectively delete the literal lj , otherwise
the try literal is only true when lj is true (effectively
keeping lj).

l0: − rev(In, i,details(rAdd)), l1, ..., ln.
{rev(In, i,details(rAdd))}.

Rule addition: Including the abducible
rev(In, i,details(rAdd)) has the effect of in-
cluding the rule with index i in the program.

l0: −l1, l2, ..., ln,
extension(i, l0, ln+1, B

+
−(ln+1)).

extension(i, l0, ln+1, B
+
−(ln+1)): −

not rev(In, i, details(bAdd,
B+
−(ln+1), ln+1)).

extension(i, l0, ln+1, B
+
−(ln+1)): −

rev(In, i, details(bAdd,
B+
−(ln+1), l1), l1.

{rev(In, i, details(bAdd,
B+
−(ln+1), ln+1))}.

Body literal addition: Existing rules are appended
with extension/4 predicates for each body mode
literal a rule can be extended with. Including the
abducible rev(In, i, details(bAdd, pos, l1) in an
answer-set has the effect of extending the rule with
index iwith the body literal l1 (constraining the rule).
That is, adding the revision predicate to an answer set
makes the extension predicate true only when the lit-
eral with the specified variable bindings are true, ef-
fectively adding a constraint/body-literal to the rule.
Otherwise, the extension predicate is always true (no
constraint is tried for addition).

Table 3. Explanation of how abducible revision predicates can (re-)define institutional rules for
finding revisions of the institution In

representation and reasoning for the non-revisable portions of the multi-tier institution
are encoded as the same ASP programs for the computational and revision framework
requiring no re-implementation.

In order to go from a revisable theory T representing a mutable institution to a re-
vision program Prev, we need to alter T in some way such that adding new rules and
changing existing rules can be tried by the new program with each answer-set corre-
sponding to different revised theories. The approach we take, as in [6, 12], is to intro-
duce abducible predicates which represent the different revision operations. Abducible
predicates are selected by the program for inclusion in answer-sets. If an abducible is
selected for inclusion in an answer-set then the effect is to perform the revision oper-
ation the abducible represents. The abducibles have the form rev(In, i, details(...))
conveying to the user the revision operation described in details(...) (e.g. a rule dele-
tion operation) is carried out on a rule with label i in institution In. To give a simple
example the rule l0 : − l1. cannot be selected for deletion by an ASP program, but
we can modify it to become l0 : −l1, not rev(In, i, details(rDel)). meaning if the

abducible rev(In, i, details(rDel)) is included by the program in an answer-set the
effect is to delete the rule i by ensuring the body is never true. The selection of revision
tuples for inclusion in an answer-set is encoded in the ASP revision program using the
ASP choice construct of the form {rev(In, i, details(...))}.

Each type of revision operation (rule and body literal addition and deletion) requires
a different abducible and set of rules in the ASP revision program Prev. In Table 3 we
describe the details of the different rules for trying revisions and the transformation
from a revisable theory T to a revision programPrev using In to represent an institution’s
name, i to represent a rule identifier (e.g. an integer) and B+

−(l) to represent whether a
literal l is positive or negative.

Finally, the cost c(T, T ′) between two theories is encoded as an ASP optimisation
constraint causing the ASP program to only present answer-sets that are minimal in the
changes to consequences between T ∪ B and T ′ ∪ B, which we also extend with a
secondary preference for revisions that generalise the institution (deleting body literals
and rules) rather than specialising (adding new body literals and rules). The optimisa-
tion statement is given below where X@n represents the priority n of minimising the
numerical value X , difference/1 measures the difference between the states in the
answer-set for the institution before and after revision (in terms of added and removed
fluents for each state), rAdd/1 counts the rule additions, bAdd/1 the body additions,
bDel/1 the body deletions and rDel/1 the rule deletions.
#minimize {D@5: difference(D); RA@4: rAdd(RA); BA@3: bAdd(BA); BD@2: bDel(BD);

RD@1: rDel(RD)}.

4.3 Implementation and Results

A prototype system for revising a lower-tier institution to be compliant with a higher-
tier is implemented according to the description in the preceding sections 1. The imple-
mentation is a compiler written in Java which, as depicted in Figure 2, takes as input
the mutable institution the institution designer has the power to effect change repre-
sented in ASP (the mutable institution program PIi) and outputs a revision program
Prev. The revision program is then put together with compliance properties to be met
by revisions, revision cost minimisation optimisations and the background theory to re-
main unchanged (the non-mutable institutions, the timeline program and the multi-tier
institution reasoning). An answer-set solver applied to the composition of these pro-
grams then produces minimal revision suggestions for compliance (answer sets). The
suggestions are passed to a user who selects and applies a set of revisions, resulting in
a compliant institution represented as an ASP program.

