
Empirical Software Engineering for Agent Programming

M. Birna van Riemsdijk

Interactive Intelligence
Delft University of Technology
Mekelweg 4, 2628 CD, Delft

The Netherlands

m.b.vanriemsdijk@tudelft.nl

Abstract
Empirical software engineering is a branch of software en-
gineering in which empirical methods are used to evaluate
and develop tools, languages and techniques. In this position
paper we argue for the use of empirical methods to advance
the area of agent programming. Through that we will com-
plement the solid theoretical foundations of the field with a
thorough understanding of how our languages and platforms
are used in practice, what the main problems and effective
solutions are, and how to improve our technology based on
empirical findings. Ultimately, this will pave the way for es-
tablishing multi-agent systems as a mature and recognized
software engineering paradigm with clearly identified ad-
vantages and application domains.

Categories and Subject Descriptors I.2.5 [Artificial In-
telligence]: Programming Languages and Software; I.2.11
[Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, languages and structures, Multiagentsys-
tems; D.2 [Software Engineering]

General Terms Design, Languages

Keywords Agent programming languages, empirical soft-
ware engineering, software quality, metrics

1. Introduction
Empirical software engineeringis a branch of software en-
gineering in which empirical methods are used to evaluate
and develop tools, languages and techniques. The journal on
Empirical Software Engineering (see [1]) started in 1996.
As stated in [14]: ‘The acceptance of empirical studies in
software engineering and their contributions to increasing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

AGERE! 2012, October 21–22, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1630-9/12/10. . . $10.00

knowledge is continuously growing. The analytical research
paradigm is not sufficient for investigating complex real life
issues, involving humans and their interactions with technol-
ogy.’ That is, empirical research needs to complement theo-
retical studies in order to advance understanding with respect
to the use of technologies.

We argue that empirical software engineering is im-
portant not only for mainstream software engineering, but
also for agent-oriented programming [3, 4] and software
engineering. Through empirical methods, different kinds
of questions can be answered than through analytical ap-
proaches. In this position paper we propose several such
questions and thereby sketch what such a line of research
might look like. We focus on agent programming rather than
agent-oriented software engineering in general. However,
similar questions and issues as proposed below for agent
programming may also be translated to agent-oriented soft-
ware engineering. The term ‘agent programming’ should be
understood to refer to programming autonomous agents and
multi-agent systems.

2. Research Questions
By using empirical methods, data can be gathered for sev-
eral purposes. For example, to get a better understanding of
how software developers use agent programming technol-
ogy (problems and possible solution patterns), to perform a
within technology comparison, i.e., demonstrating that one
variant of (using) agent programming technology is bet-
ter than another, to improve the technology based on these
findings, and to perform across technology comparison, i.e.,
demonstrating that agent programming technology is better
than some other technology. Corresponding research ques-
tions that may be studied using empirical methods can con-
cern any of the set of instruments that facilitate the develop-
ment of high-quality agent programs, namely programming
language, programming guidelines & teaching methods, and
development environment.

For example:

• how do programmers use agent-oriented languages?

which constructs do they use?

what is expressed using which constructs?

what kind of patterns do they use?

which problems do they experience while program-
ming?

which aspects of the languages do they find difficult
or easy to understand?

what kind of processes are used during development,
e.g., which parts of a program are developed first?

• which ways of using agent-oriented languages improve
agent software quality?

how should constructs be used?

which patterns and anti-patterns can be distinguished?

• how does the use of an agent programming language
compare with the use of mainstream, general purpose
languages like Java, and other paradigms for develop-
ment of decentralized, concurrent applications?

do similar programming patterns emerge?

how does the speed of software development com-
pare?

how do the resulting programs compare with respect
to software quality measures like efficiency, maintain-
ability and readability?

• how does the domain for which applications are devel-
oped, influence software development?

which domain characteristics call for an agent-oriented
approach to software development?

which patterns are/can/should be used in which kinds
of domains?

