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Abstract. State space reduction techniques have been developed to in-
crease the efficiency of model checking in the context of imperative pro-
gramming languages. Unfortunately, these techniques cannot straightfor-
wardly be applied to agents: the nature of states in the two programming
paradigms differs too much for this to be possible. To resolve this, we
adapt core definitions on which existing reduction algorithms are based to
agents. Moreover, the framework that we introduce is such that different
reduction algorithms can be defined in terms of the same relations. This
is beneficial because it enables the reuse of code and reduces computation
time when different techniques are used simultaneously. Specifically, we
adapt and combine two known techniques: property-based slicing and
partial order reduction. We exemplify our work with the Goal agent
programming language, and implement the theory that we present for
Goal. Several experiments with this implementation show that perfor-
mance is in line with known results from traditional model checking.

1 Introduction

Model checking techniques for the verification of programs have traditionally
been developed in the context of imperative programming languages (IPL).
Ideally, for model checking programs written in agent programming languages
(APL), one would take the technology and tools developed for IPLs, and ap-
ply them to agent programs without too much alteration. Unfortunately, this is
sometimes an inefficient solution, and sometimes even impossible:

inefficient — In [11], we show that it can be beneficial to develop new model
checkers tailored to the verification of an APL rather than reusing existing
tools for agent verification. The reason is that APL-tailored model checkers
can reuse the APL’s standard interpreter for fast generation of states. Con-
sequently, there is no need to encode the agent program to lower-level code
serving as input to an existing tool, which typically blows up the state space.

impossible — In this paper, we argue that state space reduction techniques,3

henceforth simply reduction techniques, known from traditional model check-

3 State space reduction techniques combat the state space explosion problem (common
to both IPL and APL model checking). This is the problem that systems to be
verified are typically huge in terms of their state space, rendering model checking such
systems often beyond our reach: it takes too many resources to finish verification.



ing cannot be applied directly in an agent context. The reason is that (de-
pendencies between) states and transitions in the transition system of an
imperative program differ fundamentally from those of an agent program.

Our main contribution is the redefinition, for agents, of concepts at the heart
of existing reduction algorithms with a novel framework that brings together
different techniques in a unifying way: we show that both property-based slicing
(PBS) and partial order reduction (POR) can be defined in terms of the same
relations using our framework. This enables a shared code base and runtime
synergy: computations carried out for one algorithm can be reused by the other.
We use the Goal agent language [6] as running example throughout the paper.

The remainder is organised as follows. Section 2 provides background on
model checking and Goal. In Sect. 3, we argue why existing reduction techniques
cannot straightforwardly be applied to agents, and introduce our framework. In
Sect. 4, we define PBS and POR algorithms in terms of this framework. Section 5
discusses our implementation. Finally, Sect. 6 discusses related work with respect
to reduction techniques in agent verification, and concludes the paper.

2 Preliminaries

Model checking Model checking [4] is a technique for automatically estab-
lishing whether a program P satisfies a property ϕ. Usually, ϕ is expressed in
a temporal logic, a formalism for describing change over time. In this paper, we
consider linear temporal logic (LTL) [4]. An LTL formula, denoted by φ or ϕ (if
ϕ is a property to be model checked), is built from a set of propositions P, the
boolean connectives, and the temporal operators © (next), U (weak until), and
R (strong release). We denote the set of all LTL formulas by L. An LTL formula
is interpreted over an infinite sequence of states, which we call a computation,
denoted by π. Let i ≥ 0 be an index of π, and let |= be LTL’s entailment relation.
Purely propositional (sub)formulas are interpreted with respect to the i-th state
on π, denoted by πi, using a valuation function V. Such a function maps a state
to the set of propositions in P that are true in it. Temporal (sub)formulas are
interpreted with respect to the (infinite) postfix of π starting in the i-th state:

π, i |=© φ iff π, i+ 1 |= φ
π, i |= φ U φ′ iff ∃k≥i(π, k |= φ′ and ∀i≤j<k(π, j |= φ))
π, i |= φR φ′ iff π, i |= ¬(¬φ U¬φ′) (note that R is the dual of U)

In model checking, the program P is represented by its transition system
T = 〈M,µ0,−→〉 in which M is a finite set of states, µ0 ∈M is the initial state,
and −→⊆M×M is a transition relation connecting states. A path π through T
is an infinite sequence of states π0π1 · · · such that for all i ≥ 0: πi, πi+1 ∈M and
πi −→ πi+1. A computation π of P is a path through its transition system that
starts in µ0, i.e. π0 = µ0. We denote the set of all computations of P by Π. The
model checking problem for P and ϕ, given a valuation function V, can now be
formulated more formally as follows: determine for all π ∈Π whether π, 0 |= ϕ.



In that case, we say that P satisfies ϕ. Otherwise, if there exists a π ∈Π such
that π, 0 |= ¬ϕ, P is said to violate ϕ, and π is called a counterexample.

Various approaches to model checking exist. In this paper, we assume NDFS
explicit-state automata-theoretic LTL model checking [4], because the implemen-
tation we discuss in Sect. 5 extends [11] in which this approach is also taken.4 In
this approach, every π ∈Π is checked for satisfaction of ¬ϕ in negation normal
form (NNF). If such a computation is found, the model checker immediately
halts, and reports it as a counterexample. Otherwise, the model checker termi-
nates after investigating all computations, reporting that ¬ϕ is not satisfied by
any computation, i.e. ϕ is satisfied by all computations. Thus, instead of deter-
mining if all computations satisfy ϕ, in fact one determines whether there exists
a counterexample. Henceforth, we assume all LTL formulas in NNF.

An important optimisation that the sketched approach allows for is on-the-
fly exploration: the transition system of the program under investigation is gen-
erated during execution of the model checking algorithm instead of before it.
Consequently, if a counterexample is quickly found and the model checker ter-
minates, no resources have been spent on the generation of parts of the transition
system whose inspection has turned out unnecessary. Importantly, the reduction
algorithms discussed next are compatible with on-the-fly model checking.

