An Empirical Study of Cognitive Agent
Programs

M. Birna van Riemsdijk and Koen V. Hindriks and Catholijn M. Jonker

EEMCS, Delft University of Technology, Delft, The Netherlands
{m.b.vanriemsdijk,k.v.hindriks,c.m.jonker }@tudelft.nl

Abstract. Various agent programming languages and frameworks have
been developed by now, but very few systematic studies have been done
as to how the elements in these languages may be and are in fact used in
practice. Performing a study of these aspects contributes to the design
of instruments for facilitating development of high-quality agent pro-
grams, namely programming language, programming guidelines & teach-
ing methods, and development environment. In this paper we propose an
approach for empirically studying how programmers use a programming
language, in which we identify several analysis dimensions. We perform
two case studies in which we analyze agent programs written in the
GOAL agent programming language along the identified dimensions. The
case studies concern programs for the dynamic Blocks World and for
controlling bots in the first-person shooter game UNREAL TOURNAMENT
2004. We evaluate our experimental setup and discuss to what extent
our findings generalize to other cognitive agent programming languages.
This provides insight into more practical aspects of the development of
agent programs, and forms the basis for improvement of instruments for
facilitating agent development.

1 Introduction

Shoham was one of the first who proposed to use common sense notions such
as beliefs and goals to build rational agents [40], coining a new programming
paradigm called agent-oriented programming. Inspired by Shoham, a variety of
agent-oriented programming languages and frameworks have been proposed since
then [8,9]. For several of them, interpreters and Integrated Development Envi-
ronments (IDEs) are being developed. Some of them have been designed mainly
with a focus on building practical applications (e.g., JACK [50] and Jadex [37]),
while for others the focus has been also or mainly on the languages’ theoretical
underpinnings (e.g., 2APL [12], GoAL [22], and Jason [10]).

In this paper, we take the language GOAL as object of study (Section 2).
GOAL is a high-level programming language to program rational agents that
derive their choice of action from their beliefs and goals. Although the language’s
theoretical basis is important, it is designed by taking a definite engineering
stance and aims at providing useful programming constructs to develop agent
programs. Starting with small-size applications such as (dynamic) Blocks World

[33], the language is being applied more and more in larger domains where agents
have to function in real-time and highly dynamic environments.

As these applications get more complex, it becomes increasingly important
that the agent programmer is supported by a comprehensive set of instruments
to facilitate the development of high-quality agent programs. This set of in-
struments should consist of three strongly interrelated elements: programming
language, programming guidelines & teaching methods, and development environ-
ment. In this paper we take a step towards improving on these three elements
by studying how programmers use the GOAL language. Our observations in this
study have implications for all three instruments.

We propose an approach for empirically studying how programmers use a
programming language, in which we identify several analysis dimensions (Sec-
tion 3). The focus is on a qualitative study of the code of GOAL programs. We
perform two case studies in which we analyze GOAL programs along the iden-
tified dimensions: programs for the dynamic Blocks World in Section 4 and for
controlling bots in the first-person shooter game UNREAL TOURNAMENT 2004,
or UT2004 for short in Section 5. We evaluate our experimental setup and discuss
to what extent our findings generalize to other cognitive agent programming lan-
guages in Section 6, after which we conclude the paper (Section 7). Through this
empirical software engineering, we contribute to forming a body of knowledge
leading to widely accepted and well-formed theories (cf. [5]) about engineering
GOAL agents in particular, and, at least to some extent, for developing cognitive
agents more generally.

Parts of this paper have been published in [45] (Case study 1) and [25] (Case
study 2). In this paper we propose a general approach for the empirical study
of agent programs, and analyze the results of the case studies according to this
approach. Moreover, we provide an extensive evaluation of the experimental
setup and discussion of generalization to other agent programming languages.

2 The Agent Progamming Language GOAL

In this study, the agent programming language GOAL has been used. GOAL is
a high-level language for programming rational agents using cognitive concepts
such as beliefs and goals. GOAL facilitates programming multi-agent systems and
uses an environment interface called EIS to connect to environments [6]. The lan-
guage is similar to other agent programming languages such as 2APL, Jadex,
and Jason. A comprehensive overview of related agent programming languages
can be found in [8,9]. We present those features of GOAL relevant for our pur-
poses here. For more detailed information on GOAL, we refer to [22,26]. At the
time of writing, GOAL is being modified based on some of the results presented
in this paper, which would explain any differences a reader may note between
the currently distributed version of GOAL and the presentation of GOAL below;
we refer to the reader to the website http://mmi.tudelft.nl/trac/goal.
GOAL agents are logic-based agents in the sense that they use a knowledge
representation language to represent their knowledge, beliefs and goals to rea-

=
H O ©®NO oA W N R

W oW W W WNNNNNNNNRDDE S R e e e e
E WO RDFROO®IO0 A RNRO 0NN TR WN

35
36
37
38
39
40
41
42
43
44

45

main: towerBuilder {
knowledge{
% assume there is enough room to put all blocks on the table
clear(table).

clear(X) :- block(X), not(on(Y,X)), not(holding(X)).
clear([X|_]) :- clear(X).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

tower ([X]) :- on(X,table).
tower ([X,YIT]) :- on(X,Y), tower([Y|T]).

}

beliefs{
block(a). block(b). block(c).
on(a,table). on(c,b). on(b,table).

goals{
on(a,b), on(b,table).

program{
% a block X is obstructing if it prevents moving a block Y in position
#define obstructingBlock(X) a-goal(on(Y,Z)), bel(above(X,Z); above(X,Y)).
% moving X on top of Y is constructive if that move results in X being in position.
#define constructiveMove(X,Y) a-goal(tower([X,YIT])),
bel(tower([YIT]), clear(Y), (clear(X) ; holding(X))).
% a block is *in position* if it achieves a goal.
#define inPosition(X) goal-a(tower([X|T])).

if constructiveMove(X,Y) then putdown(X, Y).
if bel(holding(X)), a-goal(on(X,table)) then putdown(X, table).

perceptrules{
% assumes full observability
if bel(block(X), not(percept(block(X)))) then delete(block(X)).
if bel(percept(block(X)), not(block(X))) then insert(block(X)).

if bel(holding(X), not(percept(holding(X)))) then delete(holding(X)).
if bel(percept(holding(X)), not(holding(X))) then insert(holding(X)).

if bel(on(X,Y), not(percept(on(X,Y)))) then delete(on(X,Y)).
if bel(percept(on(X,Y)), not(on(X,Y))) then insert(on(X,Y)).

actionspec{
pickup(X) {
pre{ clear(X), not(holding(Y)) }
post{ true }

putdown(X,Y) {
pre { holding(X), clear(Y) }
post { true }

Table 1. Example GOAL Agent for Blocks World

son about the environment in which they act. The knowledge representation
technology we used is SWI Prolog [3]. GOAL agents have a mental state that
consists of the knowledge, beliefs and goals of the agent. Knowledge is used to

represent static, general domain knowledge. In the Blocks World, for example,
the knowledge base may contain the definition of the predicate clear(X), as
illustrated in Table 1. During runtime the knowledge of an agent is never modi-
fied. As knowledge is assumed to be always true, it can be used in combination
with both beliefs and goals to derive new beliefs and goals, respectively. In the
Unreal Tournament environment, for example, if an agent has a conjunctive goal
to have a weapon and ammo, and knows that that combination always results
in a loaded weapon, it also has the derived goal to have a loaded weapon.

The belief base and goal base are the dynamic components of an agent’s
mental state. In the Blocks World environment, the belief base may contain in-
formation about which blocks are present and how they are stacked, represented
using the predicate on(X,Y). Goals in a GOAL agent represent so-called achieve-
ment goals. An achievement goal is a condition that the agent wants to be true
but which is currently not believed to be true by the agent. An achievement goal
¢ thus never follows from the agent’s beliefs (in combination with its knowl-
edge) and this constraint is enforced as a rationality constraint. The rationale is
that an agent should not put time and resources into realizing an achievement
goal that has already been achieved. This means that whenever a goal has been
(believed to be) completely realized, the goal is autornatically removed from the
goal base of the agent.

Various operators are available to inspect an agent’s mental state. The bel (¢)
operator is used to inspect an agent’s belief state. The condition ¢ is evaluated
as a Prolog query on the knowledge and belief base. Informally, bel(y) can be
read as “the agent believes that ¢”. bel(y) holds whenever ¢ can be derived
from the belief base in combination with the knowledge base. In the example of
Table 1, it follows that bel(clear(a)), which expresses that the agent believes
that block a is clear. The operator goal(y) is used to inspect the goal base and
can be read as “the agent has a goal that ¢”. goal(yp) holds whenever ¢ can
be derived from a single goal in the goal base in combination with the knowl-
edge base. In the example of Table 1, it follows, e.g., that goal (on(b,table)).
In order to represent achievement goals, i.e., goals that are not believed to be
achieved yet, the keyword a-goal can be used. This is defined as follows:

a-goal(y) 4 goal(y), not(bel(yp))

In the example, a-goal(on(a,b)) holds, but a-goal(on(b,table)) does not.
Similarly, goal-a(y) represents that ¢ can be derived from a goal in the goal
base, but ¢ is already believed to be achieved. A mental state condition is a
conjunction of these mental atoms, or their negation.

Actions that may be performed by a GOAL agent need to be specified by the
programmer of that agent. GOAL does provide some special built-in actions but
typically most actions that an agent may perform are derived from the environ-
ment that the agent acts in. Actions are specified by specifying the conditions
when an action can be performed (preconditions) and the effects of performing
the action (postconditions). Pre- and postconditions are conjunctions of literals.
A precondition ¢ is evaluated by verifying whether (an instantiation of) ¢ can

be derived from the belief base (as always, in combination with knowledge in
the knowledge base). Any free variables in a precondition may be instantiated
during this process just like executing a Prolog program returns instantiations
of variables. In GOAL, the effect ¢ of an action is used to update the beliefs of
the agent to ensure the agent believes ¢ after performing the action. The pos-
itive literals are added to the belief base, and negative literals are removed. In
addition, actions that correspond to actions that can be executed in the agent’s
environment, are sent to that environment. In the dynamic Blocks World, the
pickup and putdown actions are specified as in [44]. They have a true postcondi-
tion, and therefore do not update the belief base. Since these actions take time,
the results of their execution is incorporated into the beliefs through percepts,
rather than through postconditions of the actions.

In addition to the possibility of specifying user-defined actions, GOAL pro-
vides several built-in actions for changing the beliefs and goals of an agent, and
for communicating with other agents. Beliefs can be changed by performing two
built-in actions insert(y) and delete(y) to insert and remove information
from an agent’s belief base. GOAL also provides two built-in actions adopt (¢)
and drop(p) to, respectively, adopt a new achievement goal and drop some of
the agent’s current goals. The action adopt(y) is an action to adopt a new
goal . The precondition of this action is that the agent does not believe that
@ is the case, i.e. in order to execute adopt(¢) we must have not (bel(p)).
The idea is that it would not be rational to adopt a goal that has already been
achieved. The effect of the action is the addition of ¢ as a single, new goal to
the goal base. The action drop(y) is an action to drop goals from the goal base
of the agent. The precondition of this action is always true and the action can
always be performed. The effect of the action is that any goal in the goal base
from which ¢ can be derived is removed from the goal base. For example, the
action drop(on(b,table)) would remove all goals in the goal base that entail
on(b,table); in the example agent of Table 1 the only goal present in the goal
base would be removed by this action. The drop action allows an agent to revise
its goals in light of, for example, changing circumstances. It may, for example,
not be opportune anymore to collect the opponent’s flag in a capture the flag
scenario if that opponent managed to steal our own flag. A GOAL agent inspects
and modifies its state at runtime analogously to how a Java method operates
on the state of an object. Agent programming in GOAL therefore can also be
viewed as programming with mental states.

Actions are selected by a GOAL agent by means of rules of the form
if < cond > then < action >, where < cond > is a condition on the mental
state of the agent and < action > is the action that can be selected for execution
if the condition holds. In the Blocks World, for example, an agent needs to know
what the current configuration of blocks is and needs to have basic knowledge
about such configurations (e.g., when a block is considered to be clear) to make
a good decision. GOAL agents are able to inspect their mental state by means
of mental state conditions. Mental state conditions allow the agent to inspect
both its beliefs and its goals, and provide GOAL agents with expressive reason-

ing capabilities. In essence, writing such conditions means specifying a strategy
for action selection that will be used by the GOAL agent. Table 1 shows an ex-
ample of an action rule that specifies the following: if the agent believes it is
holding block X and has the achievement goal of having X on the table, then the
corresponding putdown action should be selected. If the conditions of multiple
action rules hold at the same time, an applicable rule is selected at random. The
< action > part may consist of single actions, or of multiple actions that are
combined by means of the + operator.