• which features should an Integrated Development Envi-
ronment for agent programming have?

how do programmers use existing IDEs?

which difficulties do they encounter while program-
ming?

to what extent do requirements for an IDE for agent-
oriented software development differ from those for
mainstream software development?

which approaches for debugging are needed in the
context of agent programming?

to what extent does debugging in agent programming
differ from debugging in mainstream software devel-
opment?

Of course, several of these questions have already been
addressed to some extent in various papers. For example, in

[2] it is shown that the use of BDI technology incorporated
within an enterprise-level architecture can improve overall
developer productivity by an average 350%. They argue that
agent technology is particularly suitable for applications that
are “hard” to build, in which requirements change quickly
and which are event and exception driven. Testing multi-
agent systems has also been studied in several papers, e.g.,
[11, 13, 17], although only [13] reports some empirical re-
sults. In [6], an empirical study is performed in the area of
game development, where the POSH reactive planner with
a graphical editor is compared with Java for programming
high-level behavior of a virtual agent in the Unreal Tour-
nament 2004 environment. In [9], metrics for quantifying
coupling and cohesion are proposed that can be applied to
agents as well as object-oriented software. In [20] (which is
based on [19] and [8]) we have studied how programmers
use the GOAL agent programming language, making several
observations concerning, e.g., the use of programming con-
structs and patterns. Similarly, in [12] the authors reporton
experiences in using the Jason agent programming language
by a novice Jason programmer. They suggest programming
patterns to address several encountered issues.

3. Software Quality
A recurring theme in the above research questions issoft-
ware quality. We aim at developing techniques that facilitate
building “better” software. The question is then what exactly
we mean by better software, i.e., how do we define soft-
ware quality? A starting point for this is the ISO/EIC 9126
standard which provides a software quality model. It defines
several software quality characteristics and subcharacteris-
tics: functionality (e.g., interoperability, functionality com-
pliance), reliability (e.g., fault tolerance, recoverability), us-
ability (e.g., understandability, learnability), efficiency (e.g.,
time behavior), maintainability (e.g., analyzability, testabil-
ity), and portability (e.g., adaptability, co-existence).

These characteristics provide an indication of what kind
of characteristics to address when aiming for better software,
but they do not specify how tomeasureto what extent a cer-
tain piece of software exhibits a characteristic. To address
this, the standard specifies that for each characteristic a set
of attributes has to be defined that can be verified or mea-
sured in the software product. This can be done, for example
by defining a set ofquality metricswhich evaluate the degree
of presence of quality attributes in the software. These can
be internal metrics (static), external metrics (defined forrun-
ning software), or ‘quality in use’ metrics (defined for using
the software in real conditions). These attributes and metrics
vary between technologies and software products.

Research will have to identify what software quality
means in the context of programming multi-agent systems
(MAS). Questions that need to be addressed are:

• Which ISO software quality characteristics are suitable
for MAS?

• Which ISO software quality characteristics are particu-
larly important (problematic or strength) in MAS?

• Which are MAS-specific software quality characteris-
tics?

• Which MAS-specific attributes and metrics can be de-
fined for measuring the characteristics?

It will be interesting to make precise how to measure qual-
ity characteristics in MAS. Given the wide range of lan-
guages and platforms for programming MAS, it should be
of particular concern to analyze to what extent language-
independent measures can be defined (as in [9]), or whether
certain quality metrics need to be defined specific to a partic-
ular technology. For example, in [15] several existing soft-
ware engineering metrics are used to evaluate a methodol-
ogy for creating affective applications. In [16] metrics are
used for evaluating the quality of message sequence charts,
in the context of evaluating a methodology for developing
cross-organizational business models. It will have to be in-
vestigated how to compare agent-specific metrics for quan-
tifying a certain quality characteristic with metrics for that
characteristic in mainstream technologies. Finally, it will be
interesting to identify quality characteristics that are specific
to MAS. Examples of characteristics that may be consid-
ered areexplainability(to what extent is the intelligent sys-
tem able to explain its decisions; this can be important for
acceptance of the technology and for debugging (see, e.g.,
[7, 18])), andbelievability(to what extent does an intelligent
(virtual) character or group of characters display believable
behavior; this can be important for example for creating nat-
ural interaction with a human user of the technology).