In addition to the system presented in this paper, the ASP compiler also addresses an
apparent lack of re-usability of institutions (e.g. using the same institution for different
sets of agents) due to their propositional nature. Rather than taking just propositional
institutions as input, the compiler also takes first-order institution theories containing
variables in the head and body of rules, together with bindings and monadic predicates

1 The prototype, multi-tier reasoning in ASP and the examples used in this paper can be found at
https://sourceforge.net/projects/multitierinstitutionlearning/
files/

https://sourceforge.net/projects/multitierinstitutionlearning/files/
https://sourceforge.net/projects/multitierinstitutionlearning/files/

Mutable Institution
Program -
(Revisable Theory)

Non-mutable institution programs -
Timeline Program -
Multi-tier reasoning program -
(Background Theory)

Answer Set Solver

ASP to ASP Compiler

Revision Suggestions for
Compliance

(Answer Sets)

Revision Program -

Compliance properties +
cost minimisation

optimisations

Compliant revised
institution program -

Selects Revisions

Fig. 2. Overview of using the implemented compiler and the multi-tier institution framework to
resolve non-compliance.

to denote types. To give an example, agent(ada) denotes ada is of type agent and
agent(X) denotes the variable X is any ground term of type agent. Thus, a designer
does not need to write a new propositional institution for the case where a new agent,
Charles, joins the institutionalised society with all the norms and domain fluents that are
about Charles. Instead, a fact agent(charles) can be added stating Charles is of type
agent. In turn, the compiler takes these more re-usable first-order institution theories as
input and outputs a first-order institution revision program that tries different variable
bindings between head and body literals’ variables of the same type.

For our running example, we have used our prototype compiler to produce a revision
program for sub-sets of the compliance problem. That is, dividing the program up into
smaller parts and resolving one case of non-compliance at a time for tractability, and
testing all revision suggestions together at the end to confirm they are consistent. Some
of the minimal and successful revisions found are given below (we keep to those we
find most intuitive).

The first change suggested addresses the issue of non-compliance due to an obliga-
tion to pay a fine being imposed by the tier-1 institution when an agent enters a new
area. Non-compliance occurs, because an agent entering a new area triggers a norm vi-
olation event in the first tier institution regardless of whether a norm has been violated,
whilst the second tier obliges that a norm is genuinely violated before a fine is imposed.
The revision suggestion is to delete the rule in the first-tier institution causing a norm
violation event to occur when an agent enters an area:
occurred(norm violation(Agent0), soundsensing, I) :- agent(Agent0), instant(I),

occurred(enter(Agent0, Location0), soundsensing, I), location(Location0).

The second issue is that children (people under the age of 14) are obliged to share
their location when requested, but this is prohibited by the tier-2 institution. The fol-

lowing suggestion is one of several minimal changes found to ensure the non-compliant
obligation is not imposed on children. An additional constraint is placed that an agent,
Agent2, is not a child and the variable Agent2 is bound to the variable Agent0
denoting the agent who would be obliged to share their location. This means that the
obligation can not be imposed on a child. The new variable Agent2 is introduced since
the implementation relies on using unique variables for all literals and then systemati-
cally trying different optional bindings between the variables (or no bindings). The new
rule is:
initiated(obl(share_location(Agent0), leave(Agent0, Location0)), soundsensing, I)

:- occurred(request_location(Agent1), soundsensing, I),
holdsat(at(Agent1, Location0), soundsensing, I),
not holdsat(child(Agent2), soundsensing, I), Agent0 = Agent1,
Agent0 = Agent2, agent(Agent0), agent(Agent1), agent(Agent2),
location(Location0), instant(I).

Finally, the tier-2 institution prohibits a prohibition on an agent to turn their micro-
phone off when they are in a private area. Yet, the tier-1 institution always prohibits
turning a microphone off until the agent leaves the system (the prohibition exists in the
initial state). The revisions found are not to delete the rule initiating a prohibition in the
tier-1 institution’s initial state, but instead, to terminate the prohibition when an agent
enters a private area and then initiate it again when they leave. Although the revision
adds two rules, it is minimal in the outcome of the tier-1 institution since there is still a
prohibition on turning the microphone off in all other cases where it is allowed by the
tier-2 institution:
terminated(pro(microphone off(Agent0), leave soundsensing(Agent0)), soundsensing, I)

:- occurred(enter private(Agent2), soundsensing, I), agent(Agent2),
agent(Agent0), Agent0=Agent2, instant(I).

initiated(pro(microphone off(Agent0), leave soundsensing(Agent0)), soundsensing, I)
:- occurred(leave private(Agent2), soundsensing, I), agent(Agent2),
agent(Agent0), Agent0=Agent2, instant(I).