Rules provide GOAL agents with the capability to react flexibly and reactively
to environment changes but also allow a programmer to define more complicated
strategies. Rules may be located in either the program section or the perceptrule
section of an agent program. In the program section, every cycle of the inter-
preter a single applicable rule is selected and rules in this section are typically
used to select actions that are executed in the environment. In the perceptrule
section, every cycle of the interpreter all applicable rules are executed in or-
der. Rules in the perceptrule section are typically used to process percepts from
the environment and messages received from other agents. All built-in actions
of GOAL may occur in both sections but user-specified actions of both internal
or environment actions may only occur in the program section. This restriction
implies that the number of environment actions executed every cycle is limited
to at most one.

Modules provide a means to structure action rules into clusters and to define
different strategies for different situations [22]. In particular, modules facilitate
structuring the tasks and role assignment of an agent, as it allows an agent to
focus on some of its current goals and disregard others for the moment. Different
types of modules are distinguished based on whether the module is entered by
means of a trigger related to the beliefs or the goals of an agent.

Mas files provide a recipe for launching multi-agent systems composed of
several GOAL agents. A mas file specifies which environment to start and how
it should be initialized, which agent source code files are used to create agents,
and when to create an agent. An agent may or may not be connected to an
environment. In our UT2004 case study agents may be connected to bots; an
agent may be launched e.g. when a bot becomes available in the environment.
In the student project, GOAL agents were used to control three UT2004 bots on
different maps. Agents did not have to be connected to the UT2004 environment
which allowed students to design multi-agent systems with more than three
agents, including, for example, a management agent for coordination purposes.

Agents connected to an environment are able to execute environment actions
to change the environment and receive percepts from the environment which
enables an agent to monitor its environment. Sensing is not represented as an
explicit act of the agent but a perceptual interface is defined between the agent
and the environment that specifies which percepts an agent will receive from the
environment. This interface is defined using the environment interface mentioned
above [6]. Percepts - received every cycle of the interpreter - are stored in an
agent’s percept base. At the end of each cycle this percept base is cleared again

and all percepts are removed. This implies that each cycle all percepts need
to be processed immediately, if considered relevant by the agent(’s designer).
Each time after a GOAL agent has completed one reasoning cycle, the agent
processes any percepts it may have received through its perceptual interface.
Incoming percepts are processed through percept rules. The percept rules for
the dynamic Blocks World can be found in Table 1. In the Blocks World, for
example, percepts are of the form block(X), representing that there is a block X
in the environment, holding(X), representing that the gripper is holding block
X, and on(X,Y), representing that block X is on Y. The percept rules specify that
these atoms are added to the belief base as soon as they are perceived (indicated
by the percept keyword), and they are removed from the belief base if they are
not perceived.

Additional features of GOAL include among others a macro definition con-
struct to associate intuitive labels with mental state conditions to increase the
readability of the agent code, options to apply rules in various ways, and com-
munication. Example macro definitions are specified in the program section of
the example agent in Table 1. Various communication primitives are available
but the most basic action is the send action to send a message to another agent.
Messages that are sent as well as those that are received are archived in the
mailbox of an agent, and are only removed when the agent explicitly does so.

3 Research Approach

In this section we outline an approach for conducting research in empirical soft-
ware engineering for agent programming. Future research will be needed to fur-
ther refine it.

3.1 Qualitative Research in Empirical Software Engineering

Research into agent programming frameworks is largely formulative, in the sense
that new language constructs and specification techniques are proposed and
formally analyzed. This is important for establishing solid foundations for the
area of agent programming language research. Now that significant parts of
these foundations have been established, we propose that in order to advance we
need to take a more empirical perspective in which we do systematic empirical
studies on how our languages and platforms are in fact used in practice. Based
on these findings we can make improvements to the languages and frameworks
themselves, to their IDEs, and to the guidelines for using them. We believe that
the foundations and programming environments are now well-enough developed
to take that step. This is not to say that foundational research is no longer
important, but we argue that in addition to that research it is important to also
take an empirical perspective in order to advance the state-of-the-art.

One can distinguish two broad ways of conducting empirical research: using
a qualitative or using a quantitative approach. The two approaches have funda-
mentally different aims. As Marshall states in a paper on sampling for qualitative

research [32]: “The aim of the quantitative approach is to test pre-determined
hypotheses and produce generalizable results. Such studies are useful for an-
swering more mechanistic ‘what?’ questions. Qualitative studies aim to provide
illumination and understanding of complex psychosocial issues and are most use-
ful for answering humanistic ‘why?’ and ‘how?’ questions.” Qualitative research
is often used for the investigation of social phenomena, i.e., processes in which
people are involved, but is also used more and more in the context of software
engineering (see, e.g., [17]).

Considering our research question, namely studying how programmers use
an agent programming language (GOAL in this case), we argue that a qualita-
tive approach is most suitable. We do not yet have clearly defined hypotheses
stating, e.g., that one programming pattern is better than another. Rather, the
research is exploratory and aimed at identifying possible hypothesis and areas
for improvement of the various development instruments. This seems natural,
given the small number of empirical studies that have been done in the area of
agent programming languages.

3.2 Research Process

In this section we outline a basic step-wise approach for conducting this kind
of empirical research in agent programming languages. The steps are a simpli-
fication of the process proposed in [16] for building theories from case study
research, and are specialized for the particular context of agent programming
language research.

1. Getting started: The main task in this phase is formulation of a research
question, without specifying hypotheses or a theory. In our case, our overall
research question is “how do programmers use GOAL”? Answering this ques-
tion then should form the basis for improving how programmers use GOAL,
and improving support for this in the form of the language itself, the IDE
and programming guidelines.

2. Selecting cases: In quantitative research, a random and relatively large
sample of subjects to study is selected such that results can be generalized
to the population of interest. By contrast, in qualitative research the most
productive sample to answer the research question is selected, e.g., based on
experience or expertise of the subjects. In our case we selected subjects with
different levels of GOAL programming skills, so that we were able to compare
the way in which less competent GOAL programmers use the language with
the way in which more skilled programmers use it. More details are provided
when discussing the case studies in the next sections.

3. Data collection: Different data collection methods may be combined, such
as interviews, questionnaires, observations, and results of executing the task
of interest. In our case, the most important source of data that we considered
was the latter, namely the agent programs themselves. In future work we
plan to combine this with other sources of data. The advantage of combining
different sources is that it allows to investigate the same phenomenon from

different perspectives. For example, in our analyses of the agent programs it
was often not clear what the cause of certain observations was, e.g., whether
this was related to lack of understanding or issues in the language itself.
Interviews may provide more insight into this.

Data analysis: Two broad analysis techniques may be considered, namely
within-case analysis and cross-case pattern search. The first allows to gain
familiarity with the data and preliminary hypotheses formulation, the sec-
ond requires researchers to look beyond initial impressions and see observa-
tions from different perspectives. In our study the emphasis is on within-case
analysis, but in the conclusion we also relate the finding from the two cases
and perform a preliminary cross-case analysis. A difficulty in conducting the
latter was that our two cases differed from a relatively simple single-agent
domain to a highly-dynamic, real-time multi-agent domain. In future work
more case studies of both categories would have to be conducted to iden-
tify similarities and differences across cases but within domains. Concerning
the types of aspects to consider when analyzing the data, we provide more
concrete guidelines in Section 3.3.

Shaping hypotheses: The process of shaping hypotheses from the anal-
ysis of data is iterative, i.e., formation of overall impression and tentative
hypotheses is alternated with taking a closer look at the data and assessing
to what extent these hypotheses fit. In our study, the emphasis is on data
analysis and extraction of possibly interesting observations, e.g., concerning
how programmers use constructs like modules. Generally speaking, hypothe-
ses related to such observations could stipulate that using the construct in a
certain way is beneficial in agent programming, e.g., when it comes to under-
standability, maintainability, etc. Alternatively, if we observe a pattern that
we expect is not beneficial, a similar hypothesis could be formed. Also one
can form hypotheses about the reason for observing a certain phenomenon.
We suggest such hypothesis in various places, but the focus of this study is
on extracting interesting observations.

3.3 Analysis Dimensions

We propose several dimensions along which to analyze how programmers use
GOAL. These dimensions are general enough to be applied to other (agent) pro-
gramming languages.

1.

A functional analysis which identifies what the available language constructs
are used for, and which general principles are applied when using them.

A structural analysis which identifies structural code patterns, and which
determines quantitative metrics on the code.

An analysis of software quality along standard software quality measures like
maintainability, reusability, readability, etc.

An analysis of run-time behavior which identifies efficiency issues, and which
shows how often certain parts of a program are executed when running the
agent.

The third dimension is closely related to the first two, as certain functional or
structural usages of the language may influence software quality. Good program-
ming guidelines & teaching methods can improve software quality by improving
on functional and structural usages of the language. Software quality can also be
improved by improving the programming language to facilitate certain usages of
the language.

Existing research related to these dimensions is the following. In program-
ming language research, several criteria for good language design have been iden-
tified. The value of linear flow of control was, for example, recognized, primarily
for its value in program debugging and verification; it was recognized that a
language must be comprehensible, so that programs written in the language can
be read and maintained; modular program structures were observed to make an
important contribution to the production of large software systems [47]. More-
over, in [27] several language evaluation criteria are distinguished among which:
human factors (to what degree does the language allow a competent program-
mer to code algorithms easily and correctly, how easy is the language to learn),
software engineering (maintainability, reusability, etc.), and application domain
(how well a language supports development for a specific domain).

In agent research, software engineering has mainly been studied in the context
of agent-oriented software engineering methodolgies such as Prometheus [35].
These methodologies, however, are either too abstract to provide programming
guidelines for concrete agent programming languages, or, to the extent to which
they provide concrete implementation guidance, do not fit the programming
abstractions as used in languages like GOAL. In the agent programming field,
[29] focuses on structural metrics related to dependencies between abstractions,
which can be used to indirectly predict the likelihood of bugs. This paper can
be viewed as complementary to ours.

4 Case Study 1: Dynamic Blocks World

In this section we present the result of our first case study, in which we exam-
ine GOAL programs for the so-called dynamic Blocks World. In Section 4.1 we
present the dynamic Blocks World domain, and in Section 4.2 we explain which
subjects we used for this study. We present a structural analysis (in particular
analysis of quantitative metrics on code) in Section 4.3, a functional analysis in
Section 4.4, an analysis of software quality (in particular readability) in Section
4.5 and an analysis of run-time behavior in Section 4.6. Some of the more novel
features of GOAL were not yet available when we performed this case study, in
particular modules and macros. Consequently, the use of these constructs was
not evaluated in this study.

4.1 The Dynamic Blocks World

The Blocks World is a simple environment that consists of a finite number of
blocks that are stacked into towers on a table of unlimited size. It is assumed

that each block has a unique label or name a,b,c,.... Blocks need to obey the
following “laws” of the Blocks World: (i) a block is either on top of another block
or it is located somewhere on the table; (ii) a block can be directly on top of at
most one other block; and, (iii) there is at most one block directly on top of any
other block.

A Blocks World problem is the problem of which actions to perform to trans-
form an initial state or configuration of towers into a goal configuration, where
the exact positioning of towers on the table is irrelevant. A Blocks World problem
thus defines an action selection problem. The action of moving a block is called
constructive (see, e.g., [42]) if in the resulting state that block is in position,
meaning that the block is on top of a block or on the table and this corresponds
with the goal state, and all blocks (if any) below it are also in position. Ob-
serve that a constructive move always increases the number of blocks that are
in position.

We have used a specific variant of the Blocks World, which we call the dy-
namic Blocks World. In the dynamic Blocks World, a user can move blocks
around while the agent is moving blocks to obtain a goal configuration. It was
introduced in [33], and comes with an implemented environment.! In that en-
vironment, there is a gripper that can be used to move blocks and the user
can move blocks around by dragging and dropping blocks in the environment’s
graphical user interface. The agent can steer the gripper by sending two kinds
of actions to the environment: the action pickup(X) to tell it to pick up a block
X, and the action putdown(X,Y) to tell it to put down the block X, which should
be the block the gripper is currently holding, onto the block Y. The gripper can
hold at most one block. The environment has a maximum of 13 blocks, and
these can all be on the table at the same time (thereby realizing a table that is
always “clear” in the sense that all blocks fit on the table). The user can move
the blocks around on the table, put a block inside the gripper, or take away a
block from the gripper. In contrast with the gripper, which can only pick up a
block if there is no block on top of it and move it onto a block that is clear, the
user can move any block in any way he likes.

The fact that a user can move around blocks can give rise to various kinds
of possibly problematic situations. For example, the agent may be executing the
action putdown(a,b), while the user moves some block on top of b. This means
that a can no longer be put down onto b, since b is not clear anymore. It may
also be the case that the agent is moving a block a from some other block onto
the table, since a could not yet be moved in a constructive way. It may be the
case that while the agent is doing that, the user moves blocks in such a way that
now a can be moved into position, making the previous action superfluous. A
comprehensive list of such cases where the agent has to deal with the dynamics
of the environment, can be found in [44].

