20 Years of Agent-Oriented Programming
in Distributed AI: History and Outlook

M. Birna van Riemsdijk

Interactive Intelligence
Delft University of Technology
Mekelweg 4, 2628 CD, Delft
The Netherlands

m.b.vanriemsdijk@tudelft.nl

Abstract

This extended abstract summarizes the invited talk with the

corresponding title at the AGERE! workshop at SPLASH’12.

It describes a history of 20 years of research in agent pro-
gramming, viewed from the perspective of the author. This
perspective is naturally influenced by the author’s own re-
search on cognitive agent programming languages. We do
not aim for a comprehensive description or claim that this is
provided by this extended abstract or the talk. Rather the aim
is to highlight several important developments in the field,
providing a general idea of the types of issues investigated
in agent-oriented programming, targeted at researchers from
other fields of computer science.

Categories and Subject Descriptors 1.2.5 [Artificial In-
telligence]: Programming Languages and Software; 1.2.11
[Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, languages and structures, Multiagent sys-
tems

General Terms Languages

Keywords Agent programming languages

1. Introduction

The field of agent-oriented programming addresses the de-
velopment of programming languages, platforms and devel-
opment environments for programming autonomous agents
and multi-agent systems. An agent can be defined as “an en-
capsulated computer system that is situated in some envi-
ronment and that is capable of flexible autonomous action in
that environment in order to meet its design objectives” [21].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

AGERE! 2012, October 21-22, 2012, Tucson, Arizona, USA.

Copyright © 2012 ACM 978-1-4503-1630-9/12/10. .. $10.00

Agent-oriented programming lies in the intersection of
artificial intelligence (AI) and programming and software
engineering research. The main research questions addressed
in the field are similar to those in mainstream programming
research, but focused on programming multi-agent systems:
Which concepts can or should be used for programming au-
tonomous agents and multi-agent systems? How to translate
these concepts to language constructs and abstractions? And
finally how to use these languages in practice?

2. The First Decade

Agent-oriented programming has part of its origins in Brat-
man’s Belief-Desire-Intention (BDI) philosophy [7]. BDI
philoshopy was in turn inspired by Dennet’s intentional
stance [12]. The intentional stance has been proposed for
predicting and explaining the behavior of rational agents.
The basic idea is to ascribe beliefs and desires to an object
treated as a rational agent, and predicting what it will do us-
ing practical reasoning applied to these beliefs and desires.
Bratman argues that another notion is key in predicting and
explaining the behavior of rational agents, namely intention.
Intentions can be defined as chosen desires that the agent
commits to achieving. Intentions, unlike desires, induce an
agent to determine how to achieve them and to act accord-
ingly. BDI notions have been further investigated through
defining corresponding logics, resulting in highly influential
papers [8, 26].

The term agent-oriented programming was coined by
Shoham in 1993 [29], and the basic idea is that cogni-
tive notions like beliefs, desires and intentions could be
used not only to predict and explain the behavior of ratio-
nal agents as in BDI philosophy, but also to program these
agents. Shoham proposes AGENT-0, an agent-oriented pro-
gramming language that incorporates these notions as first
class citizens in the language. The basic construct is an
if (condition) then (action) rule, where the condition refers
to the “mental state” of the agent consisting of cognitive
notions like beliefs and goals.

In the decade following the introduction of AGENT-0,
several other agent-oriented programming languages are
proposed that each take their own approach to translating
cognitive notions to constructs and abstractions in an agent
programming language. Examples of influential languages
that have been proposed are GOLOG [23], AgentSpeak(L)
[25] and 3APL [19]. One could say that research in this first
decade focused on agent programming as programming with
mental models (see also [17]), resulting in languages and ar-
chitectures that could translate perceptual input through the
use of mental notions to output in the form of actions that
modify the agent’s external environment (see also the archi-
tecture of [14]).

