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ABSTRACT
Norms have been proposed as a way to regulate multi-agent sys-
tems. In order to operationalize norms, several computational frame-
works have been proposed for programming norm-governed agent
organizations. It has been argued that in such systems it is essential
that norms, in particular those giving rise to achievement obliga-
tions, have deadlines. In this paper we propose a novel semantic
framework that takes into account and formalizes real-time aspects
of such norms with deadlines. The framework introduced provides
a semantics for norms with real-time deadlines that is a conser-
vative extension of more traditional transition systems semantics
that has been used for specifying multi-agent systems. Our frame-
work thus provides a natural extension for formalizing multi-agent
systems with norms that have real-time deadlines. We address sev-
eral important aspects of semantics of norms with deadlines such
as deadline termination and, in particular, investigate the issue of
deadline shifting that arises naturally in a real-time setting as a re-
sult of interactions between norms. A new normative model is pre-
sented for handling such interactions. We present several formal re-
sults showing that our semantics corresponds with basic intuitions
that any operational semantics for norms with (real-time) deadlines
should satisfy, and that it is well-defined.

Categories and Subject Descriptors
I.2.5 [Artificial Intelligence]: Programming Languages and Soft-
ware
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1. INTRODUCTION
A system of autonomous agents may exhibit undesirable or inef-

fective behavior if no form of regulation is imposed. An important
line of research that addresses this issue is work on normative sys-
tems, in which norms govern the behavior of a multi-agent system
(MAS). Norms describe how agents should ideally behave. In this
paper we are concerned with achievement obligations (where an
agent is obligated to achieve something in the future that is not al-
ready true now).

It has been argued in research on deontic logic and elsewhere that
achievement obligations need a deadline [7, 3, 15]. For example,
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a norm like “if a buyer pays for a product, the seller is obligated
to hand out a receipt” without a deadline is too weak. The norm
does not specify when the seller should hand out the receipt, and
so the seller could take an indefinite amount of time to do this. Put
differently, the seller could never be viewed as violating this norm,
because she can always say she will do this sometime in the future.
Deadlines thus are an essential aspect of achievement obligations
to motivate an agent to meet its obligations and such obligations
should therefore be endowed with deadlines in order to effectively
regulate agent behavior.

We focus on quantitative or real-time deadlines which refer to
time (e.g., a customer is obligated to pay within 10 days of issu-
ing the invoice), rather than qualitative deadlines which express an
arbitrary property of a state (e.g., the seller should hand out the re-
ceipt before the buyer leaves the store). Studying norms with real-
time deadlines is important because increasingly normative pro-
gramming frameworks like [14] suggest the use of real-time dead-
lines. Several papers already provide ways of modelling norms
with real-time deadlines, for example in deontic logic [7], metric
temporal logic [5] or defeasible logic [9, 8].

However, in order to provide a semantic foundation for computa-
tional models for norms with real-time deadlines, our starting point
is quite different. We build on top of an abstract real-time semantic
framework, which takes timed state sequences as the basic seman-
tic structure. We choose this structure because of its close cor-
respondence with existing computational normative agent frame-
works such as [6, 17, 13]. In this way our framework can form
the semantic foundation of (real-time extensions of) these compu-
tational normative frameworks.

Moreover, in contrast with other work on norms with real-time
deadlines, we identify the phenomenon of deadline shifting. We ar-
gue that deadline shifting should be taken into account when defin-
ing semantics for norms with real-time deadlines. Consider for ex-
ample a norm that if the alarm rings, people are obligated to leave
the building within 10 minutes. Now assume that the alarm keeps
ringing. Intuitively, this should not mean that the deadline keeps
shifting as well. Now consider that instead of an alarm ringing, a
person broadcasts via a speaker that everyone has to leave a build-
ing within 10 minutes and repeats this announcement in 2 minutes.
Then, arguably, the deadline shifts to 2 minutes later. We propose
a semantic framework for norms with real-time deadlines that can
distinguish these cases of (potential) deadline shifting.

The approach we take is the following. As in [3], we use a repre-
sentation of a normative system that distinguishes between norms
which exist in the social environment of agents and are ‘in force’
over extended periods of time, and the detached obligations which
arise at a particular moment in time as the result of a norm becom-
ing applicable. Explicit modelling of detachment in the framework



is important as deadline shifting is connected with repeated detach-
ment. Moreover, we introduce explicit relations to model the two
different kinds of norm interaction related to deadline shifting. We
use the framework of timed transition systems [10] as the basis of
our semantic framework (Section 4).

We extend timed transition systems by adding labellings to ex-
press which obligations and violations hold in the states of the
system. The resulting models admit arbitrary obligation and vi-
olation labellings. We investigate semantics of norms with real-
time deadlines declaratively by introducing several constraints on
these labellings to ensure that these correspond to intuitions about
semantics of norms (Sections 6 and 7). This allows us to study
these individually and in combination as elements of the semantic
framework, by means of which we can make explicit which con-
straints are sufficient to ensure certain properties of the framework.
Through this study, we obtain a fundamental understanding of the
semantics of norms with real-time deadlines and the related phe-
nomenon of deadline shifting, which in turn can be used as a solid
formal foundation for developing real-time normative systems. We
conclude the paper in Section 8.

2. RELATED WORK
In this section we discuss related work in the area of norms

with deadlines. Our framework is inspired in various ways by
[3]. We use a similar representation of norms, namely as triples
that consist of a triggering condition, a condition that represents an
achievement obligation and a deadline. Also we define the seman-
tics of norms as obligation and violation labellings on states. The
main difference is that in [3] a framework for norms with quali-
tative deadlines (which refer to states) is defined, while we define
a framework for norms with real-time deadlines. The latter gives
rise to specific considerations that need to be taken into account
explicitly in the framework: time has specific properties (e.g., it
eventually progresses beyond any given time point) which has to be
modelled explicitly to yield an appropriate semantic framework for
norms with real-time deadlines; moreover, a framework for real-
time deadlines needs to address the issue of deadline shifting as
explained in the introduction. These aspects cannot be modelled
and investigated in the qualitative framework of [3].