! http://www.robotics.stanford.edu/users/nilsson/trweb/TRTower/TRTower_
links.html

4.2 Subjects and Programming Assignment

We have asked three subjects (two researchers and one programmer) to program
a GOAL agent for the dynamic Blocks World. We refer to the resulting programs
as A, B, and C. The person who programmed A had the least experience with
GoAL, while the programmer of C had the most. Their experience in program-
ming in GOAL ranged from writing simple programs used for trying out the
language constructs (A) to writing several programs for relatively simple single
agent domains (B) and simple multi-agent domains (C). None of them had used
the language in large domains like UT2004 (see Section 5). All subjects were
somewhat familiar with the Blocks World domain.

As a starting point, they were given the action specification and percept
rules of Table 1. Another constraint was that the agent would only get one goal
configuration to achieve. They were also given a set of test cases in order to test
the functioning of their program. Some of these test cases are included in [44];
all test cases and results can be found via the link provided with this reference.
After the programs were handed in for analysis, they were not modified anymore.

4.3 Structural Analysis: Quantitative Metrics on Code

In this section, we compare the three GOAL agent programs for the dynamic
Blocks World based on numeric measures of their code. We provide numeric
measures for each of the sections of a GOAL program, except for the action
specification and percept rules sections, since these formed the starting point for
all three programs (see Section 4.2) and are the same (with a slight exception
for A, see [44]). The results are summarized in Table 2.

Before we discuss the table, we provide some additional information on how
to interpret our measures for action rules. The other measures speak for them-
selves. The total number of action rules is counted for each of the programs,
and is also split into environment actions (pickup or putdown), and actions for
adopting or dropping a goal. We also counted the number of belief and goal
conditions in action rules. We provide the average (avr) number of conditions
per rule, and the minimum (min) and maximum (max) number of conditions
that have been used in one rule. The average number of conditions is obtained
by dividing the total number of conditions by the total number of rules. The
conditions have been counted such that each atom inside belief or goal keyword
was counted as one condition. For example, a conjunctive belief condition with n
conjuncts, bel(condl, ..., condn), is counted as n conditions, and similarly
for a disjunctive belief condition. If the number of belief or goal conditions that
are used is 0, we do not split this into avr/min/max, but simply write 0.

As can be seen in Table 2, the extent to which the knowledge base is used
differs considerably across the three programs. Where A has 16 clauses and 11
defined predicates in the knowledge base, thereby making heavy use of Prolog,
program B has only 4 clauses and 2 defined predicates. The belief base initially
has very little information in all three programs, which suggests that it is used
mostly through updates that are performed during execution by means of the

Table 2. Numeric Measures of Code

Numeric measure [A [B [C
clauses knowledge base 16 4 8
defined Prolog predicates in knowledge base 11 2 3
clauses (initial) belief base 0 0 1
goals (initial) goal base 0 1 1
action rules [env. action/adopt/drop] 313/0/0]|14 [5/6/3]|12 [3/3/6]
bel conditions in action rules (avr/min/max) 1.3/1/2 | 1.8/0/4 | 1.7/0/6
a-goal conditions in action rules (avr/min/max) 0 1.6/1/2 | 0.8/0/1
goal conditions in action rules (avr/min/max) 0 0 0.8/0/2
goal-a conditions in action rules (avr/min/max) 0 0 0.08/0/1

percept rules. Both B and C initially have one goal in the goal base, which reflects
the fact that in our setting we consider only one goal configuration of the blocks.
Program A does not use the goal base for representing the goal configuration.

The number of action rules is very small for program A (only 3), while B
and C use considerably more rules (14 and 12, respectively). Also, program A
only uses action rules for selecting environment actions, while the majority of
the rules of B and C (9 in each case) concern the adoption or dropping of goals.
Moreover, A only uses a small number of belief conditions in the rules (maximum
of 2), and does not make use of goal conditions. The latter corresponds with the
fact that in A, no goals are inserted into the goal base (neither initially, nor
through the use of action rules). The number of belief conditions in B and C
are comparable, ranging from 0 to 4 or 6 conditions per rule, respectively. The
number of conditions on goals in B and C is rather similar (1.6 on average),
and is typically smaller than the number of belief conditions (maximum of 2).
The use of conditions on goals differs for B and C in that B uses only a-goal
conditions, while in C there is an equal number of a-goal and goal conditions,
and one goal-a condition. Program C thus makes the most use of the various
constructs offered by GOAL.

What we did not include in the table is that almost all rules in B and C have
at least one positive, i.e., non-negated, condition on goals (only one exception
in B). This corresponds with the idea that actions are selected because an agent
wants to reach certain goals. None of the programs use the action rules to select
actions for updating the belief base.

We summarize our findings through a number of main observations. The first
concerns the relation between the experience that programmers have with the
GoAL language, and how this relates to their use of the constructs.

Observation 1 (Experience with GOAL) For our programs it is the case
that the more experienced the programmer is with GOAL, the more of the lan-
guage constructs offered by GOAL are used.

This suggests that programmers have a tendency to stick to what they know
best, rather than try out constructs they are less familiar with. This means
that education and training is essential if programmers are to make full use of

the features offered by GOAL. The observation is also in line with the following
observation, which addresses the use of the knowledge base in comparison with
the action rules.

Observation 2 (Focus on Knowledge Base or Action Rules) Two ways in
which the GOAL language can be used, are by focusing on the knowledge base and
keeping the number of action rules small, or by focusing on the action rules and
keeping the knowledge base small.

Besides confirming the previous observation, this observation is related to the
expressive power of the knowledge representation language used in GOAL, i.e.,
Prolog. The latter is so expressive that a large part of the action selection strat-
egy can be coded as part of the knowledge base, without making much use of
the GoaL’s additional language features. We believe that this effect will be par-
ticularly common in cases where the programmer has more experience in Prolog
than in GoAL, and where the domain is relatively simple as in the dynamic
blocks world. For such programmers, it can be quicker to stick to what they
know, while the added benefit of using GOAL’s features is limited. In Section 5
in which a more extensive case study is described, this issue was not observed.
A final observation of this section concerns the use of action rules for adopting
and dropping goals, in comparison with rules for selecting environment actions.

Observation 3 (Many Action Rules for Adopt or Drop) In both programs
that use goals, the number of action rules for adopting or dropping goals is con-
siderably larger than the number of rules for selecting environment actions.

This illustrates that goal dynamics comprises a considerable portion of the
agent’s reasoning, and is thus an important aspect to consider when teaching
GOAL.

4.4 Functional Analysis

In this section, we discuss the code of the GOAL programs in more detail. We
first describe these programs with an emphasis on functional aspects, and then
discuss similarities and differences.

Description of Programs To facilitate understanding of the programs, we
explicitly discuss how they handle dynamics of the environment (caused by
someone moving blocks while the agent is building towers). We distinguish the
following cases:

1. No influence: A block is moved that does not influence the agent. This can
be the case if a block not part of the goal configuration is moved from a
tower not containing blocks of the goal configuration (or from the table) to
a tower not containing blocks of the goal configuration (or to the table).

2. Problematic situation: A block is moved that prevents the execution of an
action that could be executed before the move, or the agent holds a block
that it does not want to move. A pickup action can no longer be executed
if a block is moved on top of the block that the agent wanted to pick up
(2a), or if a block is moved into the gripper that is not the one the agent
wanted to pick up (2b). A putdown action can no longer be executed with
the intended result if a block is moved on top of the block on which the
agent wanted to put down the block that it is holding (2c¢), or if the block is
taken away from the gripper (2d). If a block is moved into the gripper while
the agent did not want to move this block at all, it can be the case that the
agent holds a block that it does not want to move (2e).

3. Efficiency: A block is moved that makes the ezecution of an action super-
fluous or that results in the fact that a better action could be executed. The
former occurs if the move corresponds to the move that the agent wanted to
execute (3a), if the block onto which the agent wanted to move the block, is
no longer placed in the right position in the tower (no longer a constructive
move) (3b), or if the move makes it possible to make a constructive move,
rather than a move to the table (3c). The latter can be the case if a block
is moved into the gripper, through which a constructive move can be made,
even though the agent wanted to execute a different move (3d).

Program A The knowledge base is used to determine where blocks should be
moved. This is done by defining a predicate goodMove (X,Y) on the basis of sev-
eral other predicates. A distinction is made between a constructive move, which
moves a block to construct a goal tower, and an unpile move, which moves a
block to the table in order to clear blocks such that eventually a constructive
move can be made. If possible, a constructive move is selected. The goal con-
figuration of the blocks is specified in the knowledge base, rather than in the
goal base. The predicate isgoal (tower (T)) is used for this, where T is a list
of blocks specifying a goal tower. In order to derive which towers are currently
built, the predicate tower (T) is defined, which specifies that the list T is a tower
if the blocks in the list are stacked on top of each other, such that the head of
the list is the top block and this top block is clear (defined using the predicate
clear(X)).

Three action rules are defined. The first two specify that pickup(X) or
putdown(X,Y) can be executed if goodMove (X,Y). The third rule specifies that
if the agent is holding a block for which no good move can be derived, the block
should be put onto the table. Most of the dynamics cases specified in [44] are
handled by the knowledge base, and some are handled by one of the action rules
(see [44]).

Program B The knowledge base defines the predicates clear (X) and tower (T),
where T is a list of blocks that are stacked on top of each other. In contrast with
the definition of this predicate in A, here the top block of the tower does not
have to be clear (i.e., a bottom part of a tower is also a tower). The belief base is
empty. The goal base initially contains the goal configuration as a conjunction of

on(X,Y) atoms. During execution, goals of the form clear(X) and holding(X)
are adopted.

The action rules are divided into three parts: rules for clearing blocks, rules
for moving blocks to construct towers, and rules for dealing with dynamics. In
addition, there is one rule for selecting the pickup action, which can be used
either for clearing blocks or for moving blocks to construct towers. The rules for
clearing blocks mainly adopt goals: the goal to make a block clear, and on the
basis of this goal the agent adopts the goal to hold a particular block and then
to put the block on the table. The rules for dealing with dynamics mainly drop
goals, or select the action of putting a block down onto the table. These rules
explicitly address dynamics cases (2a), (2b), (2¢), (2e), and (3a) (see [44]). Case
(2d) is handled automatically by adopting a new goal of holding a block, and
cases (3b-d) are not handled.

Program C The knowledge base defines the predicates clear (X), tower (T) and
above (X,Y). The definition of tower(T) is the same as in B, and above(X,Y)
expresses that block X is somewhere above block Y, but not necessarily on Y. As
in B, the goal base initially contains the goal configuration as a conjunction of
on(X,Y) atoms. During execution, goals of the form do (move (X,Y)) are adopted,
to express that block X should be moved onto Y. The belief base contains one
clause for specifying when such a goal is reached (namely when on(X,Y) holds).

The action rules are divided into three parts: rules for adopting goals of the
form do (move (X,Y)), rules for selecting pickup and putdown actions, and rules
for dropping goals of the form do (move (X,Y)). The rules for adopting goals both
adopt goals in order to construct towers, as well as to move blocks to the table
in order to clear other blocks. For each of the actions pickup and putdown there
is one regular rule, and in addition there is a rule for putdown for dealing with
dynamics cases (2b) and (2e) (see [44]). The rules for dropping goals explicitly
address dynamics cases (2a), (2¢), and (3a-d). Case (2d) is handled automatically
by adopting a new goal of moving a block.

Similarities We discuss similarities of the GOAL programs as can be found
when looking in more detail at the code. We discuss our observations structured
along the components of GOAL about which the observations are made.

Knowledge base Our first observation concerns the knowledge base.

Observation 4 (Basic Domain Predicates) All programs define basic do-
main predicates in the knowledge base.

In all three programs, the predicates clear(X) and tower (T) were defined in
the knowledge base, although their definitions vary slightly. The definition of
clear is needed, since this predicate is used in the action specifications. The
tower predicate is needed in order to select constructive moves: a constructive
move moves a block on top of a partial goal tower. One could view these two
predicates as the most basic and essential for the domain, which explains why
all programs define them.

Goals An aspect where programs B and C are similar, is the use of dropping of
goals.

Observation 5 (Dynamics of Environment) In both programs that use goals,
dropping of goals is used for dealing with the dynamics of the environment.

If the user moves blocks around, it can be the case that a goal that was adopted
in a certain situation, is no longer achievable or should no longer be achieved
in the changed situation. This means that the goal should be dropped again.
Since A does not adopt goals, it does not have to consider dropping them again
if the environment is changed. Another more domain specific way in which the
programs handle dynamics, is that they select the action putdown(X,table),
e.g., if the agent is holding a block that it does not want to move in that situation.

Another aspect where B and C are similar, is the frequent use of nega-
tive goal conditions in the action rules for adopting goals, through which it
is checked whether the goal that is to be adopted did not already have an
instance in the goal base. In particular, in B there should not be more than
one goal of the form holding(X) in the goal base, because this goal specifies
which block the agent should pick up next. This is achieved by checking whether
not (a-goal(holding(S))) is the case (where S is unbound), before adopting a
goal holding(X). Similarly, in C there should not be more than one goal of the
form do (move(X,Y)), and corresponding negative goal conditions are included
in the action rules.

Observation 6 (Single Instance Goals) In both programs that use goals, there
are goals of which at most one instance can occur in the goal base at any one
time. This is achieved through the use of negative goal conditions.