GOAL The Goal agent programming language [6] facilitates programming
of rational agents (i.e. agents that pursue their goals) at the cognitive level:
agents choose their actions by reasoning about their beliefs and goals, which
are expressed in some knowledge representation language LX (e.g. Prolog). The
beliefs that a Goal agent has at some point in time are stored in its belief base,
denoted by Σ. Similarly, the goals of a Goal agent are stored in its goal base,
denoted by Γ . Goals are declarative: they specify what the desired state of the
world is instead of how this state may be brought about. Together, the belief
and goal base of an agent constitute its mental state, denoted by µ = 〈Σ,Γ 〉.5

A Goal agent derives its choice of action from its mental state, hence it needs
a mechanism to inspect it. To this end, agents evaluate mental state conditions
(MSC). An MSC, denoted by ψ, is a boolean expression about the beliefs and
goals of an agent, according to the following syntax:

χ ::= any well-formed formula from LX
ψ ::= bel(χ) | goal(χ) | ¬ψ | ψ ∧ ψ

The semantics of MSCs is defined by the entailment relation |=
ms

[6]. Informally,
if µ is a mental state then µ |=

ms
bel(χ) is true if χ is believed by the agent;

4 Another well-known approach is symbolic model checking using binary decision di-
agrams (BDD) [4, 13]. This approach is based on an abstraction technique different
from the techniques discussed here and is out of scope of this work.

5 Although we do not discuss knowledge, our implementation is able to deal with this;
in contrast, modules [6], percepts, and beliefs about dynamic environments that
evolve independently of the agent’s acting are at present beyond our scope.



similarly, µ |=
ms

goal(χ) is true if χ is a goal of the agent. The set of all MSCs,
denoted by Lms, is called the language of mental state conditions.

MSCs are used in the definition of action rules. An action rule, denoted by
ρ, is a statement of the form if ψ then α in which α is an action. An action
rule may be read as “if ψ is true, then the agent may consider performing α”. In
that case, the action rule is said to be applicable. The effects that performance
of an action have on the mental state of an agent are formalised by the mental
state transformer, denoted byM. The mental state transformer maps an action
and a mental state to a successor mental state. M need not be defined for all
mental state–action pairs 〈µ, α〉: ifM is undefined for µ and α, this means that
α cannot be performed in µ. A precise definition of M is given in [6].

Let µ be a mental state, and let ρ = if ψ then α be an action rule. If ρ is
applicable in µ (i.e. µ |=

ms
ψ) and M(α, µ) is defined, then α is called an option

in µ. During each reasoning cycle, a Goal agent determines its options given
its current mental state and set of action rules, and chooses and performs one of
them non-deterministically. This is formalised by an operational semantics. Let
if ψ then α be an action rule, and let µ be a mental state. Then, the transition
relation −→ is the smallest relation induced by the following transition rule:

µ |=
ms
ψ M(α, µ) is defined

µ −→M(α, µ)

The transition relation −→ is subsequently used to define the transition system
T = 〈M,µ0,−→〉 of a Goal agent, in which we assume that M is a finite6 set
of mental states and that µ0 is the initial mental state of the agent.

Example 1. The source code and transition system of a simple example Goal
agent, whose task is to put on two socks, appears in Fig. 1. We use this agent,
called socksAgent, as a running example throughout this paper.

For model checking Goal agents, we instantiate the set of LTL propositions
P with the language of mental state conditions Lms. The valuation function V
in this case maps every mental state µ to the MSCs that are true in it, i.e.
V(µ) = {ψ ∈ Lms | µ |=ms ψ}. This allows us to formulate and verify properties
about the evolution of beliefs and goals of a Goal agent during its execution.

A final remark on terminology. Although we illustrate our techniques with
Goal, they can be applied to other agent languages as well. Therefore, when we
write “mental state” in what follows, we do not refer exclusively to a state of a
Goal agent, but rather to a state of an agent written in some BDI-based APL.

3 Operations on Mental States

The aim of reduction techniques is to remove sets of transitions from the tran-
sition system that do not affect the truth value of the property under investiga-
tion. In our framework, we identify such sets of transitions by classifying them

6 Finiteness is not imposed by Goal, but a model checking termination requirement.



1. main: socksAgent{
2. beliefs{
3. bothSocksOn :- wearing(sock,left),
4. wearing(sock,right).
5. }
6. goals{
7. wearing(sock,left). wearing(sock,right).
8. }
9. program{

10. if goal(wearing(sock,left))
11. then putOn(sock,left).
12. if goal(wearing(sock,right))
13. then putOn(sock,right).
14. }
15. action-specs{
16. putOn(S,X){
17. pre{ not(wearing(S,X)) }
18. post{ wearing(S,X) }
19. } } }

µ0 µ1

µ2 µ3

t0

t1t2

t3

µ0 =

〈
∅ ,
{

wearing(sock,left),
wearing(sock,right)

}〉
µ1 =

〈
{wearing(sock,left)} ,
{wearing(sock,right)}

〉
µ2 =

〈
{wearing(sock,right)} ,
{wearing(sock,left)}

〉
µ0 =

〈{
wearing(sock,left),
wearing(sock,right)

}
, ∅
〉

Fig. 1. Example agent. On the left, its source code; on the right, its transition system.

in terms of operations. Informally, we may think of an operation, denoted by τ ,
as a function that transforms states µ to other states µ′. In that case, τ is said
to be applied to µ. More specifically, we characterise an operation in terms of
the changes that it brings about, and the statement in the source code from
which it can be induced. Below, let T = 〈M,µ0,−→〉 be the transition system
of some agent program P , and let t = 〈µ, µ′〉 ∈ −→ be a transition.

changes — Grouping individual transitions in T according to the changes that
they bring about enables us to express that the order in which two operations
can be applied is without consequence (relevant in POR). To formalise this
notion, let Ch(t) denote the change between µ and µ′.

statement — Characterising operations by statements allows us to remove
sets of transitions from T by deleting statements from P ’s source code. This
enables us, for instance, to reduce T by performing static analysis of the
program text alone (relevant in PBS). To formalise this notion, let St(t)
denote the set of statements in P ’s source code from which t can be induced.