In [7] a deontic branching time temporal logic with a Kripke
semantics is used that incorporates real-time aspects. The issue
of deadline shifting is hinted at by stating that a deadline should
only become active the first time that the triggering condition be-
comes true and providing a logical formula to model this. However,
the authors do not identify the dual case where deadline shifting is
desired, and consequently do not present a normative model that
makes these different relation between norms explicit and analyze
corresponding semantics, as we do.

In [5], monitoring of social expectations is investigated where
these are expressed in a variant of metric interval temporal logic.
The focus of the paper is not on investigating semantics for norms
with real-time deadlines. Rather, the aim is to define a language
for expressing social expectations that is amenable to monitoring.
Consequently, real-time aspects such as deadline shifting are not
addressed. The paper also does not separate norms and the obliga-
tions that they detach, as we do in this paper.

In [2] an operational semantics for timed normative multi-agent
systems is proposed that is based on timed automata. In that work
norms with real-time deadlines are not first-class citizens in the
framework (instead they are modelled using clocks and clock con-
straints), and there is no explicit separation between norms and de-
tached obligations. These aspects are important in our framework
and allow a detailed investigation of time-related aspects, in partic-

ular investigation of deadline shifting and an accompanying analy-
sis of how this affects detachment and termination of obligations.

3. NORMATIVE MODEL
Our work focuses on the class of norms that have associated real-

time deadlines. In practice, norms that obligate an agent to achieve
a particular state need to have deadlines in order to ensure that the
accomplishment of the obligation is not delayed endlessly. Other-
wise there is no point at which an agent can be said to have violated
the norm and agents may not be motivated to fulfill their obligations
[15]. Examples include payment obligations, delivering goods, re-
sponding to invitations (in case the agent intends to attend), and
handing in an assignment (see [8] for a systematic classification).

3.1 Norms
In order to represent norms we assume a suitable language L for

expressing conditions on states. For a state s and formula φ ∈ L,
we write s |= φ (s 6|= φ) to represent that φ holds (resp., does
not hold) in state s. The only property of |= that we need in our
framework is that we cannot have both s |= φ and s 6|= φ, which
would give rise to conflicting obligation labellings.

We represent norms as triples of the form (c, φ, ttf), which infor-
mally means that if condition c holds now, then it becomes oblig-
atory to achieve φ before the time-to-fulfill ttf has passed. The
parameter ttf represents the time available to fulfill the obligation
and indicates that φmust be achieved before the deadline now+ ttf.
This representation of norms thus gives rise to deadlines that are
relative to the time at which the triggering condition of the norm
holds. For example, the norm (paybs, receiptsb, 1) means that if
the buyer has paid the seller now, then the seller is obligated to
send a receipt to the buyer within 1 day, i.e., before time now + 1
(example adapted from [3]). In this paper our main concern is with
norms with relative deadlines, which is the more interesting case,
but norms with absolute deadlines can straightforwardly be added
if needed. Norms are formally defined as follows.

DEFINITION 1. (Norm) A norm is a triple (c, φ, ttf) with c, φ ∈
L and ttf ∈ R+

0 , i.e. ttf is a positive real number or zero.

We allow zero time-to-fulfill but do not allow negative time-to-
fulfill. Norms with zero time-to-fulfill require immediate fulfill-
ment of an obligation. This allows, for example, to express that a
hotel employee should see to it that the hotel entrance is unlocked
when a client is at the entrance without any delay.

Throughout the paper we assume that a set of normsN has been
fixed. We thus assume that norms are a stable part of an agent’s
social or organizational environment (cf. [4]).

Norms give rise to obligations and violations. The condition c of
a norm (c, φ, ttf) acts as a trigger for the creation of obligation φ,
and ttf is used to set a deadline relative to the time that the trigger
holds. If the triggering condition of a norm (c, φ, ttf) holds and
an obligation to achieve φ is created, we say that the obligation
is detached by the norm. If φ is not reached before the deadline,
a violation occurs. Obligations and violations thus originate from
norms at a particular time and for particular situations.

3.2 Normative Systems
Norms with real-time relative deadlines give rise to particular is-

sues that need to be addressed in their operationalization. These
are related to (potential) deadline shifting due to repeated detach-
ment of the same obligation. To illustrate this, consider again the
example of a norm saying that if an alarm rings, everyone is obli-
gated to leave a building within 10 minutes. Assume that the alarm



keeps ringing. In this case, the intended meaning is not that new
obligations are detached continuously, which would mean that the
deadline keeps shifting. Rather, the first application of the norm
should block consecutive applications in order to prevent detach-
ment of new obligations.

Whether one application of a norm should block consecutive ap-
plications is domain dependent. There are also examples where
deadline shifting, either to an earlier or later time, is desirable. If,
for example, instead of an alarm a person broadcasts via a speaker
that everyone has to leave a building within 10 minutes and repeats
this announcement in 2 minutes, arguably, the deadline shifts to 2
minutes later. In this case, application of a norm cancels obliga-
tions that were already detached by other norms (or earlier applica-
tions of the same norm).

In order to model these different interactions between norms, we
introduce two binary relations. The fact that one norm may block
the application of another norm is modelled through a binary block-
ing relation B on norms. Informally, nBn′ means that the norm n
that has been applied earlier (or possibly in the same state) blocks
the application of norm n′. This allows us to model the alarm ex-
ample by using the B relation to ensure that the norm to leave the
building blocks later applications of that same norm. Although the
particular example concerns blocking of a norm by the very same
norm that was applied earlier, by introducing a blocking relation
our model also is able to account for the more general case where
any norm may block another norm.