Interestingly, in the Jadex framework the notion of cardinality is introduced [36]
to restrict the number of instances of a goal that can be active at the same
time. A similar feature may be added to GOAL in order to help the programmer
specify these kinds of uses of goals.

Differences

Goals One of the main differences between B and C are the goal predicates that
are added during execution. B uses clear(X) and holding(X), while C uses
do (move (X,Y)). The goals of B correspond to the most basic predicates of the
domain. They do not allow to specify as part of the goal where a block that is or
should be picked up, has to be moved. Instead, this is determined on the basis
of the goal in the goal base that specifies the goal configuration of the blocks: if
the block that an agent is holding can be moved onto a partially built tower, this
should be done; otherwise, it should be moved onto the table. In C, a single goal
do (move (X,Y)) represents that the agent should hold X if this is not yet the case,
and move it onto Y if it holds X. Since predicates of the form do (move (X,Y)) are
not added to the belief base through percepts, the programmer in this case has
to define when such a goal is reached. This is done by adding a corresponding

clause to the belief base. Moreover, since B uses action rules to derive the goal
to clear blocks as an intermediate step for selecting a goal to hold a block, B
uses more rules than C (6, where C uses 2) for specifying that blocks should be
moved onto the table in order to clear blocks.

Observation 7 (Abstraction Levels of Goals) Goals can be used on differ-
ent abstraction levels. They can correspond to the most basic predicates of the
domain, or higher-level goals can be defined. In the latter case, clauses can be
added to the belief base in order to define when the higher-level goals are reached.

In Section 4.6 it will be shown that for programs B and C, the portion of adopt
and drop actions compared to the total number of actions generated during
execution is comparable. However, the number of adopt actions generated by B
will most likely grow with the size and complexity of the initial configuration,
since in that case many intermediate clear goals have to be generated, followed
by the goal of holding a block. In C, by contrast, one move goal is created for
each block that the agent choses to move.

A difference between A, compared to B and C, is that A does not use goals in
the goal base. Instead, a predicate isgoal (tower(T)) is used in the knowledge
base. Since goals are not explicitly adopted in A, they do not have to be dropped
again in case the user moves blocks around. On the other hand, if the goal base
is not used, it is the job of the programmer to check which parts of the goal
configuration have already been reached, and which have not. If the a-goal
operator is used in action rules, the semantics of GOAL takes care of this. Also,
the GoAL IDE provides a means to inspect the agent’s mental state while it is
executing, but if goals are used only as part of the knowledge base, one cannot
see them when running the agent. Being able to see the agent’s goals while it is
executing helps in debugging: one can see why the agent is executing a certain
action.

Program section Another difference between B and C is the way in which ac-
tion rules are clustered. In B, they are clustered according to their function in
the strategy (clearing blocks, making constructive moves, and dealing with dy-
namics), while in C they are clustered according to the type of their consequent
(adopt, environment action, and drop). This points to a different style of pro-
gramming, which may be related to the different levels of goals used in B and C.
In C, there is only one type of goal that drives the selection of actions. It is then
the job of the programmer to specify when this goal should be adopted, what
should be done if the goal is adopted, and when it should be dropped. In B, by
contrast, the goals for clearing blocks are selected as intermediate goals, on the
basis of which the agent selects the goal of holding a block. Since the goals to
clear blocks are thus closely related to the corresponding goal of holding a block,
it seems more natural to cluster these rules. The way the rules are clustered in
B may also be related to the fact that B was programmed in an incremental
way. First a highly non-deterministic GOAL agent was programmed that solved
the Blocks World problem in a non-efficient way and that did not deal with the
dynamics of the domain. Then, rules for dealing with dynamics were added and

finally efficiency was addressed. The tower predicate was introduced in this last
step, and was only used to modify the conditions of the rules for making con-
structive moves. B was thus developed through refinement (see also Observation
10) of a initial program, where refinement was done both through the addition
of rules, as well as by modifying conditions of rules.

Observation 8 (Clustering of Action Rules) Two ways in which action rules
can be clustered are according to the type of their consequent, and according to
their function in the action selection strategy.

A difference between B, compared to A and C, is that B does not deal with
dynamics cases (3b-d). This corresponds to the results presented in Section 4.6,
which show that B is slightly less efficient than A and C. More action rules would
probably have to be added to deal with these cases.

4.5 Software Quality: Readability

We have performed an experiment where we have asked six test subjects to look
at the code of all three programs and comment on their readability. The test
subjects were somewhat familiar with the GOAL language, but did not have
extensive experience in programming with it. All comments were removed from
the programs before they were given to the test subjects, but white space was
preserved.

Program A was found to be the easiest to understand, while the readability
of B and C varied across subjects. This seems to be related to Observation 1,
which suggests that more of the GOAL constructs are used as more experience
is gained. Since all subjects had relatively little experience with programming in
GOAL, it seems natural that they find the program making the least use of GOAL
constructs easiest to understand. This also suggests that sufficient training is
necessary to familiarize programmers with the various GOAL constructs. Another
reason why action rules may be difficult to understand, as suggested by some
of the subjects, is the relatively high number of belief and goal conditions that
each have to be read and interpreted, in order to understand what the action
rule is aimed at.

4.6 Run-time Behavior

Besides looking at the code of the programs, we have also analyzed their run-time
behavior. We have run the programs using four test cases, of which two included
dynamics (one block was moved by the user while the agent was executing). The
number of blocks ranged from 3 to 13. More precisely, the test cases are the
following:

1. The goal is “a on b on c on table”, the initial state is “a on table, b on
table, c on table”.

2. The goal is “aon b on c on d on table, e on f on g on table, h on i on j
on table”, the initial state is “k on 1 on f on table, h on a on b on d on
table, j on i onmon c on table, g on e on table”.

3. The goal is “a on b on c on d on table”, the initial state is “c on b on table,
a on table, d on table”. Wait until the gripper has picked up c, and has
moved to the top of the screen. Then use the mouse to put a onto d.

4. The goal is “a on b on ¢ on d on table”, the initial state is “c on b on
table, a on table, d on table, e on table”. Wait until the gripper moves
downwards in order to pick up c. Before it can pick up ¢, move block e into
the gripper.

We have recorded the number of actions (both environment actions as well as
adopt and drop actions) that were executed by the agent in one run of each test
case (see Table 3).2 The number of executed actions to solve a certain problem
can be taken as a measure for the efficiency of an agent program.

Table 3. Executed Actions

Test Case[Action Type[A [B [C

1 adopt or drop | 0 2 3
env. action 4 4 4
2 adopt or drop | 0 | 36 | 18
env. action 28 | 36 | 30
3 adopt or drop | 0 | 10 8
env. action 11| 12 | 10
4 adopt or drop | 0 8 12
env. action 8 9 8

All three programs achieved the goal in all four test cases. The number of
executed environment actions was comparable for all three programs throughout
the test cases, although program B always executed a little more than A and C
(up to 20% more). Since A does not use adopt or drop actions in the program,
the only actions executed by A were environment actions. By contrast, B and C
execute a considerable amount of adopt and drop actions. The average portion
of adopt or drop actions compared to the total number of actions was 0.44 and
0.46 across the four test cases for B and C, respectively. It ranged between 0.33
and 0.50 for B, and between 0.38 and 0.60 for C. We thus make the following
observation, which seems in line with Observation 3.

Observation 9 (Number of Executed Adopt or Drop Actions) In the pro-
grams that use goals, the adopt and drop actions form a considerable portion of
the total number of executed actions.

2 If the same action was sent to the environment multiple times in a row, this was
counted as one action. Sending an action to the environment multiple times in a row
can happen if the action rule for selecting that action keeps being applicable while
the action is being executed.

When taking the total number of executed actions as a measure for efficiency,
it is clear that A is much more efficient than B and C. However, when looking
only at environment actions, the programs’ efficiency is comparable.> Whether
to take the number of executed environment actions as a measure for efficiency
or whether to also take into account (internal) adopt and drop actions, depends
on how much time it takes to execute them. Assuming that the selection and ex-
ecution of adopt or drop actions takes comparably little time compared with the
execution of environment actions, one can take only the executed environment
actions as a measure for the efficiency of the program. However, if this is not the
case then the selection of adopt and drop actions should be taken into account.
In that case it should be carefully considered by the programmer whether the
reasoning overhead is necessary and how it may be reduced. In our case study,
however, environment actions took considerably more time than adopt or drop
actions.

This data is based on one run per program per test case. However, we did do
several more runs for some of the test cases. Those runs showed that there was
non-determinism in the programs, since the execution traces were not identical
in all cases. Non-determinism can, e.g., occur if the goal of the agent is to put
block a on b on ¢ on d on the table, and initially block a is on ¢ and b is on d.
In this case, the agent has no choice but to move both a and b onto the table.
However, the order in which this is done may differ.

The fact that the programs show non-determinism, means that they under-
specify the behavior of the agent. The programs are thus a high-level specification
of agent behavior, in the sense that they do not specify the behavior to the full
detail. This leaves room for refinement of the programs in several ways (see, e.g.,
[20, 4, 21] for approaches that take advantage of this).

Observation 10 (Underspecification) GOAL naturally induces the specifica-
tion of non-deterministic agents, i.e., agents of which the behavior is underspec-

ified.

4.7 Discussion

From the structural analysis of Section 4.3 we can conclude that there are con-
siderable differences in the extent to which programmers use GOAL’s features.
From these observations we cannot directly conclude whether programmers who
use more of the features use them effectively. However, underutilization of the
language features is not desirable. This would mean that either the features are
not useful, or the programmers do not know how to use them. Combined with
the observation that usage of the language’s features differs depending on the ex-
perience of the programmers, we hypothesize that programming guidelines and

3 Comparing for each test case the program with the lowest number of executed en-
vironment actions with that with the highest, the difference is only around 30% for
Test case 2, while being even lower (ranging from 0 to 20%) for the other cases.
Taking the total number of actions, the differences are sometimes around 100%.

teaching can have a significant impact on the extent to which the features are
used.

We have made several observations about the use of goals. We propose that
these observations may form the basis of programming guidelines for using goals.
For example, the observation that adoption and dropping of goals is used for han-
dling the dynamics of the environment could be an effective use of goals in other
dynamic environments as well. The use of single instance goals could form the
basis for adding a feature to GOAL and its IDE that allows to specify which
goals are single instance. This could either be used to automatically update the
goals as a new instance is adopted (namely by removing the old instance) or
by checking this during execution and giving a warning when multiple instances
are present in the goal base. To transform the observation about abstraction
levels of goals into a guideline, more research is needed to determine in which
situations which abstraction level is appropriate. The observation that a con-
siderable portion of the program’s rules are formed by rules for adopting and
dropping goals corresponds with the observation that a considerable portion of
the actions executed at run-time are adopt and drop actions. The relative im-
portance of goal dynamics suggests that this is an important aspect to address
when teaching GOAL. More research is needed to design detailed guidelines on
how to handle this.

5 Case Study 2: UT2004

A second case study that we performed involved the much more complex and
dynamic environment UNREAL TOURNAMENT 2004 (UT2004). Students in a
large student project were asked to code teams of agents for this environment.
We have performed similar analysis as in the Blocks World case study on source
code. The emphasis has been on structural aspects and the identification of
patterns in the agent code samples that we analyzed. We did not perform a
detailed analysis of run-time behavior of agents, however. Such analysis is quite
complicated in an environment such as UT2004. Instead, we ranked multi-agent
systems based on their overall performance in a final competition at the end of
the student project and used this ranking in our analysis.

5.1 UT2004 Project

UT2004 is an interactive, multi-player computer game where bots can compete
with each other in various arenas. The game provides ten different game types,
including, for example, Deathmatch in which each bot is on its own and competes
with all other bots present to win the game where points are scored by disabling
bots, and Team Deathmatch which is similar to Deathmatch but is different in
that two teams have to compete with each other. One of the key differences
between Deathmatch and Team Deathmatch is that in the latter bots have to
act as a team and cooperate and coordinate.

The game type that was used in the student project is called Capture The
Flag (CTF). In this type of game, two teams compete with each other that have
as their main goal to conquer the flag located in the home base of the other team.
Points are scored by bringing the flag of the opponent’s team to one’s own home
base while making sure one’s own flag remains in its home base. Students have
to implement basic agent skills regarding walking around in the environment
and collecting weapons and other relevant materials, communication between
agents, fighting against bots of the other team, and the strategy and teamwork
for capturing the flag. We chose CTF because teams of bots have to cooperate,
which requires students to think about coordination and teamwork in multi-
agent systems.

In the project, students are divided into teams of five students each. Every
group has to develop a team of GOAL agents that control three UT bots in the
CTF scenario. In the project manual, it was suggested that although the number
of bots in the UT environment is three, students can also implement agents that
do not control bots in the environment, e.g., for coordination purposes. The
time available for developing the agent team was approximately two months,
in which each student has to spend about 1 to 1,5 days a week working on
the project. At the end of the project, there was a competition in which the
developed agent teams compete against one another. The grade is determined
based on the students’ code, their report and their final presentation.