Example 2. In case of Goal, Ch(t) denotes the beliefs and goals to be added
and deleted to get from µ to µ′, and St(t) denotes the action rules that induce t.
Applied, for instance, to transition t0 = 〈µ0, µ1〉 of socksAgent in Fig. 1 yields:
Ch(t0) = 〈Σ + {wearing(sock,left)} − ∅, Γ + ∅ − {wearing(sock,left))}〉
and St(t0) = {if goal(wearing(sock,left)) then putOn(sock,left)}.

We now define an operation τ formally.

Definition 1. An operation is a pair τ = 〈T, s〉 in which s is a statement and
T ⊆ −→ is the largest set such that for all t, t′ ∈ T : Ch(t) = Ch(t′) and s ∈ St(t).

Example 3. We identify the following operations of socksAgent in Fig. 1:

τ0 = 〈{t0, t3 }, if goal(wearing(sock,left)) then putOn(sock,left)〉
τ1 = 〈{t1, t2 }, if goal(wearing(sock,right)) then putOn(sock,right)〉



We use the following notation and definitions. The set of all possible operations
is denoted by Ωτ . If τ = 〈T, s〉 is an operation, then we use Tran(τ) and Stat(τ)
as a shorthand for, respectively, T and s. We call Stat(τ) the statement that
induces τ , and say that τ is enabled in a state µ if there exists a µ′ such that
〈µ, µ′〉 ∈ Tran(τ); we write τ(µ) as a shorthand for µ′. The set of all enabled
operations in µ is denoted by En(µ), i.e. En(µ) = {τ ∈ Ωτ | τ is enabled in µ}.
The set of all operations Ops(s) that a statement s can induce is called its
operation class, defined as Ops(s) = {τ ∈ Ωτ | Stat(τ) = s}. Finally, for brevity,
we write Ch(τ) to denote the change brought about by any t ∈ Tran(τ), and
write Ch(s) to denote the set at least having

⋃
τ∈Ops(s) Ch(τ) as a subset.

3.1 Variable Assignments versus Mental States

State space reduction techniques have originally been developed for use with
transition systems whose states are characterised by variables and their values,
henceforth called variable assignment. By carefully analysing which variables
change by applying operations on states (i.e. when moving from one state to the
next), relations on operations essential to the application of reduction algorithms
can be computed. For instance, one can determine whether enabledness of an
operation τ ′ is affected by the application of an operation τ , by comparing the
variables that τ mutates and τ ′ accesses. We call the sets of variables an operation
τ accesses and mutates its read set, denoted by Read(τ), and its write set, denoted
by Write(τ), respectively. These sets are not used only for determining whether
enabledness of operations depends on the application of (other) operations, but
also to determine if the application of an operation influences the truth value of
LTL formulas. Importantly, analyses based on read and write sets can be done
by inspection of the source code alone: the read and write set of an operation
τ can be determined straightforwardly by inspecting the variables occurring
in the statement that induces τ , i.e. Stat(τ). This is of great value, because it
allows for off-line computation of (most of the) reduction algorithms. This means
that the computation of these algorithms does not depend on information that
is available only during model checking. Because processing information that is
available only at runtime (i.e., while we run the actual model checking algorithm
that searches for a counterexample) is likely to be more expensive (e.g., because
subroutines of the algorithm need be computed for each state in a transition
system), off-line algorithms reduce the overhead at runtime to a minimum.

Example 4. Suppose two operations τ, τ ′ ∈ Ωτ such that Stat(τ) = [x := x +
1] and Stat(τ ′) = [y := z + 42] are enabled simultaneously in some variable
assignment ν, e.g. because they belong to different concurrent processes (and
x, y, z are shared variables). Then: Read(τ) = Write(τ) = {x} and Read(τ ′) = {z}
and Write(τ ′) = {y}. Because Read(τ) ∩Write(τ ′) = Write(τ) ∩ Read(τ ′) = ∅,
application of τ cannot cause τ ′ to become disabled and vice versa.

When model checking agent programs, however, states are not characterised by
variable–value pairs, but by mental attitudes, which are very different: how and
which mental attitudes change over time is not stated explicitly in the program



text, e.g. due to underspecification. We elaborate on this in Sect. 3.2. Hence, in
agent verification, we cannot use directly the analysis techniques known from
traditional model checking to compute the relations essential to the application
of reduction algorithms: the gap between variable assignments and mental states
need be bridged. Specifically, to be able to reuse existing reduction algorithms
for agents, we need to answer (in the next subsection) the following questions:

1. What are the elements constituting read and write sets when dealing with
mental states of agents, which are not composed of variable–value pairs?

2. Given a definition of read and write sets for mental states of agents, can we
still compute them off-line?

3.2 Read Sets and Write Sets for Mental States

Ad 1. We aim at a definition of read and write sets for mental states that
is sufficiently generic in the sense that these definitions should accommodate
multiple APLs. This is nontrivial, because mental states look different in each
APL, i.e. the mental attitudes constituting a mental state vary between different
languages. To this end, we introduce the notion of an APL-specific condition lan-
guage, denoted by LK , whose elements are conditions, denoted by κ. Informally,
the idea is that the read set of an operation τ contains those conditions that
must be true for τ to be enabled, while τ ’s write set contains those conditions
whose truth value changes due to application of τ . Thus, Read(τ) ⊆ LK and
Write(τ) ⊆ LK . The only requirement that LK must satisfy is that it should
have the set of propositions P as a subset, i.e. P ⊆ LK : this allows us to deter-
mine, by means of write set analysis, whether a transition can affect the truth
value of a property. Apart from that, LK can be tailored completely to the needs
of the APL.

Example 5. In the context of Goal, the condition language equals the language
of MSCs, i.e. LK = Lms (recall that P = Lms for Goal).

Next, to accommodate formal definitions, we assume an entailment relation |=K ,
relating (mental) states to conditions that are true in them, and a function I
mapping a mental state µ to the subset of LK that is true in µ, i.e. I(µ) = {κ ∈
LK | µ |=K κ}. Read and write sets are then defined formally as follows.