A second binary cancelling relation nCn′ is introduced to model
cancellation of one norm by another. Informally, nCn′ means that
norm n cancels norm n′ that has been applied earlier (or in the
same state). This allows us to model the broadcasting example.
In addition, it allows to model cases that do not concern deadline
shifting but that do require cancellation of obligations. For exam-
ple, the obligation to finish a paper before the deadline is canceled
by an obligation to prepare a lecture in time.

Besides the issue of deadline shifting which is specific to norms
with real-time relative deadlines, the framework also needs to ad-
dress persistence of obligations, which is relevant for norms with
any kind of deadline (see also [8]). Intuitively, obligations persist
at least until the deadline (if they are not fulfilled). If at the dead-
line, however, an obligation is not fulfilled, it may either persist or
terminate. For example, an obligation to pay typically persists but
an obligation to deliver a wedding cake does not persist when the
wedding has ended [8]. In the latter case the obligation terminates
at the deadline whereas in the former it does not.

In order to distinguish between these cases we introduce a set D
that contains all norms whose associated obligations terminate at
the deadline. We say that such a norm satisfies deadline termina-
tion. The complement N \ D consists of all those norms whose
associated obligations do not terminate at the deadline.

We formally define a normative system to consist of a set of
norms, the blocking and cancellation relations and the set of norms
that terminate at the deadline.

DEFINITION 2. (Normative System) A normative system NS
is a tuple (N ,B,C,D) where N is a set of norms, B is an a-cyclic
binary relation on the set of norms (expressing blocking), C is an a-
cyclic binary relation on the set of norms (expressing cancellation),
and D is the subset of norms that satisfy deadline termination.1

The requirement that the blocking and cancelling relations are
a-cyclic in particular prevents that two norms mutually block or
1A binary relation R is cyclic if there are n1, . . . , nk, with k > 1,
such that niRni+1 for 1 ≤ i ≤ k− 1 and nkRn1 and there is an i
such that ni 6= ni+1; otherwise it is a-cyclic.

cancel each other, and, in the more general case, that there is a
cycle of norms which all in turn block or cancel each other. Both
relations may be reflexive to allow for the case where a norm blocks
or cancels itself if it is triggered in consecutive states (which is the
case in both the alarm and the broadcasting example above).

It is important to note that the triggering condition of norms
in our framework, in line with other frameworks like [3, 13], ex-
presses a condition on a state rather than a condition on the occur-
rence of an action or event. The latter can also be expressed by
conditions on a state if the state represents the actions that have
been executed or events that have occurred, and conditions on state
may be used to represent the more general case. This is important
because blocking can be desirable in cases where the triggering
condition continues to hold, which will in particular be the case if
this condition refers to a property of the state, such as the alarm
ringing. If the condition refers to the action that caused the alarm
to start ringing or to the event of the alarm starting to ring, the con-
dition will not continue to hold and thus blocking may not come
into play. We argue for the more general representation of norms
here in which the triggering condition refers to a state rather than
(only) to an action or event, and therefore explicitly consider and
model the case of blocking norms.

4. REAL-TIME SEMANTIC FRAMEWORK
For our purposes, it is important to build on top of existing com-

putational semantics for multi-agent systems. As it has been com-
mon to provide semantics for multi-agent systems using an opera-
tional, interleaving semantics, we have chosen to built our seman-
tics for normative systems on top of a well-known real-time frame-
work called timed transition systems. The traditional transition sys-
tems semantics is abstract with respect to time and cannot be used
for modelling real-time systems in which one wants to keep track
of the time at which actions are performed [11]. Timed transition
systems provide a conservative extension of traditional transition
systems semantics that has been commonly used to provide a for-
mal semantics for multi-agent systems and computational models
of organizations as these are inherently concurrent, see e.g. [6, 17].

Timed transition systems extend the traditional interleaving model
by incorporating time and thus allow for the analysis of real-time
systems. We use the framework of timed transition systems as in-
troduced in [10] as our basic semantic framework. A transition
system consists of a set of states Σ, some of which are initial states
in which a computation can start, and a finite set of transitions that
indicate which state changes can occur in the system. Transitions
model system behavior and the basic actions that can be performed
by agents. An infinite sequence of states where consecutive state
pairs are transitions is called a computation. Timed state sequences
add a corresponding sequence of times to a state sequence.

DEFINITION 3. (Timed State Sequence) Let Σ be a set of states.
A timed state sequence ρ = (σ,T) consists of an infinite sequence
σ of states si ∈ Σ with i ≥ 0, and an infinite sequence T of corre-
sponding times ti ∈ R with ti ≥ 0.

In line with our general approach of introducing constraints to
ensure the adequacy of our semantic model, two constraints are
imposed on the basic real-time semantic framework. The first con-
straint enforces that time monotonically increases and, in particular,
never decreases (weak monotonicity) as expected.

CONSTRAINT 1. [Monotonicity, [10]] A sequence ρ satisfies
monotonicity if for all i ≥ 0, either ti+1 = ti, or ti+1 > ti and
si+1 = si.



Note that the monotonicity constraint does not only constrain the
progress of time but also requires that states do not change if time
progresses and vice versa. This is in line with the traditional inter-
leaving model which abstracts from the fact that actions take time.
This abstraction allows for the arbitrary interleaving (“shuffling”)
of transitions [12]. Building on this framework, time is incorpo-
rated into the timed transition system model by assuming that all
transitions happen “instantaneously”, while real-time constraints
restrict the times at which transitions may occur [10]. In summary,
timed transition systems distinguish between two kinds of transi-
tions: transitions which represent state activities in which the state
may change but time does not advance and transitions that repre-
sent time activities in which time changes but states do not.