4. Methodological Aspects
In this paper we argue for recognition of a line of research
on empirical software engineering for agent programming,
and for a more systematic approach to addressing questions
like those posed above. This also calls for discussion and
research concerning appropriatemethodologiesfor conduct-
ing empirical research in agent programming. It needs to
be investigated whether methods from mainstream empiri-
cal software engineering can be applied in our context. For
example, [14] proposes guidelines for conducting and re-
porting case study research in software engineering. In [20]
we propose an approach for empirically studying how pro-
grammers use an agent programming language, in which we
identify several analysis dimensions, such as a functional
analysis which identifies what the available language con-
structs are used for, and which general principles are applied
when using them; and a structural analysis which identifies
structural code patterns, and which determines quantitative
metrics on the code. Also we propose a step-wise research

approach for conducting case study research in agent pro-
gramming, which is based on [5].

We believe that both quantitative as well as qualitative
research should be performed. Quantitative research is used
for testing pre-determined hypotheses and producing gener-
alizable results using statistics, focusing on answering mech-
anistic ‘what?’ questions; for example, what is the effect of
using a certain debugging tool on the number of errors in
the resulting software. Qualitative research is used for il-
lumination and understanding of complex psychosocial is-
sues, and can be used for answering humanistic ‘why?’ and
‘how?’ questions [10]; for example, how do programmers
use agent-oriented programming languages. We believe that
in particular in the earlier stages of studying the use of agent
programming language empirically, it is very important to
also perform qualitative research. This will provide a bet-
ter understanding of how they are used, and through this the
techniques can be improved. Once sufficient improvement
has been realized through this process, within and across
technology comparisons can be performed in a quantitative
manner.

5. Conclusion
In this position paper we have argued for the use of empirical
methods to advance the area of agent programming. Through
this we will complement the solid theoretical foundations of
the field of agent programming with a thorough understand-
ing of how our languages and platforms are used practice,
what the main problems and effective solutions are, and how
to improve our technology based on empirical findings. Ul-
timately, this will pave the way for establishing multi-agent
systems as a mature and recognized software engineering
paradigm with clearly identified advantages and application
domains.

Acknowledgments
I would like to thank Koen V. Hindriks for the joint research
and many discussions on the theme of this position paper.
Also, I would like to thank the organizers (Jürgen Dix, Koen
V. Hindriks, Brian Logan and Wayne Wobcke) and partici-
pants of the Dagstuhl Seminar 12342 on Engineering Multi-
Agent Systems which was held in August 2012 for giving
me a chance to present these ideas and discuss them with the
audience.

References
[1] V. R. Basili and L. C. Briand, editors.Empirical Software En-

gineering: An International Journal. Springer, 2012.http:
//www.springer.com/computer/swe/journal/10664.

[2] S. S. Benfield, J. Hendrickson, and D. Galanti. Making a
strong business case for multiagent technology. InProceed-
ings of the fifth international joint conference on Autonomous
agents and multiagent systems (AAMAS’06), pages 10–15.
ACM, 2006.

[3] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni. Multi-Agent Programming: Languages, Plat-
forms and Applications. Springer, Berlin, 2005.

[4] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni. Multi-Agent Programming: Languages, Tools
and Applications. Springer, Berlin, 2009.

[5] K. Eisenhardt. Building theories from case study research.
The Academy of Management Review, 14(4):532–550, 1989.

[6] J. Gemrot, Z. Hlávka, and C. Brom. Does high-level behavior
specification tool make production of virtual agent behaviors
better? InProceedings of the International Workshop on
Cognitive Agents for Virtual Environments (CAVE’12), 2012.