Definition 2. Let τ be an operation. Then:

Read(τ) = {κ ∈ LK | there exist states µ, µ′ s.t. τ ∈ En(µ), τ /∈ En(µ′)
and κ ∈ I(µ) and I(µ′) = I(µ)\{κ} }

Write+(τ) =
⋃
〈µ,µ′〉∈Tran(τ) I(µ′)\I(µ)

Write−(τ) =
⋃
〈µ,µ′〉∈Tran(τ) I(µ)\I(µ′)

Write(τ) = Write+(τ) ∪Write−(τ)

We call Write+(τ) and Write−(τ) the positive and negative write sets of τ ;
Write(τ) is sometimes referred to as τ ’s total write set.



We use the distinction between positive and negative write sets in Sect. 3.3. The
distinction is important, because it allows us, for instance, to state that some
transition τ can enable a transition τ ′: in that case, the positive write set of τ
coincides with the read set of τ ′. Conversely, if τ ’s negative write set does not
coincide with the read set of τ ′, τ cannot disable τ ′. Note that “not disabling” is
different from “enabling”, and in general, Write+ and Write− are not each other’s
complement: LK \Write+(τ) 6= Write−(τ) and LK \Write−(τ) 6= Write+(τ).

Example 6. Consider operation τ0 of socksAgent, defined in Ex. 3. For conve-
nience, we restrict this example to the MSC set {goal(wearing(sock,left)),
goal(wearing(sock,right)), bel(bothSocksOn)} ⊂ Lms. Now, the positive
write set of τ0 equals {bel(bothSocksOn)}, while both its read set and nega-
tive write set equal {goal(wearing(sock,left))}. From this, we can deduce
that τ0 disables itself, while it has no effect on enabledness or disabledness of τ1.

Ad 2. As outlined in Sect. 3.1, off-line computation of read and write sets is
important, because it reduces the resource consumption of reduction algorithms
at runtime. For imperative programming languages, as shown in Ex. 4, this can
be done easily. Unfortunately, in case of agent programs, the situation is more
complex: conditions from LK often do not occur explicitly in the agent’s source
code, and cannot be simply extracted from it without further analysis.

Example 7. Consider the read and write sets of operation τ0 of socksAgent

given in Ex. 6. While τ0’s read set can be determined straightforwardly from
the action rule if goal(wearing(sock,left)) then putOn(sock,left), this
is not the case for its write set for two reasons. First, the removal of the goal
wearing(sock,left) occurs automatically due to Goal’s semantics, and is not
specified explicitly in the program text. Second, the derivation of bothSocksOn
using the Prolog rule in the belief base (see Fig. 1) cannot be detected by in-
spection of this action rule alone.

Switching to a more general perspective, we must deal with two issues when
computing read and write sets for Goal agents. First, not all beliefs and goals
that an operation adds or deletes can be derived from the source code of a
Goal agent, making it difficult to determine which MSCs incur a change of
truth value. Second, as changing the belief base by an operation also changes
the consequences that can be derived from Prolog rules, we need an algorithm to
approximate these. The issue is that this algorithm must run on only the source
code and that the content of the belief base at runtime is unknown.

Thus, we may need to derive read and write sets with more complex analysis
techniques. Unfortunately, it may be impossible to compute precise read and
write sets using the source code alone due to underspecification of the agent or
the occurrences of uninstantiated variables combined with Prolog-style reasoning
as sketched in the previous example. There are two ways to resolve these issues:
acquire sufficient information by generating the entire transition system, or use
approximation techniques. We prefer the latter, because the former is incompati-
ble with on-the-fly model checking. We stress that approximation is unnecessary



Table 1. Formal definition of relations on operations and statements.

Relation Precise (for operations τ, τ ′) Approximate (for statements s, s′)

Visibility Vis(τ, φ) iff Vis(s, φ) iff
Props(φ) ∩Write(τ) 6= ∅ Props(φ) ∩Write(s) 6= ∅

Enables Enables(τ, τ ′) iff Enables(s, s′) iff
Read(τ ′) ∩Write+(τ) 6= ∅ Read(s′) ∩Write+(s) 6= ∅

Independence Indep(τ, τ ′) iff Indep(s, s′) iff
Hen

Indep(τ, τ
′) and Hcomm

Indep (τ, τ ′) Hen
Indep(s, s′) and Hcomm

Indep (s, s′)

in an IPL context, because there, read and write sets can be obtained with
straightforward source code inspection.

The key property any approximation technique for read and write sets must
satisfy is that of over -approximation: to ensure that model checking with reduc-
tion algorithms yields the same results as without, approximate read and write
sets (denoted here in font) need to over-approximate the precise sets. Formally:

Property 1. Let s be a statement. For all τ ∈ Ops(s): Read(τ) ⊆ Read(s) and
Write+(τ) ⊆Write+(s) and Write−(τ) ⊆Write−(s) and Write(τ) ⊆Write(s).

Intuitively, over-approximation of read and write sets is required because these
sets are used to determine dependencies between operations: the less dependen-
cies present, the more reduction can be obtained. Thus, if all operations depend
on each other, no reduction is gained. By over-approximating, dependencies that
actually do not exist are nevertheless assumed. Although this may cause reduc-
tion algorithms to be less effective, correctness is assured. Henceforth, we assume
all sets Read and Write to satisfy Property 1 (e.g. in the proof of Lemma 1).

3.3 Relations on Operations

Next, we use read and write sets to define relations on operations known from
existing literature [4] on reduction techniques (see Table 1), and used by the
algorithms in Sect. 4. Our contribution is that we define each relation not only
in terms of precise read and write sets, but also in terms of their approximate
counterparts. The resulting approximate relations can be computed before the
transition system is generated (instead of during its generation), i.e. off-line.
This reduces computational overhead of reduction algorithms at runtime to a
minimum, and ensures compatibility with on-the-fly model checking. We prove
lemmas to show how the precise and approximate relations relate to each other.

