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to operate independently, either individu-
ally or collaboratively, to execute complex 
missions in a dynamic environment.”1 In 
the context of a report on a Gulf oil spill, 
a recent IEEE article suggested that “auto-
mation techniques will improve not only the 
time that it takes to do these tasks but also 
the quality of the results.”2

General conclusions of this sort can be 
misleading for various reasons. One is that 
in a complex joint activity involving mixed 
teams of humans, software agents, and ro-
bots, increased autonomy can eventually 
lead to degraded performance when the 
conditions that enable effective management 
of interdependence among team members 
are neglected.

Effective interdependence management 
will become increasingly important in the 
coming years. The sophisticated robots  

envisioned for the future will be increas-
ingly collaborative in nature, not merely 
doing things for people, but also working 
with people and intelligent systems. Al-
though continuing research is needed to 
make agents and robots more independent 
when unsupervised activity is desirable or 
necessary—to give them autonomy, in other 
words—they must also be more capable of 
sophisticated interdependent joint activity  
(coactivity) when that is required. Human-
agent-robot systems must support not only 
the fluid orchestration of task handoffs 
among different people and machines, but 
also joint participation on shared tasks re-
quiring continuous and close interaction. 
Because the capabilities for coactivity in-
teract with autonomy algorithms at a deep 
level, system design must incorporate them 
from the beginning.

Conventional wisdom has it that increasing the autonomy of certain classes 

of systems will improve their performance. For example, the United States 

Department of Defense Unmanned Systems Roadmap states, “The Department 

will pursue greater autonomy in order to improve the ability of unmanned systems 
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Based on this premise, our long-
range goal is to develop a prescrip-
tive methodology to guide the design 
and analysis of human-agent-robot 
systems. We intend to formulate the 
methodology in light of the essen-
tial role of interdependence in joint 
human-agent-robot activity. In this 
article, we examine the results of an 
experiment exploring how changes 
in autonomy can affect various di-
mensions of performance when in-
terdependence is neglected. Although 
our experimental results stem from a  
simple task performed in a simulation 
environment, both the literature on hu-
man teamwork and our experience in 
a variety of human-agent-robot team-
work experiments and field exercises 
give us reason to believe that these re-
sults eventually can be generalized.

The Experiment
The domain for our experiment is 
Blocks World for Teams (BW4T), a 
simulation environment similar in 
spirit to Terry Winograd’s classic AI 
planning problem Blocks World.3 The 
goal in BW4T is to “stack” colored 
blocks in a particular order. The task 
environment comprises nine rooms 

containing a random assortment of 
blocks, plus a goal area for dropping 
them off (see Figure 1). Each player 
controls an avatar, which the player 
can move between rooms to pick up 
and drop off blocks. For this exper-
iment, each team had two players, a 
human and a software agent; humans 
control their own avatars and com-
mand their agent partners through 
an appropriate interface. The two 
players work toward the shared team 
goal, which is to drop the blocks off 
in a specified order. Players are lim-
ited in their awareness of the situation: 
they can’t see each other, and they can 
only see the blocks in their current 
room.

Our goal was to demonstrate that in 
human-agent-robot systems engaged 
in joint activity, increasing autonomy 
without addressing interdependence 
may lead to suboptimal performance. 
We attempted to eliminate failure due 
to overly trusting automation by en-
suring that the agent players never 
made mistakes and that they exhib-
ited reasonably intelligent behavior. 
We also didn’t want the human play-
ers to manage an agent capable of 
completing the mission autonomously 

at a low level, akin to teleoperation, 
so we attempted to ensure the hu-
man and the agent could interact at 
a relatively high level of abstraction.  
To this end, we provided an interface 
appropriate to agents’ capabilities. 
Figure 2a illustrates these elements  
of our experimental design.