For the project, an interface was designed that is suitable for connecting
logic-based BDI (Belief-Desire-Intention) agents to a real-time game. Such an
interface needs to be designed at the right abstraction level. The reasoning typ-
ically employed by logic-based BDI agents does not make them suitable for
controlling the low-level details of a bot. It makes little sense, for example, to
require such agents to deliberate about the degrees of rotation a bot should make
when it has to make a turn. This type of low-level control is better delegated to
a more behavioral control layer, which was built on top of Pogamut [11]. At the
same time, however, the BDI agent should be able to remain in control and the
interface should support sufficiently finegrained control. Details on the interface
can be found in [24].

5.2 Subjects and Sample

The programmers whose code we have analyzed are first-year BSc computer sci-
ence students who followed our second-semester course on Programming Multi-
Agent Systems and the consecutive Project Multi-Agent Systems (both taught
by the first two authors of this paper). These students are the subjects of our
experimental research. In the course the students were trained in both Prolog
as well as in GOAL. As an indication of the level these students had, we briefly
provide some observations related to their skills in Prolog which is a prerequisite
for writing GOAL agents since Prolog is used as the knowledge representation
language in these agents.

The Prolog skills demonstrated by the students are basic but overall suffi-
cient. Students were, for example, able to apply negation as failure and recursion
without problems.

In our case, 12 teams of 5 students participated in the project. The focus
of our qualitative analysis is on the code of Teams 1, 2, and 3 who performed
best in terms of code and performance in the competition, and Team 12 who
performed worst in terms of code and performance.* Criteria for grading the
code were general software engineering criteria such as readability, structure,
consistent use of certain patterns, use of comments for explanation, etc. Students
were also asked to write about the use of features present in GOAL in coding
their agent and to explicitly reflect upon this in a report which was one of the
deliverables of the project. We have used the students’ comments in our analysis
as far as possible but the typical reports did not fit our purposes very well. Part
of the reason has been the structure of the reports and we have adjusted the
requirements in this regard for future projects to obtain more useful data.

5.3 Structural and Functional Analysis: Identification of Patterns

In this section, we present the observations we made by doing a qualitative,
structural and functional analysis of the code of our sample. The emphasis has
been on the identification of particular patterns present in code samples. Func-
tional aspects, or the purposes for which language elements are typically used,
will be discussed throughout this section as well. We identify numerous struc-
tural code patterns, and augment this qualitative analysis with metrics concern-
ing, e.g., the number of times certain GOAL constructs were used. The patterns
that we have found are only informally described and not structured in a for-
mat such as is usual in software engineering (cf. [2]) because a more formal
description cannot be justified on the basis of code analysis alone and would
risk over-interpretation of the results we have obtained. Our work provides a
basis for further development of agent based programming patterns or idioms
in future work. The presentation is structured around the main language ele-
ments of GOAL. We also discuss the more general aspect of coordination and
MAS organization. In Section 5.4 more general software engineering aspects are
discussed.

Knowledge and Belief Base The knowledge base typically was used to define
predicates for computing, e.g., distances and other relevant aspects related to
navigation. This is in line with the main function of the knowledge base to
represent conceptual and domain knowledge. The belief base was used to keep
track of the actual state of the environment and typical functions of code in the
belief base are to (i) represent global features of the environment (e.g., where
is the flag), and (ii) represent assigned tasks or roles (agents were typically
assigned a single role or task at any one time). On average the knowledge base

4 To be more specific, all teams had high grades on their code, Teams 2 and 3 played
in the final of the competition while Team 1 finished in the bottom half.

was significantly larger than the belief base (23.25 versus 15.67 clauses, with a
standard deviation of 24.23 versus 8.7, respectively); moreover, the number of
predicates defined in the knowledge base is larger (ranging from 7 to more than
25 predicates) than that in the belief base (about 5) with some exceptions. This
suggests that most of the logic about the domain was located in the knowledge
base, in line with the main function of the knowledge base to represent conceptual
and domain knowledge.

Observation 11 (Use of Knowledge Base) The knowledge base is used to
represent conceptual and domain knowledge in line with its main function.

One observation made by inspecting the code of various teams is that this
code includes predicates in the knowledge base that have motivational connota-
tions such as the predicates priority and weight to indicate relative importance
and predicates such as needItem and wants. The code fragments for defining
these predicates are significant portions of the code, sometimes more than a 100
lines of code.

Observation 12 (Motivational Concepts in Knowledge Base) The knowl-
edge base is also used to represent and define concepts with motivational conno-
tations.

Goal Base The use of explicit goals has been limited, which may in part be
explained by Observation 12. On average about 1.13 initial goals were used with
a standard deviation of 1.36. By inspection of code, it turns out that initial
goals most of the time are abstract goals such as visitFlags or even win.
These abstract goals are not actually used in action or percept rules and are
never removed, neither explicitly using a drop action nor implicitly by inserting
a belief into the belief base which implies the goal has been achieved. These
abstract goals thus are redundant and serve no functional purpose.

Observation 13 (Redundant Abstract Goals) Code samples include redun-
dant abstract goals that are never actually used to generate agent behavior.

In 6 out of twelve teams goals are dynamically added during runtime by
using the adopt action; on average 3.86 adopts are used by these 6 teams with
a standard deviation of 4.29.

The goals adopted dynamically are used in context conditions of modules.
In these cases, the context condition consists of a check on a single goal which
forms the goal of the module, e.g., goal protectBot for the module protector
(Team 3). In these cases, goals are removed explicitly (never implicitly) using
drop actions (occurring in both action and percept rules). In Team 3, the goal
of a module is removed only after the module was exited explicitly based on
beliefs about role changes. In Team 2, an action rule if goal(not(camp))
then exit-module. is present at the top of the camp module, to express that
the module should be exited if the agent no longer has the camp goal. However,
this behavior is already in the semantics of GOAL, and thus the rule is redundant.

Observation 14 (Explicit Dropping of Goals) Goals, if used, are always
removed explicitly by the built-in drop action.

Another observation on the goals used by Team 3 is that some goals could
naturally be modelled as achievement goals (even though not used as such),
while others rather express an activity over time. We call the latter types of
goals activity goals. For example, the goal getFlag (which expresses an activ-
ity) could be replaced by the achievement goal haveFlag. In fact, Team 3 uses
an action rule to drop the goal getFlag if the agent believes haveFlag. The
goal protectBot expresses a behavior that is not so easily transformed into an
achievement goal, since it is not clear in which state the agent has “achieved”
protecting a bot. Finally, Team 12 has a one-to-one relation between goals and
modules where each module corresponds with a different role or task. The use
of goals in conjunction with modules and their function is a recurrent pattern
in the code that has been analyzed.

Observation 15 (Achievement and Activity Goals) Goal labels that indi-
cate achievement as well as activity goals are used.

We investigated various hypotheses related to the use of goals, built-in goal-
related actions, and modules. First, for all teams except Team 6, whenever the
code contains occurrences of drop actions the code also contained adopt actions.
The reason that in one agent of Team 6 only one drop action was used is that
the agent has one goal start in the initial goal base that is used to initialize
the roles of other agents and thereafter is dropped. Second, whenever an adopt
action occurs it occurs in tandem with drop actions. And, finally, occurrences
of adopt actions entail the presence of modules. The latter suggests that goals
have been typically used to implement roles.

Observation 16 (Use of Goals) Goals have been mainly adopted to satisfy
entry conditions of modules and are dropped in order to or upon exit of a module.

Action Rules As explained, rules in a GOAL agent can be placed in the program
and the perceptrule section. The former kind of rules are called action rules and
are used among others to select actions that are performed in the environment.
These rules define the agent’s strategy or action selection policy, and determine
what the bot that the agent controls will do in the environment. The latter kind
of rules are called percept rules and are used, among others, to process percepts
and messages. Rules can be classified along other dimensions based on their use
and in comments in analyzed code we find that rules are used as communication
rules to send messages, exit rules to exit a module, as mailbox cleanup rules to
cleanup messages stored in an agent’s mailbox, etc.
An example of a communication pattern observed in rules is:

if bel(received(_, role(X)), role(Y))
then insert(role(X)) + delete(role(Y))

This rule inserts an instance of a predicate role that has been received via
communication and overwrites an old instance of that predicate.

Observation 17 (Use of Communication Rules) Communication rules are
used to overwrite one instantiation of a predicate pred with another. Such rules
have the form:

if bel(received(_, pred(NewParameter)), pred(0ldParameter))
then insert(pred(NewParameter)) + delete(pred(0ldParameter))

Note the use of the + operator to perform multiple actions in a single rule.
This feature allows an agent to execute more than one action in a cycle of the
interpreter. All teams make frequent use of the + operator to execute multiple
actions with one action rule.

The average number of action rules per agent over all twelve teams is ap-
proximately 28. The average number for agents that are connected to the envi-
ronment is 42. The average number for agents connected to the environment for
Teams 1, 2 and 3 is 65.5. As action rules determine strategy, this suggests that
Teams 1, 2, and 3 have implemented the most elaborate strategies and suggests
more strategic programming. This is in line with performance in the competition
where Teams 1, 2, and 3 outperformed other teams. Finally, the hypothesis that
Teams 1, 2, and 3 have coded more elaborate strategies is also corroborated by
the fact that the number of percept rules used by these teams is only little above
average.

Since goals are used to a very limited extent as discussed above, the majority
of mental state conditions in action rules consists of conditions on beliefs. The
number of conjuncts of belief conditions varies, but typically no more than five
conjuncts are used. Since most conditions are on beliefs only, never more than
one belief operator is used per action rule. This holds for all twelve teams.

Percept rules, i.e. rules in the perceptrule section, are used for several main
purposes: processing percepts and messages, sending messages, cleaning up the
mailbox, and adoption and dropping of goals (e.g. Team 3). The average number
of percept rules per agent over all twelve teams is approximately 51. The average
number for agents that are connected to the environment is 69. The average
number for agents connected to the environment for Teams 1, 2 and 3 is 78.
Note that the number of percept rules overall is higher than the number of
action rules per agent. This probably is related to the fact that all applicable
percept rules are executed in every cycle of the interpreter whereas only one
applicable action rule is executed in that same cycle. The perceptrule section
thus allows to process all incoming percepts and all received messages. It also
facilitates updating mental states in other ways, for example, to adopt a goal
when the agent learns the environment has changed.

Although not observed in all code samples, a useful pattern for handling
percepts has been used by some of the student teams.

Observation 18 (Percept Rule Pattern) Percepts typically provide a rea-
son to insert new information but also to remove information from the belief

base that is no longer up to date. The following programming pattern can be
used to do this effectively in many cases. It does assume, however, that reliable
information with respect to fact is always available (full observability relative to

fact).

if bel(percept(fact), not(fact)) then insert(fact).
if bel(fact, not(percept(fact))) do delete(fact).

The first rule inserts a perceived fact that is not (yet) believed. The second rule
removes facts that are believed but not perceived (anymore).

As discussed above, percept rules have a different interpretation than action
rules. That is, all applicable instances of a percept rule are applied whereas
only one applicable action rule instance is fired. This may be confusing and to
clarify the differences in a recent release of GOAL we have introduced a different
notation to highlight this difference. The “perceptrule interpretation” now can
be written as: forall ... do ... instead of if ... then

Program Section The program section contains all the action rules, from
which exactly one of the applicable action rules is selected for execution. This
section comes with the option to evaluate rules randomly or in linear order. When
rules are evaluated randomly, a rule is chosen randomly, and the conditions
associated with the rule and action(s) are evaluated; in case these conditions
hold, the action(s) is executed, otherwise randomly another rule is chosen. Linear
order evaluation means that rules are evaluated in order. This type of evaluation
is deterministic and potentially eases programming as conditions of rules that
have been evaluated but failed can be assumed to be false in rules below these
rules. Linear order may provide a programmer thus with a greater sense of
control.

Observation 19 (Linear Execution) Allteams use the option order=linear
to enforce linear execution of action rules.

The management bot of Team 1 does not have action rules in the program
section, except for one obligatory rule if bel(true) then nothing. This rule
is inserted since GOAL enforces the inclusion of one action rule. All other agents
have (functional) action rules in the program section. The number of action rules
on top level, i.e., not within modules, is typically small (ranging from 0 to 2 in
Teams 1, 2 and 3).

Modules Modules facilitate structuring code as well as the behavior of agents
and are used by all teams. A module may be entered when an associated context
condition holds and thereafter only action rules inside the module are executed.
A module can be exited automatically or by means of selecting and executing an
exit-module action. Automated exit of modules works differently for the two
types of modules, namely reactive and goal-based modules. Reactive modules

have a context condition that does not check whether goals are present but does
inspect the beliefs of the agent; such modules are automatically exited when
there are no options anymore to execute an action. Goal-based modules have
context conditions that inspect the goal base of an agent and after entering
the module focus on goals that satisfy the context condition; such modules are
automatically exited when all goals have been achieved. Note that the semantics
of exiting a module is built-in but is a delayed effect. That is, exiting may happen
after a number of cycles of the interpreter that is not easily predicted.