The first relation we discuss is the visibility relation Vis. Let τ be an opera-
tion, and let φ be an LTL formula. Then, Vis(τ, φ) states that application of τ
can affect the truth value of φ; the formal definition can be found in Table 1.
Because Vis is defined in terms of precise write sets, which typically cannot be
computed off-line (see Sect. 3.2), we introduce the approximate visibility relation
Vis, which is an approximation of Vis defined in terms of approximate write sets
(see Table 1). Relations Vis and Vis are related by the following lemma.



Table 2. Independence conditions, definitions, and heuristics.

Condition Heuristic Approximate heuristic

enabledness : Hen
Indep(τ, τ

′) : Hen
Indep(s, s′) :

τ ∈ En(τ ′(µ)) Read(τ ′) ∩Write−(τ) = ∅ Read(s′) ∩Write−(s) = ∅

commutativity : Hcomm
Indep (τ, τ ′) : Hcomm

Indep (s, s′) :
τ(τ ′(µ)) = τ ′(τ(µ)) Ch(τ) ∩ Ch(τ ′) = ∅ Ch(s) ∩ Ch(s′) = ∅

Lemma 1. Let s be statement, let τ be an operation such that Stat(τ) = s, and
let φ be an LTL formula. If Vis(τ, φ), then Vis(s, φ).

Proof. By definition of Vis in Table 1, Props(φ) ∩Write(τ) 6= ∅. Also, because
Write satisfies Property 1, Write(s) ⊆Write(τ). Hence, Props(φ)∩Write(s) 6= ∅.
The lemma then follows from the definition of Vis in Table 1. ut
Thus, Vis(s, φ) is true if s induces an operation τ whose application affects the
truth value of φ, as such over-approximating the relation Vis.

The second relation we discuss is the enables relation Enables. Let τ, τ ′ be
operations. Then, Enables(τ, τ ′) states that application of τ to some state µ can
cause τ ′ to become enabled, i.e. τ is enabled in µ while τ ′ is not, but in the state
that results from applying τ to µ, τ ′ is enabled. The formal definition (in terms
of precise read and write sets) occurs in Table 1, together with the definition
of the approximate enables relation Enables (in terms of approximate read and
write sets). Relations Enables and Enables are related by the following lemma,
whose proof is analogous to that of Lemma 1 (omitted for reasons of space).

Lemma 2. Let s, s′ be statements, and let τ, τ ′ be operations such that Stat(τ) =
s and Stat(τ ′) = s′. If Enables(τ, τ ′), then Enables(s, s′).

Thus, Enables(s, s′) is true if s induces an operation τ whose application can
enable an operation τ ′ induced by s′, over-approximating the relation Enables.

The third relation we discuss is the independence relation Indep. Let τ, τ ′ be
operations. Then, Indep(τ, τ ′) is true if the independence conditions in the left
column of Table 2 hold for each state µ of the transition system: enabledness
states that independent operations cannot disable each other, while commuta-
tivity states that applying independent operations in either order results in
the same state. In practice, checking the independence conditions in each state
would be too much a computational burden. Therefore, as usual [4], Indep is
defined heuristically (see Table 1 and the middle column of Table 2).

We approximate enabledness with condition Hen
Indep given in Table 2, which

is guaranteed to be true if enabledness is true. The intuition behind it is that
if an operation τ does not disable an operation τ ′, then τ cannot make a con-
dition κ on which enabledness of τ ′ depends (i.e. κ ∈ Read(τ ′)) false. Similarly,
commutativity is approximated with Hcomm

Indep in Table 2. The intuition behind
Hcomm

Indep is that if the orders in which operations τ and τ ′ can be applied both
lead to the same state, the changes that they bring about are disjoint, i.e. τ does
not (partially) undo changes brought about by τ ′ and vice versa.



Definitions of Hen
Indep and Hcomm

Indep (similar to those in [4]) are in terms of
operations instead of statements: to be able to compute independences before
actual model checking, we require the latter. Therefore, as before, we introduce
the approximate independence relation Indep, in whose definition (see Table
1) the precise heuristics have been replaced by their approximate counterparts
Hen

Indep and Hcomm
Indep (see the right column of Table 2). Relations Indep and Indep

are related by the following lemma; its proof is analogous to that of Lemma 1.

Lemma 3. Let s, s′ be statements, and let τ, τ ′ be operations such that Stat(τ) =
s and Stat(τ ′) = s′. If Indep(s, s′), then Indep(τ, τ ′).

We use Dep(τ, τ ′) (and Dep(s, s′)) as a shorthand for “Indep(τ, τ ′) is false” (and
“Indep(s, s′) is false”), and call τ, τ ′ (and s, s′) dependent.

4 State Space Reduction

In a nutshell, the idea of state space reduction is as follows. Let T = 〈M,µ0,−→〉
be the complete transition system. The aim of reduction techniques is to find a
reduced transition system T̂ = 〈M̂, µ0, −̂→〉 such that M̂ ⊆ M and −̂→ ⊆ −→.

The idea is that M̂ and −̂→ may be significantly smaller than M and −→,
and that investigating T̂ will require less resources (time and memory) than

inspection of T would. To ensure that model checking T̂ for ϕ yields the same
results as model checking T , henceforth referred to as correctness, T̂ should be
both sound and complete with respect to T and ϕ [7]. Let Π be the set of

computations in T , and let Π̂ be the set of computations in T̂ . Then:

sound — If π ∈Π s.t. π |= ¬ϕ, then there exists a π̂ ∈ Π̂ s.t. π̂ |= ¬ϕ.

complete — If π̂ ∈ Π̂ s.t. π̂ |= ¬ϕ, then there exists a π ∈Π s.t. π |= ¬ϕ.

In the remainder, we describe and define two reduction techniques, PBS and
POR, in terms of the relations given in Sect. 3.3. We stress that these techniques
by themselves and the ideas behind them are not new: both have extensively
been studied in the context of imperative languages. Their coherent definition
for agents in terms of the same relations, however, is a contribution of ours. This
requires the following efforts. With respect to PBS, we redefine data structures
used in traditional PBS in terms of relations given in Sect. 3.3. With respect
to POR, we can straightforwardly apply the existing ample set method, which
is already defined in terms of relations similar to those of Sect. 3.3; a novelty,
however, is the introduction of a heuristic that generalises SPIN’s [4].