5 Related Work

There has been much work on norm change in normative systems, however, as far as we
are aware we are the first to propose a way to revise institutions to be compliant with
other institutions in a multi-tier institution.

The most closely related work is by Li et al. [12,13] who also uses abductive search
in ASP to resolve an ILP theory revision task. Unlike us, their focus is on resolving
norm conflicts between multiple institutions governing a group of agents (e.g. when an
agent is prohibited to perform an action by one institution and obliged by another) and
later the general case of debugging ASP programs [14]. In comparison, we focus on
revising non-compliance between lower-tier and higher-tier institutions in a multi-tier
institution. Our proposal is based on Li et al. and extended to revising an ith-tier insti-
tution by adding new rules or modifying/deleting pre-existing rules to impose ith-order
norms. We also extend the work to revising with minimal changes in the consequences
of a revised institution (as opposed to changed rules), finally we look at the creation and
deletion of existing rules which in our running example provides more minimal changes
in the consequences compared to rule modification.

Vasconcelos et al. [20] have proposed a technique for revising conflicting norms
based on first-order unification. Their proposal provides a fine-grained way to revise
obligation/permission/prohibition predicates’ terms. For example, an obligation to be
in an area that overlaps with a prohibited area is revised by changing the obliged/pro-
hibited areas for an agent to be in. In contrast to our work, their focus is on modifying
the obligation/permission/prohibition predicates and not with adding/removing/modi-
fying rules to meet a particular property (compliance between institutions in our case).

Governatori and Rotolo [9] propose a way to use a defeasible logic to modify legal
systems by introducing new norms which derogate, abrogate and annul norms using de-
feasible rules. Central to their proposal is the idea of a legal system being versioned and
having two timelines: the versioning timeline and the timeline of the legal system’s evo-
lution (i.e. which norms are imposed and when). We only consider the latter timeline,
the evolution of an institution (in our case during pre-runtime model checking) and fo-
cus on diagnosing causes of non-compliance between institutions rather than assuming
it is known what the new information (rules) is.

Finally, on the more conceptual and theoretical side, Boella et al. [3] look at how
to classify different systems of norm change by investigating a set of rational norm
change postulates. Specifically, they look at normative system change to incorporate
new conditional norms in input/output logics and they investigate the set of consistent
postulates for different input/output logics. Again, this work also presupposes which
conditional norms should be added to the normative system/institution, thus any system
meeting these postulates is quite different from our proposal.

6 Conclusions

In this paper we proposed an implemented automated system for revising a lower-tier
institution’s regulations to be compliant with the regulations of a higher-tier institution it
is governed by. The proposal addressed a problem created by pervasive legal artefacts in
the social world, where on the one hand institutions are used to govern other institutions
in a vertical governance structure we call multi-tier institutions, creating the potential
for non-compliant regulations. On the other hand, revising institutions’ regulations to
be compliant is non-trivial due to their inherent complexity.

Our proposal takes our previous formal and computational framework [10] for de-
termining the compliance of institutions in multi-tier institutions. Then, viewing the
problem of revising an institution to be compliant as an instance of an ILP (Induc-
tive Logic Programming) theory revision task, we use abductive search in ASP based
on [12] to solve the ILP theory revision task for compliance. Abductive search in ASP is
performed by translating, using an implemented compiler, from an ASP representation
of an institution that needs to be revised to be complaint where revisions cannot be tried
and searched for, to an ASP representation where all possible revisions can be tried and
thus revisions for compliance determined. Then, our system goes about finding revi-
sions that are successful in resolving non-compliance and minimal in the changes to
the institution’s consequences thus keeping the regulations as close as possible to the
institution designer’s original intentions.

The system for revising institutions, for tractability, considers a fragment of the
search space of revisions: modifying and deleting existing rules and extending a sin-
gle mutable institution with a limited number of rules. The successful and minimal
revisions that do exist (if any) within the space explored are guaranteed to be found.
However, there may be more minimal revisions that result in a well-formed institution
(according to our representation of institutions) outside of this space, but this space is
bigger and takes longer to explore.