Teams 1, 2, and 12, who make use of a management agent, have significantly
fewer (sub)modules for this agent (0, 1, and 0 respectively) than for the agents
that are connected to bots (13, 7, and 4, respectively). The average number
of (sub)modules used in the agents of all twelve teams is approximately 3. Al-
though a module may contain the same sections as a GOAL agent except for the
perceptrule section, often, only the program section is used in modules.

Modules are used to encapsulate behavior for roles or (high-level) tasks. For
example, Team 2 distinguishes the modules defender, assault, bodyguard, flag-
carrier, and hunter on top level, which form the roles as indicated by correspond-
ing context conditions such as bel(role(defender)). Team 1 distinguishes
capture, defend, attack, and waitAtEnemyBase, which form tasks as indicated
by corresponding context conditions such as bel(task(capture(.))).

Observation 20 (Modules Code Roles) Modules are used to code different
roles of an agent.

If submodules are used, they are used one level deep, i.e., a module within a
module. Team 1 makes frequent use of submodules (1 to 3 per top level module)
and Team 2 uses one submodule (camp as a submodule of defender). Teams 3
and 12 do not make use of submodules.

Several patterns can be observed concerning strategies for entering and exit-
ing modules. The context condition usually consists of a single belief or goal con-
dition, expressing the task (Team 1 uses, e.g., bel(task(capture(.))) and
similarly for other modules) as the context condition for the module capture),
the role (Team 2 uses, e.g., the context condition bel(role(defender)) in
the module defender and similarly for other modules), or the goal of the mod-
ule (Team 3 uses, e.g., the context condition a-goal(getFlag) in the at-
tacker module and similarly for other modules). Teams 1, 2, 3 and 12 use the
exit-module action to explicitly specify when to exit the module. Modules typi-
cally start with such an action rule, which has as the condition the negation of the
context condition of the module, e.g., Team 2 uses bel(not(role(defender))
) in the defender module where the context condition is bel(role(defender)
). Sometimes, additional action rules for explicitly exiting modules are intro-
duced. For example, Team 1 uses rules that allow the agent to exit the module
because it has a more important task (if the agent sees an item it needs, it will
get it and afterwards continue).

Observation 21 (Exit-module Pattern) The first rule(s) in a module are
used to check reasons for exiting the module, and to do so by means of the built-
in action exit-module if those reasons apply.

Interestingly, Team 6 uses modules for initialization purposes. Their man-
agement agent uses a single goal start which is present in the initial goal base
of that agent to enter a module that contains some initialization code; after ex-
ecuting that code the initial goal start is dropped and the module is exited.
(Recall that Team 6 also is the only team that has an agent with a drop action
without an adopt action; this explains why.)

Actions specification The action specification section needs to contain speci-
fications for all actions that are used in the agent program but not built-in into
GOAL. Such actions are called user-specified actions, and can be actions with
effects only on the mental state, called internal actions, as well as actions which
also change the environment, called environment actions. In principle there is
no need to introduce internal actions as whatever can be achieved with such
actions can be achieved with the built-in actions of GOAL but introducing such
actions may increase readability.

Concerning internal actions, i.e., actions that are not executed in the envi-
ronment, we observe that only Teams 1, 2 and 4 have used these. Team 1 only
implements a dummy nothing action. Teams 2 and 4 implement internal actions
only in the management bot which is not connected to the environment.

Observation 22 (Definition of Internal Actions) Even though it is unnec-
essary to do so some teams introduce new internal actions that only have effect
on the agent’s mental state.

All agents that are connected to the environment contain action specifica-
tions for environment actions. The interface to the UT2004 environment made
available in the student project [24] provides 9 different actions with a range of
different parameters to select from. Actions, without mentioning parameters, in-
clude, for example, selectWeapon, goto, pursue, lookAt. On average the goto
and halt actions are used 23 times versus 13 times that other actions are used.
The goto and halt actions thus are used about 4 to 5 times more often than
other actions. This suggests that navigational issues have dominated during the
project.

In action specifications, we make several observations concerning the use of
pre- and postconditions in environment actions. First, we can distinguish actions
for moving around in the environment, namely goto, pursue, halt and respawn,
from other actions such as selectWeapon. For moving actions, Teams 1, 2, and 3
use pre- and postconditions that express how to change the agent’s moving state.
The moving state is expressed by all three teams as state(moving(Route)),
state(pursue), or state(reached([]). This is related to the fact that moving
actions are typically durative (except for the halt action), and it needs to be
recorded whether the agent is currently executing such an action.

Observation 23 (Indicator Predicates for Durative Actions) Action spec-
ifications for durative actions introduce indicators (predicates) to keep track of
the fact that such an action is ongoing in the postcondition.

For instantaneous actions, postconditions typically express the (immediate)
effect of the action, such as the current weapon for selectWeapon (Teams 2 and
3), or the postcondition true, in which case percepts are used for observing the
effect of the action in the agent’s next reasoning cycle (Team 1).

Communication We distinguish plain communication, in which send actions
of the form send (A,Proposition) are used, from advanced communication with
mental models in which actions of the form send(A,:Proposition),
send (A, !Proposition), send(A, ?Proposition) are used.® Mostly plain com-
munication is used. Team 3 uses a few instance of messages with :, e.g., send(
allother, :myTeam(MyName, MyRole)). The management agent of Team 1
uses a few instances of messages with !, e.g., send(Bot, !task(capture
(return))), to tell the other agents what to do.

Two main ways of handling received messages can be distinguished. The first
is by using the received messages directly in conditions of action rules to select
the next action (the management agent of Team 2), without preprocessing them.
A benefit of this method may be efficiency since no preprocessing is needed,
and is simpler to some extent since no preprocessing rules have to be written.
A second way to handle received messages is by preprocessing messages using
percept rules, which insert the received information into the belief base and
delete the received message. Team 2 also uses the received predicate in the
knowledge base of the management agent.

Observation 24 (Message Processing) Messages are often preprocessed us-
ing percept rules by inserting the received information into the belief base.

Observation 25 (Message Processing Pattern) The following pattern for
preprocessing messages is used by Teams 1 and 3, and the agent connected to the
environment of Team 2.

if bel(received(A,Proposition))
then insert(Proposition) +
delete(received(A,Proposition))

This pattern is closely related to Observation 17 but instead of replacing a
proposition the deletion part of this rule removes references to the source (the
agent that sent the message) of the proposition that is inserted into the belief
base. The benefit of using a pattern like this is that it yields better readable code
because action rules and knowledge base are not cluttered with the received
predicate, and allows reasoning with the added propositions using the knowledge
and belief base.

5 For each of these send actions, there is a sendonce variant with which a message is
sent only once, assuming that sent messages are kept in the mailbox.

Coordination and MAS Organization The organisation structures chosen
by the students were hierarchical and network [14]. Irrespective of the organisa-
tion structure the teams used roles (or tasks) to differentiate in behaviour and
let the bots change their behaviour over time, with the exception of Team 11.
Team 11 had a static role division over the bots. Team 7 uses a bit of a mixture;
two of their bots have to change roles depending on the game state, the third
always has to defend the flag.

The hierarchical models all consist of one management agent and three team
member bots, where the team members were just copies of each other. The bots
in the teams using a network organisation (Teams 3, and 11) did not collectively
deliberate about strategy and tactics. Each bot decides for itself when to switch
roles and only informs the others of its new role. In the hierarchical teams the
management agent gets progress information from the team member bots and
on the basis of that information decides on role changes for the bots.

The initialisation differed a bit over the teams. Some had the management
agent assign the roles arbitrary over the bots (e.g., Team 12), some initially gave
the bots a kind of nothing role (e.g., Team 1), some intially gave each of the
bots a specific active role like defender, attacker (e.g., Team 3), and Team 11
used three differently coded bots (an attacker, a defender and a support bot).

The roles and their number in different teams vary. The smallest number
of roles used is two: attacker and defender (Team 5). Some introduced three
roles: hunter, defender, and supporter. Typically, however, a bit more variation
was used, as for example by Team 2 who used: attacker, bodyguard, defender,
flagcarrier, hunter, and none. The more roles, the more rules were defined to
switch between behaviours, and in general the more sophisticated the code to
determine the expected behaviour for the various roles.

Observation 26 (Role Switching) Dynamic switching between roles within
an agent is achieved by means of dedicated rules.

5.4 Software Quality

We make several observations concerning human factors and software engineering
(see also Section 3.3), in particular with respect to readability, maintainability,
and reusability.

We observe that none of the teams have used macros. Readability of mental
state conditions in rules might have been improved by the use of macros, since
the number of conjuncts in these conditions can become relatively large (see
Section 5.3). A large number of conjuncts can make it difficult to grasp what is
expressed by the condition.

Observation 27 (No Use of Macros) None of the student teams have used
macros to enhance readability of code.

Macros may not have been used because they received little attention in the
lectures preceding the project, since their definition and meaning is relatively

simple. Putting more emphasis on the readability benefits that they provide
and presenting convincing examples may positively influence the use of macros.
Another reason may be related to the fact that the students used only one belief
operator per rule. This may make it less natural to use macros, since one might
expect that multiple macro definitions would be used to replace belief conditions
with many conjuncts. This would then require the use of multiple conditions
(expressed as macros) in rules, instead of using a single belief condition.
Another observation related to human factors and software engineering is
that we found frequent occurrences of duplicate code. It is clear from students’
reports that they are aware of this duplication but do not see how to avoid it.

Observation 28 (Code Duplication) Code from one agent program is dupli-
cated in another.

The most notable example was found in the code of Team 3, which coded
two agent files that are almost exact duplicates (lines of code = 884). The only
difference seems to concern the initial role of the agents (see also Section 5.3).
Duplicates are undesirable since it makes it more difficult to understand resulting
programs (readability), as it is often not easy to identify the differences between
very similar pieces of code. Also, it has a negative influence on maintainability,
since changes have to be duplicated too. Code duplication is a clear violation
of the Don’t Repeat Yourself (DRY) principle and should be avoided whenever
possible. It thus is imperative that a language provides facilities for code reuse
to avoid duplication. The fact that students found it difficult to avoid code du-
plication is is an important finding pointing to a need for tools or programming
constructs that help avoid code duplication. This topic has received little at-
tention in the agent-oriented programming community, although, for example,
work on modules may have potential for addressing this issue.

Further, we observe that Team 1 uses hardcoding of agent names both in the
manager agent as well as in the agent program that is used to launch agents
that are connected to a bot in the environment. This introduces dependencies
between these files which are hard to maintain as, for example, such hardcoding
makes it difficult to extend or reduce the number of agents launched in a mas
file. Reducing the number of agents would cause runtime errors (as messages
are being sent to agents that do not exist) and extending the number of agents
would decrease the functionality of these new agents as messages will never be
sent to these additional agents. An example of the use of hardcoded agent names
is the following. In the agent program that is connected to the environment,
percept rules are used to store information about the environment in the belief
base, and to send this information to the manager agent. The information sent
to the manager agent is divided over the other agents, yielding the following
patterns for percept rules, where zombieA is the name of an agent connected to
the environment, and godMother is the name of the manager agent:

if bel(me(zombieA), percept(<Percept>))
then insert(<Percept>) +
send(godMother, :<Percept>)

if bel(not(me(zombield)), percept(<Percept>))
then insert(<Percept>).

Similar rules are added for other agent names and different percepts. Hardcoding
is generally considered bad practice as it introduces problems for maintaining
code. It is, however, not a deficit of a programming language that it allows such
practices but rather requires programmers to be aware that hardcoding is bad
practice. Considering that our students are first-year BSc students which have
not yet been trained in the area of software quality, it seems clear that this issue
relates to experience and teaching how to program good agent programs.

5.5 Discussion of UT2004 Observations

In this section, we discuss several items based on the findings of the previous
sections.

Explicit Control Several of our observations suggest that programmers prefer
explicit control over built-in semantics with delayed effects. In particular, deter-
minism (by selecting linear rule order evaluation, see Observation 19) is preferred
over non-determinism (random action option selection). This is related to linear
flow of control, which has been proposed as a criterion for good language design.
Another well-known paradigm of computing that involves non-determinism is
concurrent programming. Non-determinism in concurrent programming stems
from the fact that it is unknown how much of one process is executed during
the time another one executes an instruction. Interestingly, high-school students
of concurrent programming were found to avoid using concurrency [7]. Another
observation related to explicit control is that explicit strategies for exiting mod-
ules were programmed using the exit-module action, rather than relying on
the automatic exit mechanisms of the language (see Observation 21). Also, goals
were not used as often as could have been. What’s more, if goals were used, au-
tomatic goal deletion upon achievement was not exploited, since corresponding
beliefs were never added to the belief base (Observation 14).