4.1 Property-Based Slicing

The aim of property-based slicing (PBS) is to remove statements from the source
code of the system to be verified that do not influence the (negated) property
¬ϕ. Removal of such statements may cause certain states and transitions to
be eliminated from the transition system, thus yielding a reduction. A PBS



algorithm is run before generation of the transition system commences (and
without the need for generation of the complete transition system). The challenge
of PBS is to remove as much code as possible while preserving correctness.

PBS algorithms represent the source code of the system under verification as
a graph [15]. Such a graph makes explicit how execution of one statement can
influence the execution of other statements as well as the property to be checked.
Moreover, it enables the formulation of the PBS problem as a graph reachability
problem. In our PBS algorithm, we use influence graphs. Informally, the influence
graph with respect to a set of statements S (by which some program P is defined)
and a (negated) property ¬ϕ is a graph whose vertices are statements and ¬ϕ,
and whose edges are elements of the visibility and enables relation.

Definition 3. Let S be the set of statements by which some program P is de-
fined, and let ¬ϕ be a negated property. The influence graph G(S,¬ϕ) = 〈N , E〉
is a digraph with N = S ∪ {¬ϕ} and E = {〈s,¬ϕ〉 ∈ S × {¬ϕ} |Vis(s,¬ϕ)} ∪
{〈s, s′〉 ∈ S × S | Enables(s, s′)}.

The first line of the definition of E represents the notion of direct influence on ¬ϕ:
every edge 〈s,¬ϕ〉 indicates that there exists an operation τ ∈ Ops(s) that can
influence the truth value of a proposition in ¬ϕ. The second line of E ’s definition
represents the notion of indirect influence on ¬ϕ: every edge 〈s, s′〉 indicates that
there exist operations τ ∈ Ops(s) and τ ′ ∈ Ops(s′) such that τ can enable τ ′. If
s′ influences ¬ϕ (directly or indirectly), s influences ¬ϕ indirectly.

Closely related to influence is the notion of routes. A route through an in-
fluence graph is a finite sequence of vertices s0 · · · sn¬ϕ, abbreviated s0  ¬ϕ,
such that every statement occurs only once on a route, i.e. if i 6= j then si 6= sj
for all 0 ≤ i, j ≤ n, and every route ends in ¬ϕ. The set of all routes through
an influence graph G(S,¬ϕ) is denoted by Routes(G(S,¬ϕ)). The idea central
to our PBS algorithm is that every statement that is not on any route through
the influence graph G(S,¬ϕ) can safely be removed from the source code: these
statements have no influence on the truth value of ¬ϕ. The algorithm takes a
set of statements S as input, and computes a reduced set of statements Ŝ by
constructing an influence graph and computing routes. To determine if a route
exists, the algorithm starts at a vertex s, and explores the influence graph until
the vertex ¬ϕ is reached, or no more reachable yet unexplored vertices are left.7

Existing PBS algorithms work in roughly the same way: the program is rep-
resented as a graph, reducing the PBS problem to graph reachability analysis.
A key difference is that in our approach, the connection between operations and
statements is made very explicit,8 allowing for a rigid proof of correctness. We
have not found similar explicit connections in the existing literature on PBS.

7 Several optimisations may be implemented. For instance, if a depth-first exploration
strategy is applied, all vertices on the depth-first stack at the moment ¬ϕ is reached
also have a route to ¬ϕ, making additional searches for these statements unnecessary.

8 The visibility and enables relations (Vis and Enables) are defined in terms of read
and write sets on statements (Read and Write), which are related to read and write
sets on operations (Read and Write) by Property 1, which are defined in terms of
individual transitions of the transition system.



Theorem 1. Our PBS algorithm preserves soundness and completeness.

Proof (Sketch). We adopt the premise that if a computation π satisfies ¬ϕ, i.e.
π |= ¬ϕ, then an operation that influences ¬ϕ is applied during π’s generation.

soundness If π |= ¬ϕ and by our premise, there exists a computation π′ such
that π′ |= ¬ϕ and that is generated exclusively by applying influential oper-
ations. Hence, as the algorithm retains all statements that can induce influ-
ential operations, π′ is also a computation in the reduced transition system.

completeness Because the algorithm does not introduce new statements to the
set S, no new transitions are introduced either. ut

We note that the adopted premise in the previous proof is false if ¬ϕ (in NNF)
contains© or R operators:© φ can be true without application of an influential
operation if φ is already true in the current state, while φR φ′ can be true if φ′ is
true from the current state onwards without an influential operation ever being
applied (i.e. φ never becomes true). Thus, the PBS algorithm is only applicable
if ¬ϕ is in the {©,R}-free fragment of LTL.

4.2 Partial Order Reduction

Next, we present a partial order reduction (POR) algorithm in terms of the
relations of Sect. 3.3. POR algorithms try to exploit the observation that the
various orders in which certain events can take place are irrelevant with respect
to a certain property. Once such a situation is identified, a POR algorithm forces
the model checker to choose only one representative order and to disregard all
the others. While a PBS algorithm is applied prior to the generation of the
reduced transition system, a POR algorithm is run during its generation (and
without the need for generation of the complete transition system first).

There are various approaches to POR. Here, we focus on the ample set method
[4] as it fits the relations of Sect. 3.3 seamlessly. The idea is to construct a reduced
transition system by selecting only a subset of all enabled operations in each state
(and disregarding the other enabled operations). To preserve correctness, such a
subset, called an ample set and denoted by Ample(µ), must satisfy the following:

C0 (Emptiness) Ample(µ) = ∅ iff En(µ) = ∅.
C1 (Ample Decomposition) In the complete transition system, on any path

starting from some state µ, an operation dependent on an operation from
Ample(µ) cannot appear before some operation from Ample(µ) is executed.