Figure 2b shows the general trends 
we expected to find in our results. 
We anticipated that the management 
burden the agent player imposed on 
the human player would decrease as 
agent autonomy increased—no sur-
prise, given that reduction in human 
workload is both the common ex-
pectation and the major motivation 
for automation. However, we also 
anticipated that without support for 
managing interdependence issues, the 
opacity of the work system to task 
participants would grow with in-
creasing autonomy. Given these com-
peting factors of burden and opac-
ity, we expected to find an inflection 
point in team performance where 
the benefits of increasing autonomy 
eventually would be completely offset 
by the negative side effects of opacity. 
In other words, we predicted that the 
highest level of autonomy would not 

In a previous article, we described the problems of 
what we refer to as “autonomy-centered approaches.”1 
We concluded, “Even when self-directedness and self-

sufficiency are reliable, matched appropriately to each 
other, and sufficient for the performance of the robot’s 
individual tasks, human-robot teams engaged in conse-
quential joint activity frequently encounter the potentially 
debilitating problem of opacity, meaning the inability  
for team members to maintain sufficient awareness of  
the state and actions of others to maintain effective  
team performance.”

The literature contains many examples supporting this 
conclusion. Kristen Stubbs and her colleagues recently  
noted the lack of transparency as a problem in human- 
robot interaction.2 More generally, Donald Norman identi-
fied the issue more than two decades ago, calling it “silent 
automation;”3 David Woods and Nadine Sarter later used 
the term “automation surprises.”4 We talk about “opacity,” 
but it’s important to recognize that the challenges go far 
beyond simply not being able to see needed information. 
They can also involve predictability, directability, or other 

challenges that must be addressed in order to turn autono-
mous systems into team players.5
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produce the highest level 
of team performance (see 
Figure 2c).

Defining the agent 
Teammate
The algorithm we chose 
as the basis for the agent 
behavior reflects the most 
common approach we ob-
served for human players 
of the game, because we 
thought it would be eas-
ily understandable and 
predictable for most hu-
man players. The left side 
of Figure 3 shows the al-
gorithmic solution, which 
divides the main goal (a 
color sequence) into sev-
eral subgoals (individual 
colors). To achieve any 
given subgoal, one sim-
ply finds the block of the 
appropriate color and de-
livers it. The tasks don’t 
need to be performed in 
sequence or by the same 
player: a player could first 
find all the blocks and 
then deliver them, or one 
player could find a block 
and the other could deliver 
it. The overall task com-
prises several find tasks 
and several deliver tasks, 
which themselves include 
some decision and action 
primitives, such as going to a room, 
entering the room, going to a block, 
picking up a block, and putting down 
a block. The two main decisions are 
whether to look for a block or to de-
liver one, and which room to enter  
to look for a block. We designed 
the agent player to perform its task 
“perfectly,” meaning it will perform 
any assigned task efficiently and will 
make rational decisions based on a 
complete and accurate recollection of 

where it has been and what it has 
seen. It will also report when a task 
is completed. To be consistent, it 
reports only the completion status 
and doesn’t provide any additional 
information.

Defining the autonomy 
Treatments
To compare the effects of changing  
autonomy, we defined different au-
tonomy treatments (experimental 

conditions). Additionally,  
we needed some way to 
rank the treatments in 
terms of their relative de-
gree of autonomy. For 
this purpose we applied 
Thomas Sheridan and 
William Verplank’s con-
cept of levels of auton-
omy 4 and Daniel Olsen 
and Michael Goodrich’s 
neglect tolerance metric.5 
Neglect tolerance is based 
on the amount of time a 
human can ignore a given 
robot performing a given 
task before the robot be-
comes unproductive.

The vertical black lines 
in Figure 3 indicate the 
portion of the algorithm 
that the agent player per-
formed autonomously. Dur-
ing those sections, the 
agent functioned at the 
highest level of auton-
omy, performing on its 
own everything necessary 
to complete the task spec-
ified. Longer lines cover 
more sections of the al-
gorithm; thus, in general 
they entail more auton-
omy. Outside the line, the 
agent functioned at the 
lowest level of autonomy 
and completely relied on 
the human for all deci-

sions and actions. The human team-
mate always initiated the behavior as-
sociated with each band. The neglect 
tolerance correlates to the length of the 
line, although the line length doesn’t 
directly correspond to length of time, 
because some tasks take longer than 
others.