We conjecture that these findings are on the one hand due to an inherent pref-
erence for explicit control, and on the other hand due to lack of understanding of
these mechanisms. Exam results indicate that students were more competent in
explaining and/or applying action rules, action specifications, linear rule order
option and basic Prolog than they were able to do so for modules and subtle dif-
ferences between communication primitives (send versus sendonce command).
Scores on questions related to the former were significantly higher than those
related to the latter. Moreover, the use of explicit module exit strategies in cases
where use of built-in mechanisms would have been simpler, also suggest a lack of
understanding. To some extent, lack of understanding of the nature of achieve-
ment goals is indicated by the fact that corresponding beliefs are never inserted
into the belief base, but more research is needed to explain the code fragments

in some agent programs related to motivational notions in the knowledge base
instead of the goal base.

These findings provide valuable input for teaching the language, since it
suggests more time needs to be devoted to explaining and practicing with the
features of GOAL that have built-in semantics with delayed effect. In particular,
programming examples and patterns will have to be developed to demonstrate
possible uses of the language.

A possible pattern for using modules, derived from the observations and dis-
cussion above, is the following. For each role that the agent should be able to
take, create a module with the goal of the module as the context condition. If
the goal of the module is adopted, the agent can enter the module to perform
the corresponding role. The program rules of the module should aim at achiev-
ing the goal of the module. If the goal is reached, the agent will automatically
exit the module. If the agent should no longer pursue the goal because, e.g.,
more important goals should be pursued, percept rules can be used for specify-
ing when the goal should be dropped, in which case the agent would also exit
the module automatically. It is important to specify such goal revision policies,
due to incomplete information and incomplete control over the environment.
New observations of or changes in the environment may cause an adopted goal
to become obsolete, requiring the need for specifying when the goal should be
dropped. This observation is similar to Observation 5 about dropping of goals
being used for dealing with dynamics of the environment.

Language Design and Development Environment The idenfication of pat-
terns has yielded not only insights on how GOAL constructs are (to be) used,
but also gives rise to multiple possibilities for language improvement and fur-
ther investigation of language design choices, as well as for improvement of the
development environment.

Mailbox clean-up as performed in percept rules suggests investigation of
whether keeping received and sent messages by default in the mailbox is to
be preferred over cleaning up the mailbox in every cycle. This can be done by
introducing these modes as an option in an agent program. In this way, we can
find out by experience and practice what is preferred by the programmer.

One of the difficulties of continuous language design is to monitor whether
code parts keep providing useful functionality throughout the changes that are
made to the language. For example, the GOAL syntax requires agent files to
provide an agent name. However, this agent name is just a label at the top of an
agent file which is never used as the functionality of naming and making agent
names public has been delegated to the mas file. Using these labels in agent
files thus only creates confusion and it is better to remove these agent names.
Similarly, early requirements on syntax may not be so useful anymore as the
language is extended. In particular, after introducing the perceptrule section the
requirement to have at least one action rule in the program section seems not
as useful anymore (Team 1 introduced a trivial ‘obligatory’ rule in the program
section in their management agent). At the time of writing, these insights have

been used and it is allowed to remove sections that would otherwise have been
empty.

We will consider the introduction of warnings and automatic dependency
analysis and checks in the development environment: checks on whether goals
can ever become beliefs of the agent (to indicate proper use of achievement goals);
checks for single send actions in the program section, since these could just as
well have been added in the percept rules; automated support for dependency
analysis to identify duplicate code, etc. Also, support will have to be added to
prevent duplicate code, e.g., by providing import and extension functionalities.

6 Discussion

In this section we evaluate our experimental setup (Section 6.1) and we discuss to
what extent our results are generalizable to other cognitive agent programming
languages (Section 6.2).

6.1 Evaluation of Experimental Setup

We evaluate our experimental setup by discussing how different choices might
impact our findings.

Subjects The subjects of our first case study were researchers and a program-
mer who had varying experience with GOAL, while the subjects for the second
case study were first year BSc students who had just learned GOAL (and Pro-
log). Observation 1, which notes that the use of specific language elements of a
programming language are more often used by experienced programmers in that
language, suggests that some of our findings in the second case study, e.g., con-
cerning the use of macros and goals, might be different if the subjects were more
experienced. While this might be the case, we believe that the latter findings
should not be dismissed because of this. Our aim is to shape the instruments
that support programming of GOAL agents such that novices are able to use
the language’s essential constructs in a suitable and effective way. Consequently,
adaptations to these instruments should be considered to achieve this objective.

Moreover, one might consider it desirable to perform the second case study
also on subjects that are not students (e.g., researchers or professional soft-
ware developers) to investigate how that would influence the results. While this
might be interesting, our main target audience for the language at this stage
of its development is students. Until the language is ready for more wide-scale
adoption also in industry, our main aim is to teach students about programming
multi-agent systems.

Teachers Concerning the second case study, our findings might be influenced
by who taught the course. Here we note that the teachers of the course (the
first two authors of this paper) are designers of and experts on GOAL, which

has been used in teaching at our university since 2007. Any issues that were
identified are thus likely to have arisen also if other teachers, less experienced
in GoAL, would have taught the course. Vice versa, we consider it possible
that that would have given rise to more issues because of lack of experience. For
studying this, it would be interesting to compare results of GOAL courses taught
at other universities. We hope that the instruments for programming GOAL
agents that we are continuously improving (also taking into account the results
of this study), will have a positive effect on the number of agent programming
courses that use GOAL, which would facilitate such comparisons. We conjecture
that programming guidelines and teaching materials (assuming that these are
followed by the teachers) will have more impact on the results than the teachers
themselves.

Application domains The applications considered in our case studies range
from the dynamic blocks world (a small single-agent domain with limited dynam-
ics and real-time requirements) to UT2004 (a real-time highly dynamic multi-
agent environment where agents have to cooperate within their team and com-
pete with the opposing agent team). The advantage of studying programs for a
small domain like the blocks world is that the resulting programs are relatively
small, which allows a detailed analysis of all parts of their code. Also, run-time
behavior can be studied in detail as test cases can be specified precisely. However,
this domain does not include certain essential characteristics of more challenging
agent applications, in particular those that have to function in highly dynamic
environments and that consist of multiple agents. Our UT2004 case study does
have these characteristics, which makes it suitable as a case study for agent pro-
gramming. The observations and programming patterns identified in that case
study are general, i.e., it seems it would be likely that they could be found in
other real-time highly dynamic multi-agent applications.

That said, we do believe it is important to study the use of the language in
other domains and contexts like social robotics or organization-aware agents [46)
which should be able to understand the norms and work processes of organiza-
tions in which they participate. Applying the language in such other domains
will provide a better understanding of the language’s suitability for these do-
mains, and might give rise to extensions that are specifically tailored to those
contexts.

Which Instruments to Improve As indicated in Section 1, with this work
we are aiming at improvements of three interrelated instruments: programming
language, programming guidelines & teaching methods, and development envi-
ronment. From our observations it is not always clear which of these instruments
should be changed to have a certain effect, i.e., which instruments are the cause
of certain issues in the code. Throughout the paper we have indicated modifica-
tions that we would like to incorporate in these three instruments, based on our
estimation as to what would most likely yield better results in terms of code. We
generally take a conservative approach when it comes to proposing changes in

language design: if we believe better programming guidelines and teaching meth-
ods would mitigate some of the issues we found, we prefer this over changing the
language. The language design is based on solid theoretical foundations and we
believe changes should not be made unless we have a clear idea of which aspects
would improve. Future studies will have to show to what extent our proposed
improvements indeed yield better agent programs.

Evaluation of Approach The method that we have applied in this paper is
mainly of a qualitative nature although we have used some rudimentary statistics
to substantiate some our findings. In this paper the focus has been on making
various useful observations, identifying patterns and potential issues. We have
made several hypotheses concerning reasons for these observations, but future
work will have to validate these using a more quantitative approach. It is, more-
over, hard to conclude that we have not overlooked important observations and it
would be useful to explicitly address this issue in the research approach, beyond
the within-case and cross-case analysis discussed before. Nevertheless, given the
current state-of-the-art, we believe that our qualitative approach has much to
bring to the agent community and one might argue that first more similar studies
are needed before we can refine the approach and formulate it in more detail.

6.2 Generalizability to Other Cognitive Agent Programming
Languages

Most cognitive agent programming languages are rule-based as GOAL is. More-
over, as many agent programming languages have features and concepts such
as beliefs and goals as GOAL does, it is only to be expected that at least some
of our results will also apply to these other programming languages. Below we
discuss this in more detail.

Observation 1 which notes that the use of specific language elements of a
programming language are more often used by experienced programmers in that
language is probably universal and will apply to other languages as well. It
highlights again the importance of teaching and language understanding. It is
also well-known though not well-documented that solutions to programming
problems encountered in agent-oriented programming can be resolved in different
ways. It has, for example, also been observed by others that the underlying
knowledge representation technology (e.g. Prolog) can be used to a large extent
to code solutions to such problems as was observed with the programmer of
program A, see Observation 2.

As far as the observations concerning the use of knowledge or beliefs are
not specific to the knowledge representation language of GOAL (i.e., Prolog),
we expect that they are applicable to most other cognitive agent languages as
well since they usually incorporate similar informational attitudes. Concerning
Observation 2 (focus on knowledge base or action rules), we expect that it gener-
alizes to other languages of which the expressive power of the language used for
representing knowledge and beliefs is high (like in the case of Prolog). If no rules

can be used in the knowledge or belief base like in Jason [10], this observation
may not hold.

We have made quite a few observations related to the use of explicit, declara-
tive goals in agent programs. These are particularly applicable to languages that
incorporate such goals, most notably GOAL and 2APL [13]. Most of the obser-
vations also show that there is still work to do to facilitate programming with
explicit, declarative goals and to enhance understanding. We speculate that the
use of predicates with motivational connotations (Observation 12) may occur
even more often in languages without a notion of an explicit, declarative goal
such as Jason.

Although other languages such as 2APL and Jason also have been extended
with modules [13,31], experience with programming with modules in agent-
oriented programming is relatively new and our work is probably one of the first
to document such experiences in the context of a large programming project.
These module concepts have in common that they encapsulate various notions
associated with an agent, such as beliefs and goals. As we have observed in GOAL
agents, modules in other languages have also been proposed to code roles or to
code specific agent capabilities.

Comparing our finding that students have a preference for explicit control
(Section 5.5) with implementations of other languages, we note that many of
the latter inherently incorporate explicit control features in the language. For
example, the implementation of 2APL imposes a linear rule evaluation order
without giving the programmer the freedom to choose other evaluation options.
Also, frameworks like Jack and Jadex that build on an imperative language
inherently require the programmer to make control aspects explicit. We believe
that the flexibility that GOAL provides in terms of allowing the programmer to
choose whether or not to use explicit control features, on the one hand gives more
freedom to the programmer and on the other hand facilitates research performed
in this paper as to preferences of programmers.

We believe that observations related to perceiving an environment (Observa-
tion 18) and communication with other agents (Observations 17, 24, and 25) may
be relevant for other agent programming languages as well. Although particu-
lar code snippets for implementing these patterns may differ, the basic ideas are
general and we believe they can be applied across platforms. To be more specific,
regarding perception of the environment we note that the pattern of Observa-
tion 18 applies to languages that allow for explicit modifications to the agent’s
beliefs based on percepts. If beliefs are updated automatically, this pattern does
not apply. Jason implements automatic updates of beliefs, but annotates these
based on the source of information. A similar pattern as we observed could be
used there to transform beliefs received from another agent to beliefs that the
agent itself really believes.

The observations related to creating structure and organization in a multi-
agent systems are general. It would be useful to obtain more examples that
illustrate how such organization is achieved in various languages for comparison.

Most of our observations relate to the basic concepts that are used within
cognitive agent programming languages. Therefore, with the exception of ob-
servations that specifically apply to the declarative nature of the knowledge
representation language of GOAL as discussed above, we believe that they may
also apply to agent programming languages that are not so much logic-based
but more Java-oriented such as JACK, Jadex, and AF-APL [1, 37, 38]. However,
of course more research is needed to confirm this.

We strongly believe that developing patterns will help mature the agent-
oriented paradigm. As patterns capture best practices and experience, they can
contribute to a formalization of common and recurring solutions to problems
agent developers encounter during implementation and testing of multi-agent
systems. Of course, we are not the first to make this observation. Various au-
thors have suggested the need for a pattern-based approach to agent orientation.
Patterns provide ways to describe best practices and proven designs, and to
capture experience in a way that enables others to reuse this experience [2].
The agent-oriented paradigm requires the design of new patterns because it is
based on intentional and social concepts and has its own associated set of imple-
mentation languages [18]. In [49] it is pointed out that establishing patterns for
multi-agent systems will promote expertise for developing such systems. For sim-
ilar reasons [48] promotes a pattern-based approach to agent development. This
has motivated a broad research agenda on agent-oriented patterns [15, 30, 39,
41,43]. In [34] a comprehensive and state-of-the-art overview of work on these
patterns is provided. One of the few AOP patterns that have been published
to date are motivated by work on the semantics of goals [28] instead of being
derived from the practice of agent-oriented programming. We believe that our
own work provides a more bottom-up approach to establishing such patterns
although we realize that more research is needed in this area.