C2 (Invisibility) If En(µ) 6= Ample(µ), all operations in Ample(µ) are visible.
C3 (Cycle Closing) If a cycle contains a state in which an operation τ is

enabled, then it also contains a state µ such that τ ∈ Ample(µ).

Details about these conditions are given in [4].
Let µ be a state. A naive implementation of the ample set method would be

to check for all subsets of En(µ) whether the four conditions are satisfied, and
then pick one such subset as ample set. The problem with such an implementa-
tion, however, is that checking C1 is computationally just as hard as the model



checking problem for the complete transition system [4]. Therefore, in practice,
rather than checking C1 for an arbitrary subset of enabled operations, a heuris-
tic approach that finds a set of operations that is guaranteed to satisfy C1 is
used. We call such a set a candidate set. Such an approach does not always lead
to an ample set that yields the greatest reduction possible, but can be effective
nevertheless. Once candidate sets are chosen, they need only be checked for C0,
C2, and C3, which are easy to compute. Our idea for choosing candidate sets
is to first select a subset of S, denoted by Ŝ, which satisfies the following:

Property 2. Let S be the set of statements defining a program. Then, for all
s′ ∈ Ŝ, there does not exist a s ∈ S \ Ŝ s.t. (i) Dep(s, s′) and (ii) Enables(s, s′).

Once a set Ŝ satisfying Property 2 is found, the set of all enabled operations in
a state µ that can be induced by a statement s ∈ Ŝ is selected as a candidate
set C, i.e. C = En(µ) ∩

⋃
s∈Ŝ Ops(s). It is guaranteed that C satisfies C1.

Lemma 4. If Ŝ satisfies Property 2, C = En(µ) ∩
⋃
s∈Ŝ Ops(s) satisfies C1.

Proof (Sketch). There are two situations in which C1 may be violated, which

differ by whether τ is induced by a statement s′ outside Ŝ or in it. In the former
case, if s′ /∈ Ŝ, there exists a statement in Ŝ on which s′ depends (because τ is
dependent on an operation in C). This situation is covered by condition (i) of

Property 2. In the latter case, if s′ ∈ Ŝ, then τ is not enabled in the current state
(because τ /∈ C). Hence, there exists another statement s that enables s′. If s /∈ Ŝ,
then Enables(s, s′), hence this situation is covered by condition (ii) of Property

2. Otherwise, if s ∈ Ŝ, the previous argument can be applied inductively. ut
In practice, the challenge is finding suitable sets Ŝ as efficiently as possible. A

straightforward approach is iterating over all elements in the power set of S, and
checking Property 2 for each Ŝ ∈ 2S . However, as this requires time exponential
in the number of statements, this is not a good idea. Instead, we let the search
for sets Ŝ be guided by the definition of Dep: we search for sets Ŝ that are
guaranteed to satisfy (i) of Property 2. This search can be done in time linear in

the number of statements |S| and the size of Dep, and yields at most |S| sets Ŝ
instead of 2|S| for which (ii) of Property 2 need be checked. The idea is to regard
the relation Dep as a graph whose vertices are statements and whose edges are
elements of the relation. Because every edge is an element of Dep, each statement
belonging to a set Ŝ cannot have edges to statements outside Ŝ: a set Ŝ satisfying
(i) of Property 2 corresponds to a connected component in the graph, which can
be found with a depth-first search [9]. Such a search runs in time linear in the
number of vertices and edges. As there cannot be more connected components
than vertices, this approach yields at most |S| sets Ŝ. The previous comprises

the key difference with SPIN’s POR implementation: in SPIN, sets Ŝ satisfying
Property 2 are always singletons. We have generalised this with an approach that
reduces the problem to finding connected components. Note that our approach’s
applicability is not limited to agents, but extends to, for instance, SPIN as well.

The POR algorithm is run each time successors of a state µ are required
during model checking. It first computes sets of operations satisfying C1 as



outlined above and then performs simple checks for C0, C2 (using Vis), and
C3. If no set satisfying all conditions can be found, all successors in µ are
returned. Like all POR algorithms, the algorithm described is applicable only
if the property under investigation is in the stuttering invariant subset of LTL:
it may not contain © operators. Also, it is compatible with on-the-fly model
checking, provided the remarks made in [8] are taken into account.

Theorem 2. Our POR algorithm preserves soundness and completeness.

Proof (Sketch). The algorithm is, essentially, the algorithm in [4] with a different
approach to generating C1. Soundness and completeness thus follow from the
ample set method’s correctness as proven in Sect. 10.6 of [4] and Lemma 4. ut

5 Implementation & Experience

We have implemented the algorithms discussed in the previous section as exten-
sions to the interpreter-based Goal model checker introduced in [11]. The idea
of the interpreter-based approach to agent verification is to implement model
checking algorithms on top of an existing agent interpreter. An alternative ap-
proach is to encode the semantics of the agent language in a format that an
existing model checker can process and to use this existing model checker for
actual verification. Interpreter-based model checking, however, has been shown
to consume less resources and offers immediate language support without the
need for complex translations [11].

With respect to the implementation of reduction techniques, the interpreter-
based approach has another benefit: the model checking algorithms implemented
on top of the existing agent interpreter can easily be extended with implemen-
tations of reduction algorithms. In contrast, if existing model checkers are used
for agent verification, such extensions are likely to be less straightforward to
implement. As a result, one is bound to use reduction techniques that ship with
the existing model checker, but that are not tailored to the agent language that
the agent program is written in. It has been shown [2] that generic reduction
algorithms may not work well on translated agent programs.

The PBS and POR algorithm discussed are defined in terms of the same re-
lations on operations. From a software engineering point of view, the implemen-
tation of these techniques benefits from this in two ways: shared-code-base
and runtime-synergy.9

shared-code-base — We implemented a library for analysis of action rules
and computation of the visibility, enables, and (in)dependence relation. The
implementations of the PBS and POR algorithms both use this library.

runtime-synergy — Computation of the visibility, enables, and dependence
relation occurs at most once each verification run. Subsequently, the PBS
and POR implementations can both use the results of these computations;
no duplicate calculations are performed.