The second constraint that is imposed ensures that time is diver-
gent, i.e. eventually progresses such that for arbitrary t ∈ R we
can always find a time ti > t. Note that monotonicity is insuffi-
cient to guarantee progress because time sequences may converge.
Progress is an essential constraint in any adequate model of norms
with real-time deadlines because a deadline might never occur if
time does not make sufficient progress.

CONSTRAINT 2. [Progress, [10]] A timed state sequence ρ sat-
isfies progress if for all t ∈ R there is an i ≥ 0 such that ti > t.

Because the time domain R does not have a maximal element,
progress also implies that there are infinitely many time steps in
a sequence. It follows that timed state sequences alternate state
activities and time steps. This also means that in any time inter-
val only finitely many state changes can occur and that timed state
sequences satisfy finite variability. As is usual, we will call a sub-
sequence of a timed state sequence that only consists of state ac-
tivities a micro-phase and a subsequence that only consists of time
steps a macro-phase [1].

5. NORM-BASED LABELLINGS
Norms give rise to obligations which in turn can be violated.

The idea is that detachment of a norm gives rise to an obligation,
and if the obligation is not achieved before the deadline, a viola-
tion occurs. In order to provide a semantics for norms, the states
in timed state sequences are labelled with information about the
obligations that are active and about violations that have occurred.
We use two labellings: one that indicates which obligations hold
and one which indicates which violations occurred in a state of a
timed state sequence. In order to define such labellings, however, it
turns out to be more convenient to first define labellings that keep
track of the norm itself that gives rise to an obligation or violation
in combination with the associated deadline.

DEFINITION 4. (Labelled Timed State Sequence) Let NS be
a normative system with set of norms N . A labelled timed state
sequence (ρ,ONS

ρ ,VNS
ρ ) consists of a timed state sequence ρ, and

mappings ONS
ρ : N → ℘(N × R) and VNS

ρ : N → ℘(N × R). We
call ONS

ρ a norm-based obligation labelling and VNS
ρ a norm-based

violation labelling for ρ.

Informally, (n, d) ∈ ONS
ρ (i) with n = (c, φ, ttf) means that it is

obligatory to achieve φ before deadline d, and that φ was detached
by n. (n, d) ∈ VNS

ρ (i) with n = (c, φ, ttf) means that the obliga-
tion to achieve φ before deadline d was violated, and that φ was
detached by n. In the remainder we also use ρ to refer to labelled
timed state sequences, write n ∈ ONS

ρ (i) to denote that there is an
(n, d) ∈ ONS

ρ (i), and use n ∈ VNS
ρ (i) similarly. It is clear that

from a given norm-based labelling we can extract a labelling that
associates only obligation-deadline pairs with a state.

DEFINITION 5. (Abstract Norm-based Labelling) Given a la-
belling LNS

ρ with L ∈ {O, V }, the abstract labelling Lρ is defined
by: (φ, d) ∈ Lρ(i) iff there is a norm (n, d) ∈ LNS

ρ (i).

The abstract representation (φ, d) of a norm combined with a
deadline represents the information needed to detect violations. It
also is sufficient for handling different, but overlapping windows
for fulfilling one and the same obligation. For example, an agent
may be obliged to pay a 50 Euro fine within 2 weeks while the
(unfortunate) agent receives a second fine before the end of these 2
weeks that obligates him again to pay 50 Euro for a possible other
offence. The representation of norm-deadline pairs is expressive
enough to represent such examples.

We write φ ∈ Oρ(s) whenever (φ, d) ∈ Oρ(s) for some d, and
similarly for V . Note that violations are represented as pairs (φ, d)
to keep track of the specific obligation and associated deadline that
has been violated. This is useful because choosing an appropriate
sanction typically depends on the obligation and the time that has
passed since the deadline. For example, one might want to impose a
sanction when a student assignment has been handed in too late that
reduces the score depending on the number of late days involved.

We use Ψchaos to denote the set of all labelled timed state se-
quences that satisfy the two constraints introduced in Section 4.
This set contains all possible labellings of a timed state sequence.
In the remainder, we introduce constraints on this set that restrict
this set to the set of adequate labellings.

6. OBLIGATION LABELLINGS
Now that we have put the semantic framework in place, we pro-

ceed by defining which labellings of states are adequate. By ade-
quate labellings we mean labellings that correspond to basic intu-
itions about the behavior of norms with deadlines (as also reflected
in other frameworks such as [14, 8]), as well as those that lead to a
well-defined semantics of norms. The semantics should correspond
to intuitions concerning detachment, termination and persistence
of obligations, in such a way that the real-time aspect of norms is
taken into account. The semantics is well-defined if it results in a
unique labelling for each timed state sequence, meaning that it is
consistent (it defines at least one labelling) as well as coherent (it
specifies no more than one labelling).

Our approach is to introduce constraints on the set Ψchaos of
labelled timed state sequences to yield an adequate labelling. This
allows us to study these constraints individually and in combination
as elements of the semantic framework. In this section we inves-
tigate the concepts and constraints that result in adequate obliga-
tion labellings, and in Section 7 we build on top of this and intro-
duce a constraint to obtain adequate violation labellings. We de-
fine obligation labelings with respect to a normative system NS =
(N ,B,C,D).

6.1 Detachment of an obligation
The basic idea is that an obligation is detached when a norm

is applicable. A norm (c, φ, ttf) is only applicable in a state if its
trigger c holds. The obligation φ should not be detached in a state,
however, if φ already holds in that state, because it makes little
sense to apply a norm whose obligation is already fulfilled.

DEFINITION 6. (Applicable) Let s be a state. A norm n =
(c, φ, ttf) is applicable in state s if it is triggered in state s, i.e.
s |= c, and the obligation φ is not (yet) fulfilled, i.e. s 6|= φ.