[7] K. V. Hindriks. Debugging is explaining. InPrinciples of
Practice in Multi-Agent Systems (PRIMA’12), volume 7455
of LNAI, pages 31–45. Springer, 2012.

[8] K. V. Hindriks, M. B. van Riemsdijk, and C. M. Jonker. An
empirical study of patterns in agent programs. InPrinciples
of Practice in Multi-Agent Systems (PRIMA’10), volume 7057
of LNAI, pages 196–211. Springer, 2011. Best paper award
(runner up).

[9] H. R. Jordan and R. Collier. Evaluating agent-oriented pro-
grams: Towards multi-paradigm metrics. InProceedings of
the Eigth International Workshop on Programming Multia-
gent Systems (ProMAS’10), volume 6599 ofLNCS, pages 63–
78. Springer, 2012.

[10] M. N. Marshall. Sampling for qualitative research.Family
Practice, (3):522–525, 1996.

[11] S. Miles, M. Winikoff, S. Cranefield, C. D. Nguyen, A. Perini,
P. Tonella, M. Harman, and M. Luck. Why testing au-
tonomous agents is hard and what can be done about
it. URL http://www.pa.icar.cnr.it/cossentino/

AOSETF10/docs/miles.pdf. AOSE Technical Forum 2010
Working Paper.

[12] R. Pı́bil, P. Novák, C. Brom, and J. Gemrot. Notes on prag-
matic agent-programming with jason. InProceedings of the
Nineth International Workshop on Programming Multiagent
Systems (ProMAS’11), volume 7217 ofLNCS, pages 58–73.
Springer, 2012.

[13] D. Poutakidis, M. Winikoff, L. Padgham, and Z. Zhang. De-
bugging and testing of multi-agent systems using design arte-
facts. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni, editors,Multi-Agent Programming: Lan-
guages, Tools and Applications, pages 215–258. Springer,
Berlin, 2009.

[14] P. Runeson and M. Höst. Guidelines for conducting and re-
porting case study research in software engineering.Empiri-
cal Software Engineering, 14(2):131–164, 2009.

[15] D. J. Sollenberger and M. P. Singh. Kokomo: an empirically
evaluated methodology for affective applications. InProceed-
ings of the tenth international joint conference on autonomous
agents and multiagent systems (AAMAS’11), pages 293–300.
IFAAMAS, 2011.

[16] P. R. Telang and M. P. Singh. Comma: a commitment-based
business modeling methodology and its empirical evaluation.
In Proceedings of the eleventh international joint conference

on autonomous agents and multiagent systems (AAMAS’12),
pages 1073–1080. IFAAMAS, 2012.

[17] J. Thangarajah, G. Jayatilleke, and L. Padgham. Scenarios for
system requirements traceability and testing. In10th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS’11), pages 285–292. IFAAMAS, 2011.

[18] I. van de Kieft, C. M. Jonker, and M. B. van Riemsdijk.
Explaining negotiation: Obtaining a shared mental model of
preferences. In24th International Conference on Industrial
Engineering and Other Applications of Applied Intelligent
Systems (IEA/AIE’11), volume 6704 ofLNCS, pages 120–
129. Springer, 2011.

[19] M. B. van Riemsdijk and K. V. Hindriks. An empirical study
of agent programs: A dynamic blocks world case study in
GOAL. In J.-J. Yang, M. Yokoo, T. Ito, Z. Jin, and P. Scerri,
editors,Principles of Practice in Multi-Agent Systems, volume
5925 of LNAI, pages 200–215. Springer, 2009. Best paper
award.

[20] M. B. van Riemsdijk, K. V. Hindriks, and C. M. Jonker. An
empirical study of cognitive agent programs.Multiagent and
Grid Systems (MAGS), 8(2):187–222, 2012.