9 Note we address the recommendation of [14] that research in state space reduction
should not only focus on new techniques, but also on combining existing ones.



To investigate whether our PBS and POR algorithms are able to signifi-
cantly reduce resource consumption, we have carried out several small exper-
iments involving non-deterministic single-agent systems. In what we call the
blender experiments, we have investigated an agent whose task is to put bananas
and oranges into a blender to make juice. In the blocks counter experiments,
the subject of verification is an agent that breaks down towers of blocks, while
counting to some natural number. Finally, in the wumpus experiments, we have
model checked agents that must navigate through an unknown maze in search
of a heap of gold, while avoiding bottomless pits and a vicious cave animal: the
wumpus. With these experiments, we aim at investigating whether PBS and
POR algorithms for agent languages like Goal have the same potential as in
traditional model checking. Below, we give a synopsis; details appear in [10].

With respect to PBS, the blender and blocks counter experiments show that
the reduction can be significant: the measured decrease of the state space ranged
from 75% to 99%, the reduction in runtime (including PBS computation) ranged
from 43% to 97%, and the measured reduction in memory consumption (includ-
ing PBS computation) ranged from 25% to 88%. However, in the wumpus exper-
iment, a reduction in resource consumption was not achieved: in fact, the entire
verification procedure took longer to finish with PBS enabled than without PBS,
although the difference was less than three seconds for the most complex wumpus
agent. The reason is that a wumpus agent’s tasks (exploring the cave, grabbing
the gold, hunting the wumpus) all influence each other, i.e. all action rules are
on a route in the influence graph. Consequently, no action rules are removed
by the PBS algorithm, hence no reduction is obtained, despite the spending of
resources on its computation. A prerequisite for the PBS algorithm to yield a
reduction is, thus, that the property under investigation concerns a task of the
agent that is not influenced by its other tasks. This prerequisite is satisfied by
the agents in the other two experiments: putting bananas in a blender does not
influence putting oranges in a blender (and vice versa), and deconstructing a
tower does not influence counting (and vice versa).

Similar to the PBS results, our blender and blocks counter experiments with
POR show that this technique can yield significant reductions, particularly if the
agent under consideration is (i) loosely coupled, meaning that there are few de-
pendencies between the different tasks that it needs to carry out (the case in the
blocks counter experiments),10 or (ii) significantly underspecified (the case in the
blender experiments). While the former has already been pointed out in existing
POR literature, the latter seems specific to the application of POR to agents,
as underspecification in imperative languages is rare. Using POR, the measured
reduction of the state space ranged from 59% to over 99%, the reduction in run-
time (including POR computation) ranged from 34% to 98%, and the measured
reduction in memory consumption (including POR computation) ranged from
8% to 50%. As the agents in the wumpus experiments are neither loosely coupled

10 This is a stronger requirement than the PBS prerequisite regarding influence, because
influence is a directed relation (e.g. A can influence B, while B does not influence
A), while dependence is undirected (e.g. A depends on B iff B depends on A).



nor underspecified, no reduction is obtained using POR. We speculate that non-
deterministic agent programs are, in general, tighter coupled than concurrent
imperative systems. Therefore, POR may be less often applicable in an agent
context than in traditional model checking. Further investigations are, however,
necessary to confirm or disprove this conjecture.

6 Related Work & Conclusion

Related work Both PBS and POR have extensively been studied in traditional
model checking. An extensive survey with many references is given in [14]. Here,
we focus on state space reduction techniques for agent model checking.

To the best of our knowledge, PBS has been studied in an agent context
only by Bordini et al. [2, 3], who have designed a PBS algorithm for AgentSpeak
systems. Their algorithm is based on earlier work on slicing logic programs [16],
because plans in AgentSpeak are similar to guarded clauses in logic program-
ming. The algorithm of Bordini et al. slices AgentSpeak programs by removing
such plans from agents, and is, like other PBS algorithms, based on a graph rep-
resentation of the program. An important difference between Bordini et al. and
our work is that we have defined our PBS algorithm generically, i.e. not tailored
to any specific APL. However, we do not consider our effort a generalisation of
Bordini et al., because we have not based our PBS algorithm on [16] or [2, 3].
Instead, we see our work as a second and independent attempt to applying PBS
to agents; it would be interesting to instantiate our framework for AgentSpeak,
and compare the performance of the algorithm of Bordini et al. to ours.

To the best of our knowledge, POR has only been studied in an agent context
by Lomuscio et al. [12]. While both our work and the work of Lomuscio et al.
are based on the ample set method and applied in a context in which a depth-
first strategy is used for the generation of the transition system, our approach
differs in a number of ways. Most notably, [12] focuses on the verification of
models of agent-based systems, while we consider verification of actual agent
programs. Other work in the latter direction is the AIL framework [5] and its
model checker AJPF [1]; a comparison between the aforementioned interpreter-
based model checker for Goal and AJPF appears in [11].

Conclusion We have introduced a framework, based on operations on mental
states of agents, that facilitates the definition and implementation of the exist-
ing PBS and POR techniques in a unifying way. We have argued that existing
state space reduction algorithms do not fit agent programs seamlessly due to
the different nature of mental states (compared to variable assignments), and
proposed a solution. The resulting definition of read and write sets for agents
is the heart of our framework. With these and the relations defined in terms
of them, in principle, we can readily reuse existing reduction algorithms. Nev-
ertheless, we have also advanced the theory of PBS and POR to some extent:
with respect to PBS, we have a very explicit connection between the algorithm
and the transition system (absent in previous contributions), while with respect



to POR, we have introduced an alternative heuristic to be used for ample set
computation (Property 2). Finally, by defining two different techniques in terms
of the same relations, we gain implementation benefits: shared code-base and
runtime synergy.

We identify three directions for future work: (i) expanding our experience
with both techniques to gain a better understanding of when their application
can be beneficial and to what extent, (ii) instantiating the framework for multi-
agent systems, and (iii) extending the framework to open systems.
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