The detachment of an obligation by a norm, however, not only
depends on the applicability of a norm but also on interactions of



that norm with other norms that may prevent detachment. In par-
ticular, an active norm n that has already been applied before can
block the application of norm n′ in i (that is, if nBn′). We say
that a norm is active in state i if n ∈ ONS

ρ (i). Moreover, if dif-
ferent norms n, n′ for which nBn′ are triggered in the same state
(and have not been triggered before), n should block detachment of
n′. This is reflected in the definition of what it means that a norm
blocks another in a particular state.

DEFINITION 7. (Blocking) Let ONS
ρ be a labelling for ρ, and B

be a blocking relation. We say that norm n blocks (the application
of) norm n′ in state i if n is active in i and nBn′. In that case, we
also say that norm n′ is blocked in state i.

Note that blocking is defined relative to a given, arbitrary la-
belling. Blocking thus is also defined for labellings that are inad-
equate. This is in line with our approach of filtering out or elim-
inating “bad” labellings by means of the constraints we introduce
below. Of course, it is in particular important that the definition is
correct for adequate labellings. We return to this issue at the end of
this section. Also note that two different norms cannot block each
other because B is a-cyclic.

A norm n that is applicable in a state may cancel the application
of a norm n′ that is about to be applied, but only if n is not blocked.
Blocking thus takes precedence over cancelling. The cancelling
relation C then indicates whether a norm actually cancels a norm.
Note that two different norms cannot cancel each other because C
is a-cyclic.

DEFINITION 8. (Cancelling) Let ONS
ρ be a labelling for ρ, and

C be a cancelling relation. We say that norm n cancels norm n′

in state i if n is applicable but not blocked in i, n ∈ ONS
ρ (i), and

nCn′. In that case, we also say that norm n′ is cancelled in state i.

Detachment or activation of an obligation φ in a state si by ap-
plying norm n should lead to an obligation labelling in that state
that includes φ and associated absolute deadline d which can be
computed by adding ttf to the time of the state in which the norm
is applied. This is implemented by the following constraint, which
takes blocking and cancelling into account and represents a general
principle that should be satisfied by any adequate labelling.

CONSTRAINT 3. [Detachment] A labellingONS
ρ satisfies the de-

tachment condition if for all n = (c, φ, ttf) ∈ N : if n is applicable
but not blocked nor cancelled in i, then (n, ti + ttf) ∈ ONS

ρ (i).

We now return to the discussion of the correctness of our defini-
tion of blocking, and in particular the case in which a norm blocks
itself, i.e., nBn. In this case, the intended semantics is that if n is
applicable in state i (and not blocked by another norm), it should be
the case that (n, ti + ttf) ∈ ONS

ρ (i). Labellings that do not satisfy
that n ∈ ONS

ρ (i) are excluded according to Definition 3, as in that
case n would not be blocked and thus it should be in the labelling.
Labellings that satisfy (n, ti + ttf) ∈ ONS

ρ (i) are allowed by this
definition, but it also allows labellings that satisfy (n, d) ∈ ONS

ρ (i)
where d 6= ti + ttf. Filtering out such labellings with erroneous
deadlines is done through Constraints 8 and 9 as introduced below.

6.2 Termination of an obligation
Obligations may be terminated for several reasons. We consider

the following reasons in this paper. The most obvious reason is that
an agent has fulfilled an obligation, whether or not this is achieved
before or after the deadline. This type of termination represents a
general principle that applies to all norms that detach achievement

obligations whether with or without real-time deadlines. Second,
an obligation may also be terminated because the deadline associ-
ated with the obligation has passed. For example, the obligation
to deliver a good (e.g. a wedding cake) is terminated because it is
of no use any more to deliver the good after the deadline [8]. This
type of termination, however, does not always apply as an obliga-
tion to pay, for example, typically persists also after the deadline
has passed. Third, an obligation may be terminated because one
norm cancels the application of another norm (see also Section 3).

Fulfillment termination can be implemented by imposing a sim-
ple constraint that says that if φ is achieved in a state, it cannot
be an obligation in that state. Intuitively, achievement obligations
are only associated with states where the obligation still needs to
be achieved but not with those where the obligation has been real-
ized. The constraint is imposed on an abstract labelling Oρ which
has implications for the corresponding labelling ONS

ρ . That is, if a
constraint requires (φ, d) 6∈ Oρ(i), by Definition 5, it follows we
cannot have that (n, d) ∈ ONS

ρ (i) for n = (c, φ, ttf).

CONSTRAINT 4. [Fulfillment termination] An abstract labelling
Oρ satisfies fulfillment termination if for all φ and i ≥ 0: if si |= φ,
then (φ, d) 6∈ Oρ(i) for any d.

As discussed above, obligations may or may not be terminated
when a deadline is reached, depending on the norm that detached
the obligation. The set D of a normative system contains the norms
whose associated obligations should terminate at the deadline. Note
that an obligation is not terminated at the deadline itself but only af-
ter the deadline has passed.

CONSTRAINT 5. [Deadline termination] A labelling ONS
ρ sat-

isfies deadline termination if for all n ∈ N and i ≥ 0: if (n, d) ∈
ONS
ρ (i), n ∈ D, and ti+1 > d then (n, d) 6∈ ONS

ρ (i+ 1).

The next constraint enforces the removal of norms that are can-
celled by an applicable norm. That is, if a norm n is applicable in
i and cancels another norm n′ that has been applied, the norm n′

should be removed from the obligation labelling associated with i.
The cancelling relation C indicates which norms cancel each other.

CONSTRAINT 6. [Cancelling] A labellingONS
ρ satisfies cancel-

lation if for all n = (c, φ, ttf), n′ ∈ N and i ≥ 0: if n is applicable
but not blocked in i and nCn′, then (n′, d) 6∈ ONS

ρ (i)\{(n, ti+ttf)}
for any d.