7 Conclusion and Future Work

In this paper, we proposed an approach for empirically studying how program-
mers use a programming language, in which we identify several analysis dimen-
sions. We have performed two case studies in which we analyzed agent programs
(the first for the dynamic Blocks World and the second for UT2004) written in
the GOAL agent programming language along the identified dimensions. We have
made several observations based on a qualitative analysis of the code of these
agent programs. Here we summarize the most important observations along the
analysis dimensions of our approach.

Functional analysis In both case studies, the knowledge base is used to represent
domain knowledge. Concerning the use of goals, two out of three programmers in
the first case study use goals extensively, while goals are used to a limited extent
in the second case study. In the former, dropping of goals is used for dealing
with dynamics of the environment, while in the latter it is used for entering and
exiting modules. In the first case study we have also observed the existence of

single-instance goals, and that goals can be used on different abstraction levels.
Concerning the program section, in the second case study we have observed that
all teams use a linear rule order evaluation. This contrasts our finding in the first
case study, where we observed that GOAL programs induce the specification of
non-deterministic agents. Possibly programmers are more likely to specify non-
deterministic agents if the domain is relatively small and thus easier to grasp.
Percept rules, which were given to the subjects in the first case study, are used
to update the belief base based on percepts received from the environment and
messages received from other agents. Modules are used to program roles, and
dedicated rules are used to switch between roles (and thus between modules).
Concerning action specifications we observed in the second case study a difference
between durative actions (which record the fact that such an action is ongoing
on the postcondition) and instantaneous actions (which express the immediate
effect in the postcondition or use a true postcondition in combination with belief
updates on the basis of percepts).

Structural analysis While we observed in the first case study an emphasis either
on the knowledge base or on action rules (in terms of numbers of rules/clauses),
in the second case study such a distinction was not observed. This may indicate
that in a challenging environment both of these essential elements of GOAL are
necessary/useful for programming the agents. Also we noticed that the good
teams had on average a significantly higher number of action rules, presumably
because they programmed a more elaborate strategy. The number of percept
rules in the second case study was comparable to the number of action rules,
while it was significantly smaller in the first case study (at least for the programs
that made extensive use of action rules). This may be due to the fact that percept
rules are also used for message processing, which was not needed in the first case
study. In the second case study we have identified code patterns for updating the
belief base on the basis of communication and percepts, and for using modules.

Analysis of software quality In the first case study a readability experiment was
conducted. It was found that the high number of belief and goal conditions in
action rules makes them hard to read. Macros have been added to GOAL to
improve this, but these were not used by the programmers in the second case
study. We conjecture that this is due to lack of emphasis on this construct when
GOAL was taught, and limited use of goals (which often results in only one belief
operator being used for a rule). In the second case study we observed frequent
occurrences of duplicate code. This may be prevented by adding support for
importing modules and by adding a feature to the development environment to
detect this.

Analysis of run-time behavior Run-time behavior was only analyzed in the first
case study. There it was observed that in the programs that use goals, the adopt
and drop actions formed a considerable portion of the total number of executed
actions. Although we did not perform this analysis in the second case study, the
limited use of goals can be expected to result in relatively few adopt and drop

actions. This can be expected to change when goals would be used more.

Overall, we can conclude that GOAL allows programmers to develop multi-
agent systems in which high-level team strategies are used, in combination with
interaction with the virtual environment.

Through our analysis, we have come closer to the development of instruments
for facilitating programming of high-quality GOAL agents. We have identified
aspects that can be improved in the language, and we have gained a better
understanding of which aspects of the language are easy to use and which are
more difficult to grasp. A better understanding of problems that programmers
face when using the language may also help us in developing better debugging
and development software that provides better support to programmers. An
example of this related to the automatic checking of whether goals may ever be
believed by an agent has been discussed in Section 5.5.

In future work, we plan on improving GOAL, its programming guidelines
and development environment along the lines suggested in this paper. We plan
to study the effects of this, and to further investigate the hypotheses formed
through our analysis, e.g., concerning the reasons for the use of explicit control
rather than built-in semantics.

References

1. AOS group. Jack: an agent infrastructure for providing the decision-making capa-
bility for autonomous systems (whitepaper). http://www.aosgrp.com/downloads/
JACK_WhitePaper_US.pdf, September, 2011.

2. B. Appleton. Patterns home page. 2011. [http://www.hillside.net/patterns/;
accessed February 2011].

3. SWI Prolog. http://wuw.swi-prolog.org/ (Accessed 30 Jan 2010).

4. L. Astefanoaei and F. S. de Boer. Model-checking agent refinement. In AAMAS,
pages 705-712, 2008.

5. V. R. Basili and L. C. Briand, editors. Empirical Software Engineering: An
International Journal. Springer, 2009. http://www.springer.com/computer/
programming/journal/10664.

6. T. Behrens and K. V. Hindriks and J. Dix. Towards an environment interface
standard for agent platforms Annals of Mathematics and Artificial Intelligence,
1-35, 2010.

7. M. Ben-Ari and Y. Ben-David Kolikant. Thinking parallel: The process of learning
concurrency. In Fourth SIGCSE Conference on Innovation and Technology in
Computer Science Education, pages 13-16, 1999.

8. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Multi-Agent
Programming: Languages, Platforms and Applications. Springer, Berlin, 2005.

9. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Multi-Agent
Programming: Languages, Tools and Applications. Springer, Berlin, 2009.

10. R. H. Bordini, J. F. Hiibner, and M. Wooldridge. Programming Multi-agent Sys-
tems in AgentSpeak using Jason. Wiley, 2007.

11. O. Burkert, R. Kadlec, J. Gemrot, M. Bida, J. Havlieek, M. Dorfler, and C. Brom.
Towards fast prototyping of IVAs behavior: Pogamut 2. In Proc. of IVA’07, 2007.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

M. Dastani. 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems, 16(3):214-248, 2008.

M. Dastani. Modular Rule-Based Programming in 2APL. In A. Giurca, D. Gasevic,
and K.Taveter (eds.), Handbook of Research on Emerging Rule-Based Languages
and Technologies: Open Solutions and Approaches, pages 25-49, Information Sci-
ence Reference, Hershey, PA, USA, 2009.

V. Dignum. A Model for Organizational Interaction: Based on Agents, Founded in
Logic. PhD thesis, 2004.

T. T. Do, M. Kolp, and S. Faulkner. Agent-oriented design patterns: the skwyrl
perspective. In Proceedings of the 6th International Conference on FEnterprise
Information Systems (ICEIS’04), pages 48-73, 2004.

K. M. Eisenhardt. Building theories from case study research. The Academy of
Management Review, 14(4):532-550, 1989.

O. Hazzan. Orit Hazzan’s Column: Qualitative Research in Software Engineering.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.137.7613, 2006.
C. Heinze. Modelling intention recognition for intelligent agent systems. PhD
thesis, The University of Melbourne, 2003.

K. V. Hindriks. Modules as policy-based intentions: Modular agent programming
in goal. In Proceedings of the International Workshop on Programming Multi- Agent
Systems (ProMAS’07), volume 4908, 2008.

K. V. Hindriks, C. Jonker, and W. Pasman. Exploring heuristic action selection in
agent programming. In Proceedings of the International Workshop on Programming
Multi-Agent Systems (ProMAS’08), 2008.

K. V. Hindriks and M. B. van Riemsdijk. Using temporal logic to integrate goals
and qualitative preferences into agent programming. In Declarative Agent Lan-
guages and Technologies VI (DALT’08), volume 5397 of LNAI, pages 215-232.
Springer, 2009.

K. V. Hindriks. Programming rational agents in GOAL. In R. H. Bordini, M. Das-
tani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent Programming:
Languages, Tools and Applications. Springer, Berlin, 2009.

K. V. Hindriks and M. Birna van Riemsdijk. A computational semantics for com-
municating rational agents based on mental models. In ProMAS’09, volume 5919
of LNAI 2010.

K. V. Hindriks, M. Birna van Riemsdijk, Tristan Behrens, Rien Korstanje, Nick
Kraaijenbrink, Wouter Pasman, and Lennard de Rijk. Unreal GOAL agents. In
Proc. of AGS’10, 2010.

K. V. Hindriks and M. B. van Riemsdijk and C. M. Jonker. An empirical study of
patterns in agent programs. In N. Desai, A. Liu, M. Winikoff, editors, Principles
of Practice in Multi-Agent Systems 2010, 2011. To appear in LNAI. Best paper
award (runner up).

K. V. Hindriks. GOAL Programming Guide. http://mmi.tudelft.nl/~koen/goal,
2010.

James Howatt. A project-based approach to programming language evaluation.
ACM SIGPLAN Notices, 30(7):37-40, 1995.

J. F. Hiibner, R. H. Bordini, and M. Wooldridge. Programming declarative goals
using plan patterns. In M. Baldoni and U. Endriss, editors, Declarative Agent
Languages and Technologies 1V, pages 123-140. Springer, 2006.

R. J. Howell and R. Collier. Evaluating agent-oriented programs: Towards multi-
paradigm metrics. In Proceedings of the International Workshop on Programming
Multi-Agent Systems (ProMAS’10), pages 63-79, 2010.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

44.

45.

46.

M. Kolp, T. T. Do, S. Faulkner, and T. T. H. Hoang. Introspecting agent oriented
design patterns. In S. K. Chang, editor, Advances in Software Engineering and
Knowledge Engineering, 2005.

N. Madden and B. Logan. Modularity and compositionality in Jason. In Program-
ming Multi-Agent Systems: 7th International Workshop, ProMAS 2009, Budapest,
Hungary, May 10-15, 2009, pp. 237-253.

M. N. Marshall. Sampling for qualitative research. Family Practice, 13(6):522-525,
1996.

N. J. Nilsson. Teleo-reactive programs and the triple-tower architecture. Electronic
Transactions on Artificial Intelligence, 5:99-110, 2001.

A. Oluyomi, S. Karunasekera, and L. Sterling. A comprehensive view of agent-
oriented patterns. Autonomous Agents and Multi-Agent Systems, 15(3):337-377,
2007.

L. Padgham and M. Winikoff. Developing Intelligent Agent Systems: A Practical
Guide. Wiley Series in Agent Technology. John Wiley and Sons, 2004.

A. Pokahr, L. Braubach, and W. Lamersdorf. A goal deliberation strategy for BDI
agent systems. In MATES 2005, volume 3550 of LNAI, pages 82-93. Springer-
Verlag, 2005.

A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: a BDI reasoning engine. In
R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-
Agent Programming: Languages, Platforms and Applications. Springer, Berlin,
2005.

S. Russell, H. Jordan, G.M.P. O’Hare, and R.W. Collier. Agent Factory: A
Framework for Prototyping Logic-Based AOP Languages. In Proceedings of the
Ninth German Conference on Multi-Agent System Technologies (MATES 2011).
Springer, Berlin, 2011.

L. Sabatucci, M. Cossentino, and S. Gaglio. A semantic description for agent design
patterns. In Proceedings of the 6th International Workshop From Agent Theory to
Agent Implementation (AT2AI°08), 2008.

Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51-92, 1993.
C. Silva, J. ao Araijo, A. Moreira, and J. Castro. Designing social patterns using
advanced separation of concerns. In Proceedings of the 19th international confer-
ence on Advanced information systems engineering (CAiSE’07), pages 309-323.
Springer-Verlag, 2007.

J. Slaney and S. Thiébaux. Blocks World revisited. Artificial Intelligence, 125:119—
153, 2001.

Y. Tahara, A. Ohsuga, and S. Honiden. Agent system development method based
on agent patterns. In Proceedings of the 21st International Conference on Software
Engineering, pages 356-367, 1999.

M. B. van Riemsdijk and K. Hindriks. An empirical study of agent programs: A
dynamic blocks world case study in goal [extended version], 2009. http://mmi.
tudelft.nl/trac/goal/wiki/Projects/Empirical_AQOP.

M. B. van Riemsdijk and K. V. Hindriks. An empirical study of agent programs: A
dynamic blocks world case study in GOAL. In J.-J. Yang, M. Yokoo, T. Ito, Z. Jin,
and P. Scerri, editors, Principles of Practice in Multi-Agent Systems, volume 5925
of LNAI pages 200-215. Springer, 2009. Best paper award.

M. B. van Riemsdijk, K. V. Hindriks, and C. M. Jonker. Programming
organization-aware agents: A research agenda. In Proceedings of the Tenth In-
ternational Workshop on Engineering Societies in the Agents’ World (ESAW’09),
volume 5881 of LNAI, pages 98-112. Springer, 2009.

47.

48.

49.

50.

A. 1. Wasserman. Issues in programming language design— an overview. SIGPLAN
Notices, 1975.

M. Weiss. Patterns for motivating an agent-based approach. In Conceptual Mod-
eling for Novel Application Domains, pages 229-240, 2003.

D. Weyns, A. Helleboogh, and T. Holvoet. How to get multi-agent systems ac-
cepted in industry? International Journal of Agent-Oriented Software Engineering,
3(4):383-390, 2009.

M. Winikoff. JACK™ intelligent agents: an industrial strength platform. In R. H.
Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent
Programming: Languages, Platforms and Applications. Springer, Berlin, 2005.