3. The Second Decade

Around 2001, a new spur in activity emerged in the area,
giving rise to many new research directions. The field was
broadened by expanding the view of agent programming be-
yond the use of cognitive notions, and investigating various
new themes related to programming agent decision making.
An overview of some of that research can be found in books
on agent programming [4, 6]. Workshops that have stimu-
lated research in the field in the second decade were estab-
lished in 2003 as part of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS): Pro-
gramming Multi-Agent Systems (ProMAS) and Declarative
Agent Languages and Technologies (DALT).

Looking back, one could say that much of the research in
agent programming in the second decade was driven by the
following questions:

e Which knowledge representation language to use?

Most of the languages proposed in the first decade were
in one way or another based on logic programming. Re-
searchers realized that in order to increase chances of
adoption of agent programming as an established pro-
gramming paradigm, it is important to also investigate
the use of more mainstream languages for representing
cognitive notions. The Jack language for example is an
industrial strength language that is an extension of Java
with agent concepts [33]. Also, the Jadex platform com-
bines the use of XML and Java for programming agent
reasoning [24].

* How flexible are these agents, really?

Agents were argued to be capable of flexible action in
highly dynamic environments, by combining reactive and
proactive behavior. While the first agent programming
languages indeed addressed this challenge to some ex-
tent, many challenges still needed to be addressed to
make agents more flexible in their decision making. This
gave rise for example to research in reasoning about
goals, addressing among other things the issue of goal
conflicts (see, e.g., [30, 31]).

e Where is the environment?

In the first decade, the environment in which agents func-
tion was taken as given. An interface to the environment
had to be established such that abstracted percepts could
be processed easily by agents, but no further role was at-
tributed to the environment. In the second decade the idea
was proposed (see, e.g., [28]) to use the environment as
a first class abstraction for multi-agent systems engineer-
ing, encapsulating functionalities and services to support
agent activities.

e How to coordinate a collection of autonomous agents?
In the first decade, the issue of how to coordinate a col-
lection of autonomous agents was (in the context of agent
programming) addressed mainly by investigating agent
communication languages. These were typically incor-
porated in agent programming languages through asyn-
chronous message passing mechanisms that allow agents
for example to give other agents information about the
state of the environment or request achievement of goals.
At the beginning of the second decade, a different ap-
proach was proposed for coordination, namely imposing
an organization on the multi-agent system that guides
agent behavior by defining norms, organizational struc-
ture and tasks that should be performed by agents par-
ticipating in the organization (see, e.g., [13, 16]). Sev-
eral organizational modelling languages and normative
frameworks have resulted from these investigations, as
presented in for example the International Workshop on
Coordination, Organization, Institutions and Norms in
Agent Systems (COIN).

e How to specify and verify multi-agent systems?

As in other areas of programming and software engi-
neering research, specification and verification is impor-
tant also in agent programming for ensuring correctness
of the developed multi-agent system. Approaches typi-
cally investigate how to apply and adapt techniques from
mainstream formal methods research to the context of
agent programming. For example, techniques for model
checking AgentSpeak [3] and GOAL [22] have been de-
veloped, and [11] proposes a verification framework for
GOAL. An overview of state-of-the-art can be found in
[10].

e How to use and support use of the languages in practice?
While the origins of agent-oriented programming lie in
philosophy and logics and a large amount of work has
been done on the theoretical foundations of the lan-
guages, many researchers have also taken a more prac-
tical perspective towards the languages. In the second
decade this has resulted in the development of several de-
velopment platforms for agent-oriented languages such
as 2APL [9], GOAL [18] and Jason/AgentSpeak [5],
as well as platforms for modelling environments (e.g.,

CArtAgO [27]) and organizations (e.g., MOISE [20] and
AMELI [15)).

4. Outlook

There are many directions in which research on agent-
oriented programming could develop, as also exemplified
by the discussions that emerged at the Dagstuhl Seminar
12342 on Engineering Multi-Agent Systems which was held
in August 2012 (organized by Jiirgen Dix, Koen Hindriks,
Brian Logan and Wayne Wobcke). Below I highlight a few
of these directions.