As for blocking, we need to take some care here that one and
the same norm does not completely cancels its own application in
a particular state while we still allow the same norm to cancel its
own earlier applications. This explains the particular condition in
Constraint 6 which does not impose any requirements for a single
norm n as (n, ti + ttf) 6∈ ONS

ρ (i) \ {(n, ti + ttf)} is trivially true.
For suppose that n is applicable, not blocked, nCn, and we would
have n 6∈ ONS

ρ (i). According to Definition 8, in that case n does
not cancel itself and by Constraint 3 we must have n ∈ ONS

ρ (i)
and arrive at a contradiction. Because Constraint 6 allows that n ∈
ONS
ρ (i), we get n ∈ ONS

ρ (i) as desired.
Note that Constraint 6 does allow self-cancellation in case the

same norm has been applied before. For example, a school teacher
that obligates children to be back in the classroom within 10 min-
utes and renews that same obligation at some later time intuitively
cancels the earlier obligation. Because the deadline shifts in this
case and we have d 6= ti + ttf the cancellation constraint takes care
of such cases and would indeed remove obligations earlier intro-
duced by one and the same norm.



Constraint 6 ensures that a norm n that is cancelled at i is re-
moved from the labelling, i.e. labellings that associate n with i are
ruled out. It does not rule out the continuous shifting of a deadline,
however. Even in the simple example of the school teacher above
this is problematic because it would render issuing the obligation
rather meaningless. By continuously shifting a deadline, in effect
no real deadline is set. Accomplishing the obligation could thus be
delayed endlessly, which is undesirable, as discussed in Section 3.

In our setting, continuous shifting of a deadline may occur, for
example, if a norm n = (c, φ, ttf) cancels another norm n′ =
(c′, φ, ttf′) that both detach obligation φ. Suppose, for example,
that we have (n′, d′) ∈ ONS

ρ (i) and that n′ is cancelled by n at i+1.
In effect, (n′, d′) then is removed and (n, d) with d = ti+1 + ttf
is added to the labelling of i + 1. As a result, the deadline asso-
ciated with obligation φ shifts in case d 6= d′. Such shifts may
happen more than once, resulting in a chain of repeated shifts of
the deadline associated with φ. In order to rule out infinite chains
of deadline shifts, we first formally define such chains.

DEFINITION 9. (Chain of Deadline Shifts) Let ONS
ρ be a la-

belling. A sequence of norms n0 = (c0, φ, ttf0), n1 = (c1, φ, ttf1), n2 =
(c2, φ, ttf2), . . . is a chain of deadline shifts for φ on ρ iff there is a
sequence of increasing indices i0, i1, i2, . . . such that for all k ≥ 0:

• for all ik ≤ j < ik+1: nk ∈ ONS
ρ (j), and

• nk+1 cancels nk in ik+1.

A maximal chain of deadline shifts is a chain that cannot be ex-
tended into a longer chain.

To avoid infinite chains of deadline shifts, we introduce the fol-
lowing constraint.

CONSTRAINT 7. [Termination of Chains of Deadline Shifts]
All maximal chains of deadline shifts are finite.

6.3 Persistence of obligations and terminations
The activation as well as termination of obligations should per-

sist but this is not guaranteed by the constraints introduced above.
These constraints do, however, introduce stable obligations in the
labelling of state sequences. The Detachment Constraint 3, for ex-
ample, requires that all labellings satisfy φ ∈ Oρ(i) if a norm is
applicable and is not blocked nor cancelled in i. Similarly, termina-
tion constraints require the absence of an obligation in the labeling
of a state. We formally define the stability of an obligation relative
to a set of labeled state sequences.

DEFINITION 10. (Stable Obligation at Index) Let Ψ be a set of
arbitrary labeled state sequences. Then φ is a stable obligation at
i if for any two labeled state sequences (ρ,O,V), (ρ,O′,V ′) ∈ Ψ,
we have that φ ∈ O(i) iff φ ∈ O′(i). We also say that i is a stable
index for φ. Otherwise φ is unstable at i. Finally, an index i is
a maximal stable index for φ with respect to j if φ is stable at i,
i < j, and there is no i < k < j such that φ is stable at k.

Intuitively, the idea is that the presence or absence of a stable
obligation should persist up and until the next stable labelling for
that obligation. The persistence constraint is defined relative to
a given set of labellings. Note that the two constraints we intro-
duce here are different in that respect from those before because
we can only determine stable obligations with respect to a set. The
constraint ensures that obligations do not miraculously (dis)appear,
which is reasonable if we assume that obligations can only be in-
troduced by (publicly available) norms.

CONSTRAINT 8. [Persistence] Let Ψ be a set of arbitrary la-
beled state sequences. The persistent subset Ψpersist ⊆ Ψ is the
set of all labeled state sequences ρ ∈ Ψ that satisfy for all obliga-
tions φ ∈ L: if φ is unstable at j and i < j is the maximal stable
index for φ, then φ ∈ Oρ(j) iff φ ∈ Oρ(i).

Persistence does not guarantee a stable labeling at the first state
of a sequence. The next constraint ensures that only those obliga-
tions are associated with an initial state that are stable at the initial
state (index 0).

CONSTRAINT 9. [Initial States] Let Ψ be a set of labeled state
sequences. The initial subset Ψinit ⊆ Ψ is the set of all labelled
sequences ρ ∈ Ψ that satisfy for all obligations φ ∈ L: if φ is
unstable at 0, then φ 6∈ Oρ(0).