We consider this a problem that is important to address. Firstly with formal analysis
of the complexity of the full problem. Secondly, by studying the applicability of various
heuristics to the full search problem (e.g. genetic algorithms) which cannot guarantee a
minimal solution is found (i.e. in the case of genetic algorithms instead converging on
local optima) but can help resolve tractability issues. As yet, it is unclear which heuris-
tics are appropriate and how they can be incorporated into ILP revision as abducible
search in ASP, presenting an interesting challenge for future work.

Another avenue for future work is to go beyond the problem of revising a single
non-compliant mutable institution in a multi-tier institution. There remains the question
of how to revise for compliance when multiple institutions are non-compliant. One ap-
proach is to simply extend the work presented in the paper from searching rule changes
for a single institution to all non-compliant institutions. Yet due to combinatorial explo-
sion this is a more complex task for non-trivial multi-tier institutions. Another option
is to revise institutions in a specific order, searching a fragment of possible changes
to multi-tier institutions. However, it remains to be seen if there is procedural order in
which to search for revisions that offers the same guarantees of minimality and success,
with the additional guarantee of the procedure terminating. This makes revising multi-
ple institutions for compliance an interesting avenue for formal analysis in future work,
in particular when looking at more general governance structures rather than multi-tier
institutions, such as arbitrary graphs.
Acknowledgements Thomas C. King is supported by TU Delft’s SHINE (http://
shine.tudelft.nl) project. Authors would like to thank the anonymous reviewers
of COIN@IJCAI 2015 for their helpful comments and Brian Logan for the discussion
following the workshop.

References

1. G. Andrighetto, G. Governatori, P. Noriega, and L. van der Torre. Normative Multi-Agent
Systems, volume 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

2. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

3. G. Boella, G. Pigozzi, and L. van der Torre. Normative framework for normative system
change. In Proceedings of The 8th International Conference on Autonomous Agents and
Multiagent Systems-Volume 1, pages 169–176, 2009.

4. O. Cliffe, M. De Vos, and J. Padget. Answer set programming for representing and reasoning
about virtual institutions. Computational Logic in Multi-Agent Systems, pages 60–79, 2007.

5. D. Corapi, O. Ray, A. Russo, A. Bandara, and E. Lupu. Learning Rules from User Behaviour.
Artificial Intelligence Applications and Innovations III, 296:459–468, 2009.

6. D. Corapi, A. Russo, and E. Lupu. Inductive logic Programming as Abductive Search. ICLP
(Technical Communications), pages 54–63, 2010.

http://shine.tudelft.nl
http://shine.tudelft.nl

7. M. Gebser, B. Kaufmann, and R. Kaminski. Potassco: The Potsdam answer set solving
collection. AI Communications, 24(2):107 – 124, 2011.

8. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, pages 1070 – 1080, 1988.

9. G. Governatori and A. Rotolo. Changing Legal Systems: Legal Abrogations and Annulments
in Defeasible Logic. Logic Journal of IGPL, 18(1):157–194, 2010.

10. T. C. King, T. Li, M. De Vos, V. Dignum, C. M. Jonker, J. Padget, and M. B. V. Riemsdijk. A
Framework for Institutions Governing Institutions. In Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015), 2015.

11. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic (TOCL), 7(3):499 – 562, 2006.

12. T. Li. Normative Conflict Detection and Resolution in Cooperating Institutions. PhD thesis,
University of Bath, 2014.

13. T. Li, T. Balke, M. De Vos, J. Padget, and K. Satoh. Legal Conflict Detection in Interacting
Legal Systems. DoCoPe@ JURIX, 2013.

14. T. Li, M. D. Vos, J. Padget, K. Satoh, and T. Balke. Debugging ASP using ILP. In Technical
Communcations of ICLP 2015, 2015.

15. H. Liesbet and M. Gary. Unraveling the central state, but how? Types of multi-level gover-
nance. American political science review, 97(2):233–243, 2003.

16. H. Lu, W. Pan, N. Lane, T. Choudhury, and A. Campbell. SoundSense: scalable sound sens-
ing for people-centric applications on mobile phones. Proceedings of the 7th international
conference on Mobile systems, applications, and services, pages 165–178, 2009.

17. S. Muggleton. Inverse entailment and Progol. New generation computing, 13(3-4):245–286,
1995.

18. J. R. Searle. What is an institution? Journal of Institutional Economics, 1:1–22, 2005.
19. United States Federal Law. Children’s Online Privacy Protection Act, 1998.
20. W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman. Resolving conflict and inconsistency

in norm-regulated virtual organizations. In Proceedings of the 6th international joint confer-
ence on Autonomous agents and multiagent systems, volume 5, pages 632–639, New York,
New York, USA, 2007. ACM Press.

	Revising Institutions Governed by Institutions for Compliant Regulations