It will be interesting to investigate the use of agent-
oriented programming as a paradigm for development of
concurrent and distributed systems. As research on agent
programming has different origins than more mainstream
work on concurrent systems, the concepts and ideas that
have been developed for agents may be inspiring for re-
search in these areas. While several platforms and develo-
ment environments have been developed by now, tool sup-
port for engineering multi-agent systems can be improved
considerably to bring them to a level comparable to those
for mainstream languages. In particular it will be challeng-
ing to provide support for debugging, as this is notoriously
hard in multi-agent systems due to their concurrent nature
and the dynamism of the environments in which they op-
erate. We suggest to increasingly use empirical methods
to evaluate and develop tools, languages and techniques,
thereby complementing theoretical studies in the field (see
position paper by the author in this volume). Through empir-
ical methods, different kinds of questions can be answered
than through analytical approaches, such as how program-
mers use agent programming languages and which problems
they encounter. Moreover, research can be done on the in-
tegration of agents, environment and organization, such as
in recent work on the JaCaMo platform [2]. Developments
in the use of environments and organizations pose new chal-
lenges for (programming) agent reasoning, as agents whould
be able to determine how to adapt their behavior to function
effectively in these contexts (see, e.g., [1, 32]). Furthermore,
there are challenges in the integration of multi-agent sys-
tems with non-agent software. It is unlikely that software
systems of the future will be solely agent-based, and so to
make effective use of the techniques developed in this area,
it should be investigated how to integrate with other (parts
of) software systems.

Acknowledgments

I would like to thank the agent programming community for
its openness and generosity in including me as one of its
members.

References

[1] N. Alechina, M. Dastani, and B. Logan. Programming norm-
aware agents. In Proceedings of the 11th International Con-

ference on Autonomous Agents and Multiagent Systems (AA-
MAS’12), pages 1057-1064. IFAAMAS, 2012.

[2] O. Boissier, R. H. Bordini, J. F. Hiibner, A. Ricci, and A. Santi.
Multi-agent oriented programming with jacamo. Science of
Computer Programming, 2011.

[3] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge.
Model checking agentspeak. In Proceedings of the 2nd Inter-
national Joint Conference on Autonomous Agents and Multi-
agent Systems, pages 409-416. ACM, 2003.

[4] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni. Multi-Agent Programming: Languages, Plat-
forms and Applications. Springer, Berlin, 2005.

[5] R. H. Bordini, J. F. Hiibner, and M. Wooldridge. Programming
Multi-agent Systems in AgentSpeak using Jason. Wiley, 2007.

[6] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni. Multi-Agent Programming: Languages, Tools
and Applications. Springer, Berlin, 2009.

[7] M. E. Bratman. [Intention, plans, and practical reason. Har-
vard University Press, Massachusetts, 1987.

[8] P. R. Cohen and H. J. Levesque. Intention is choice with
commitment. Artificial Intelligence, 42:213-261, 1990.

[9] M. Dastani. 2APL: a practical agent programming language.
Autonomous Agents and Multi-Agent Systems, 16(3):214-248,
2008.

[10] M. Dastani, K. V. Hindriks, and J.-J. Ch. Meyer, editors. Spec-
ification and Verification of Multi-agent Systems. Springer,
2010.

[11] E. de Boer, K. Hindriks, W. van der Hoek, and J.-J. Meyer. A
Verification Framework for Agent Programming with Declar-
ative Goals. Journal of Applied Logic, 5:277-302, 2007.

[12] D. Dennett. The Intentional Stance. MIT Press, Cambridge
MA., 1987.

[13] V. Dignum. A Model for Organizational Interaction: Based
on Agents, Founded in Logic. PhD thesis, 2004.

[14] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A
formal specification of AMARS. In ATAL ’97: Proceedings
of the 4th International Workshop on Intelligent Agents 1V,
Agent Theories, Architectures, and Languages, pages 155—
176, London, UK, 1998. Springer-Verlag.