6.4 Properties
We will now show that certain classes of labellings determine a

unique labelling for a state sequence. We write Ψconstr to denote
the subset of labelled state sequences in Ψ that satisfies constraint
constr. We refer to constraints by single letters: a refers to de-
tachment (Constr, 3), f to fulfillment termination (Constr. 4), d to
deadline termination (Constr. 5), c to cancellation (Constr. 6), t to
termination of deadline shifts (Constr. 7), p to persistence (Con-
str. 8), and i to initialization (Constr. 9). For example, Ψa is that
subset of Ψ that satisfies the Detachment Constraint. We also write
Ψc1+c2 to denote Ψc1∩Ψc2. For example, Ψa+p+i is the set of la-
belled sequences ρ that satisfy the Detachment Constraint, are such
that stable obligation labellings persist, and have stable obligation
labellings for the initial state.

We say that the obligation labelling of a timed state sequence
ρ is unique in a set of labeled sequences Ψ if for all (ρ,O,V),
(ρ,O′,V ′) ∈ Ψ we have that O = O′. It is clear that labellings
that do not satisfy the Initialization or the Persistence Constraint are
not necessarily unique; for example, Ψa+p and Ψa+i need not be
unique. Also note that in general by adding a constraint we do not
necessarily obtain a subset of labellings. For example, Ψa+p+i 6⊆
Ψa+f+d+p+i since in the former set norms are never terminated.
For the following we can prove existence and uniqueness.

THEOREM 1. (Unique Labellings) Let Ψ be the set of all la-
beled state sequences, i.e. Ψ = Ψchaos. Then the following sets
of labeled state sequences are unique and non-empty: Ψa+p+i,
Ψa+f+p+i, Ψa+d+p+i, Ψa+f+d+p+i, Ψa+f+c+d+t+p+i.

Proof: We provide an outline of the proof. We need to show that
for any two labellings Oρ, O′ρ ∈ Ψ... and for any of the subscripts
substituted for ... we have that Oρ = O′ρ. That is, the labeling
for ρ is unique. Most importantly, we need to show that the initial
state is uniquely defined. Given that both the blocking and can-
cellation relation are a-cyclic, we need to distinguish two cases:
either we can find a norm that is not blocked nor canceled itself by
any norm, or we have an infinite sequence of norms that block or
cancel each other. In the later case, by the Detachment Constraint
3 (subscript a), none of these norms can detach an obligation and
by the Initialization Constraint 9 (i) we then obtain that the asso-
ciated obligations are absent in the labeling. For the other case,
Constraint 3 is sufficient to show the obligation must be present in
the labeling. Now, suppose further, to arrive at a contradiction,
that Oρ(i) 6= O′ρ(i), for some index i. In that case, the obliga-
tions associated with state i are not stable and there is an obliga-
tion (φ, d) ∈ Oρ(i) and (φ, d) 6∈ O′ρ(i), or vice versa. Again we
need to consider two cases: either there is a relevant constraint
that rules out that (φ, d) is or is not associated with state i, or not.



In the former case, using one of the relevant Constraints 3,4, 5,
or 6 associated with each of the different sets of labellings Ψ... is
sufficient to arrive at a contradiction. In the other case, use the
Persistence Constraint 8 to get a contradiction. 2

A basic intuition related to an achievement obligation φ is that
if it has been fulfilled it is no longer an obligation. Proposition
1 shows that Fulfilment Termination (Constr. 4) and Persistence
(Constr. 8) are sufficient to prove this property and shows that in the
presence of Detachment (Constr. 3) we must additionally require
that in the meantime no norm which detaches φ is applicable.

PROPOSITION 1. (Achievement Obligations) Let Ψ = Ψchaos.

1. Let ρ ∈ Ψf+p. If φ is achieved in state i, i.e. si |= φ, then
φ 6∈ Oρ(j) for j ≥ i.

2. Let ρ ∈ Ψa+f+p. If φ is achieved in state i, and for all
i ≤ k ≤ j no norm n which detaches φ is applicable in k,
then φ 6∈ Oρ(j).

Proof: We sketch the proof for (1). Suppose si |= φ. According to
Constraint 4, φ is stable at i and φ 6∈ Oρ(i). Note that φ can only
be stable at k relative to Ψf if φ 6∈ Oρ(k) for arbitrary (ρ,O, V ) ∈
Ψf . So, if φ is not stable for a j > i, it follows by Constraint 8 that
we must have φ 6∈ O′ρ(j) for all (ρ,O′, V ) ∈ Ψf+p. 2

Vice versa, if an obligation has been terminated, intuitively it
must be the case that the obligation has been fulfilled. That is,
unless an obligation has been achieved (or is terminated after its
deadline in line with Constraint 5), it should persist.

PROPOSITION 2. (Persistence of Obligations) Let Ψ = Ψchaos.

1. Let ρ ∈ Ψf+p. If φ is stable at j, then ∃i < j such that
si |= φ.

2. Let ρ ∈ Ψf+d+p. If φ is stable at j, then ∃i < j such that
si |= φ or a deadline d for φ has been passed at j (tj > d).

Proof: Observe that φ can only be stable at j relative to Φf+p or
Φf+d+p if φ 6∈ Oρ(j). Use Constraint 5 for (2). 2

7. VIOLATION LABELLINGS
The intuitive idea of an adequate violation labelling is that a vi-

olation occurs if an obligation is not achieved before the deadline.
In our framework this translates into the requirement that whenever
(n, d) is associated with a state i by an obligation labelling ONS

ρ (i)
and the deadline d < ti has passed, (n, d) should also be in the
violation labelling. (n, d) ∈ VNS(i) thus represents that the obliga-
tion detached by n has not been achieved by d. As this remains true
for all subsequent states, we also require that once (n, d) is in the
violation labelling for a state all later states are similarly labelled.

CONSTRAINT 10. [Violations] A labelling VNS
ρ satisfies the vi-

olation condition if for all i ≥ 0: if (n, d) ∈ ONS
ρ (i) and ti+1 > d

then (n, d) ∈ VNS
ρ (i + 1), and if (n, d) ∈ VNS

ρ (i), then (n, d) ∈
VNS
ρ (i+ 1).

Depending on the amount of time that elapses between states in a
macro phase, the triggering of a violation can be significantly later
than the passing of the deadline (as the deadline can pass in be-
tween two states). A labelled timed state sequence can be refined

to ensure that the passing of a deadline is detected within some rea-
sonable time window. For reasons of space, we do not discuss this
here but note that our framework can accommodate for such issues
by requiring that the level of refinement is related to the specific
monitoring mechanism of an organization in the context of which
the norms are modelled. The maximum delay between states in a
macro phase (see Section 4) in that case should correspond to the
frequency with which this mechanism checks for violations.

Below we present two propositions that express properties of vi-
olations. The first investigates the case of obligations with 0 time
left to fulfill the obligation. Intuitively, these are violated, unless the
state to be achieved is achieved “immediately”. In particular, norms
with zero time to fulfill, which introduce such obligations, would
lead to violation without immediate fulfillment. In our model of
timed transitions systems, if there is zero time to fulfill in a state,
the obligation needs to be realized within the corresponding micro-
phase (as time does not progress in a micro-phase).

As before, we add a subscript v to a set of labelled state se-
quences to denote the subset of those labellings that satisfy Con-
straint 10.

PROPOSITION 3. (Zero Time to Fulfill) Let Ψ = Ψchaos and
ρ ∈ Ψv . For all i ≥ 0: if (φ, d) ∈ Oρ(i) with d = ti and for all
j > i with ti = tj we have (φ, d) ∈ Oρ(i), then there is a k > i
such that (φ, d) ∈ Vρ(k).

Proof: By the Progress Constraint 2, there is a smallest k with
tk > ti = d. Then tk−1 = ti and it follows that (φ, d) ∈ Oρ(k −
1). Using Constraint 10 we then must have (φ, d) ∈ Vρ(k). 2

Another basic intuition is that an obligation is either met or will
be violated at some point in time. As a consequence, we would
expect that in case fulfillment is never realized (i.e. Constraint 4
is not satisfied but the Persistence Constraint 8 is), we should be
able to prove a violation will occur. There is one exception to this
rule, however, due to the possible cancellation of a norm before its
deadline. The next proposition shows that if we only allow self-
cancellation our intuition is confirmed for various combinations of
constraints and obligations are eventually violated if never fulfilled.

PROPOSITION 4. (Violation Occurs Eventually)

1. Let ρ ∈ Ψa+v+i+p. If φ ∈ Oρ(i), then there is a j > i such
that φ ∈ Vρ(j).

2. Let ρ ∈ Ψa+o+t+v+i+p and C ⊆ N × N . If φ ∈ Oρ(i),
then there is a j > i such that φ ∈ Vρ(j).

Proof: We sketch the proof for (2) where we may suppose that
Constraints 3, 6, 7, 8, 9 are satisfied and norms only cancel them-
selves. If an obligation would be terminated, it must be because of
cancellation. But we only have self-cancellation, which means that
only the deadline can have been shifted and by Constraint 7 this
can happen only finitely often. Eventually the obligation thus must
be violated. 2

8. CONCLUSION
We have proposed a semantic framework for norms with real-

time deadlines and shown that it satisfies several desired properties.
A normative system has been introduced that takes into account
norm interactions where norms block and cancel each other’s ap-
plication. Such interactions arise naturally in a real-time setting
but are also useful in other settings that do not involve real-time



aspects explicitly. A labelling approach has been used to define
the semantics for norms that detach achievement obligations and
for formally specifying the violations of such norms. Several con-
straints have been introduced to eliminate labellings that are not ad-
equate, taking into account the real-time aspects of the framework.
Our approach based on explicitly introducing constraints allows for
a precise study of various aspects, either separately or in combina-
tion, that need to be taken into account when handling norms with
deadlines. In particular, we have studied deadline shifting which
gives rise to particular issues that need to handled when specifying
semantics of norms with relative real-time deadlines.

The semantic framework introduced builds on top of the well-
known real-time semantic framework of timed transition systems.
The advantage of using timed transition systems is that they are
a conservative extension of the transition system semantics that is
commonly used for formally specifying multi-agent systems. Our
framework therefore contributes to this area by providing semantic
foundations for specifying the semantics of norms with real-time
deadlines in computational organizational systems.

An important topic for future work concerns the definition of an
operational semantic framework that adheres to the constraints pro-
posed here. This will form the basis for extending existing frame-
works for organized multi-agent systems with real-time aspects [6,
17] and providing a formal foundation for, e.g., the normative pro-
gramming framework with real-time deadlines of [14]. One topic
that needs to be addressed in this regard concerns the development
of an algorithm that is able to keep track of the norms and obli-
gations that are active, and the detection of deadline violations.
Whereas the main aim of our framework has been to provide a for-
mal and well-defined semantics that conforms to basic intuitions
about norms with deadlines, we also need to develop a mechanism
for computing labellings while time progresses.

Our framework provides a basis for studying monitoring mech-
anisms and the granularity of time in more detail. In particular,
monitoring raises new issues related to the detection of violations
in a real-time setting. The notion of refinement may be particularly
interesting in this context and we would like to study how various
normative systems relate to each other when the granularity of time
is changed. Moreover, we would like to formally specify mecha-
nisms for applying sanctions upon detecting a violation that take,
for example, the delay of fulfilling an obligation into account.

For verification purposes, it would be useful to have a real-time
logic for reasoning about normative computational systems with
real-time deadlines. Here metric temporal logic [16] seems to pro-
vide a particularly good starting point in which one can, for exam-
ple express so-called time-bounded response formulas. These are
of the form 2(p → 3≤bq), and informally express that it should
always be the case that if p occurs, then q occurs within b time
units. Formulas like these in the formal language of metric tempo-
ral logic also match closely with norms of the form (p, q, b) that we
have used. We plan to investigate this relation in more detail.
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