[15] M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, and J. L. Ar-
cos. AMELI: An agent-based middleware for electronic insti-
tutions. In Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS’04), pages 236-243. IEEE Computer Society, 2004.

[16] J. Ferber, O. Gutknecht, and F. Michel. From agents to orga-
nizations: An organizational view of multi-agent systems. In
Proceedings of 4th International Workshop on Agent-Oriented
Software Engineering (AOSE’03), volume 2935 of LNCS,
pages 214-230. Springer, 2003.

[17] K. V. Hindriks. Agent programming languages - programming
with mental models. PhD thesis, 2001.

[18] K. V. Hindriks. Programming rational agents in GOAL.
In R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni, editors, Multi-Agent Programming: Languages,
Tools and Applications. Springer, Berlin, 2009.

[19] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch.
Meyer. Agent programming in 3APL. Int. J. of Autonomous
Agents and Multi-Agent Systems, 2(4):357-401, 1999.

[20] J. F. Hiibner, J. S. Sichman, and O. Boissier. Developing or-
ganised multiagent systems using the MOISE+ model: pro-
gramming issues at the system and agent levels. International
Journal of Agent-Oriented Software Engineering, 1(3/4):370—
395, 2007.

[21] N. Jennings. Agent-oriented software engineering. In Pro-
ceedings of the 12th International Conference on Industrial
and Engineering Applications of Al, pages 4-10. 1999. In-
vited paper.

[22] S.-S. Jongmans, K. V. Hindriks, and M. van Riemsdijk. Model
checking agent programs by using the program interpreter. In
Computational Logic in Multi-Agent Systems, volume 6245
of LNCS, pages 219-237. Springer, 2010. URL http://dx.
doi.org/10.1007/978-3-642-14977-1_17.

[23] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B.
Scherl. Golog: A logic programming language for dynamic
domains. J. Log. Program., 31(1-3):59-83, 1997.

[24] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: a BDI
reasoning engine. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editors, Multi-Agent Programming:
Languages, Platforms and Applications. Springer, Berlin,
2005.

[25] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In W. van der Velde and J. Perram,
editors, Agents Breaking Away (LNAI 1038), pages 42-55.
Springer-Verlag, 1996.

[26] A.S.Rao and M. P. Georgeff. Modeling rational agents within
a BDI-architecture. In J. Allen, R. Fikes, and E. Sandewall,
editors, Proceedings of the Second International Conference
on Principles of Knowledge Representation and Reasoning

(KR’91), pages 473-484. Morgan Kaufmann, 1991.

[27] A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment
programming in cartago. In R. H. Bordini, M. Dastani, J. Dix,
and A. El Fallah Seghrouchni, editors, Multi-Agent Program-
ming: Languages, Tools and Applications, pages 259-288.
Springer, Berlin, 2009.

[28] A. Ricci, M. Piunti, and M. Viroli. Environment program-
ming in multi-agent systems: an artifact-based perspective.
Autonomous Agents and Multi-Agent Systems, 23(2):158-192,
2011.

[29] Y. Shoham. Agent-oriented programming. Artificial Intelli-
gence, 60:51-92, 1993.

[30] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and
avoiding interference between goals in intelligent agents. In
Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI 2003), 2003.

[31] M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Goals
in conflict: Semantic foundations of goals in agent program-
ming. Autonomous Agents and Multi-Agent Systems, 18(3):
471-500, 2009.

[32] M. B. van Riemsdijk, K. V. Hindriks, and C. M. Jonker. Pro-
gramming organization-aware agents: A research agenda. In
Proceedings of the Tenth International Workshop on Engi-

neering Societies in the Agents’ World (ESAW’09), volume
5881 of LNAI, pages 98-112. Springer, 2009.

[33] M. Winikoff. ~JACK™ intelligent agents: an industrial
strength platform. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editors, Multi-Agent Programming:
Languages, Platforms and Applications. Springer, Berlin,
2005.