Treatment 1 required the human 
player to direct the agent player  
using only the action primitives. Con-
sequently, the bands in treatment 1  

Figure 1. A sample Blocks World for Teams (BW4T) interface. The 
player’s avatar (the blue dot) picks up boxes from the rooms and 
delivers them to the Drop Zone.
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Figure 3. Defining autonomy treatments for BW4T. The left column outlines the algorithm used by the agents, and the  
other columns use vertical black lines to indicate the portions of the algorithm supported by autonomy for each of the  
four treatments.

BW4T example tasks (Stacking ordered blocks)

Choose color to
find or deliver 

Treatment 4

Achieve
goal

Find task

Enter room

Identify color match

Go to room

Choose a room

Deliver task

Go to block

Pick up block

Go to drop zone

Put down block

Go to room

Enter room

Enter drop zone

Exit drop zone

Treatment 3

Find a color

Deliver color
from room
to drop zone

Drop off block

Treatment 1

Enter room

Go to room

Go to room

Go to room

Go to room

Enter room

Enter room

Go to block

Pick up block

Put down block

Recognize color

Treatment 2

Go to and
enter room

Deliver color
to Drop Zone

Drop off block

Go to and
enter room

Recognize color

Figure 2. Experimental design and expectations: (a) balancing excessive trust in automation against underutilization of agents’ 
autonomy, (b) expected effects of increasing autonomy on the burden of managing the agent and the opacity of the agent to 
other task participant, and (c) expected performance as autonomy increases.
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are the shortest, the agents required 
more direction from their human 
teammate, and they had the lowest 
neglect tolerance.

Treatment 2 combined several ac-
tion primitives into a single action. 
For example, with a single command 
the human player could now order 
the agent to go to and enter a room. 
To inhibit underutilization, we re-
stricted the command set to the new 
“higher-level” commands. We only 
combined action primitives, so the 
autonomy scale doesn’t provide much 
guidance, but it’s clear that agent ne-
glect tolerance increases, and so this 
treatment provides the agent more 
autonomy than the first.

Treatment 3 extended treatment 2 
by adding the ability to command the 
agent to find a color or to deliver a 
color. This command delegated the 
decision on where to search to the 
agent, who had to provide its own 
search algorithm and only reported 
when it found a color. We imple-
mented the command as a nearest-
unsearched-room algorithm, which 
was the most common approach hu-
man players used in our observa-
tions. Again, we restricted the human 
player to the commands listed. Con-
sistent with Sheridan and Verplank’s 
specification for levels of autonomy, 
this treatment provides a higher level 
of autonomy than the previous one, 
because the agent can now make its 

own decision on how to achieve the 
find task. The level of neglect toler-
ance is also higher.

Treatment 4 was identical to treat-
ment 3 but also let the agent choose 
whether to look for a block or deliver 
a block. The only required command 
by the human was to tell the agent 
to achieve the goal. This let the agent 
complete the entire task without any 
assistance from the human—in other 
words, it operated at the highest level 
of autonomy and with an infinite tol-
erance for neglect. The agent “decides 
everything, acts autonomously, ignor-
ing the human.”6

We intentionally left out any sup-
port for managing interdependence 
except for communicating task com-
pletion status. There was neither 
communication about world state 
nor coordination of task activity.  
Although this might seem extreme  
in this simple domain with obvious 
coordination needs, it’s not an unre-
alistic scenario, given the prevalence 
of similarly opaque systems.7–9

Experimental Design
For the experiment, we selected 24 
participants (17 male and 7 female) 
ranging in age from 19 to 39 from 
the student population at the Delft 
University of Technology. We used a 
completely randomized block design 
based on the autonomy treatment, 
with each participant performing each 

treatment once. We cross-classified  
the data by k = 4 autonomy treat-
ments and b = 24 blocks (one for 
each participant). We gave all the 
participants a demographic survey 
and trained them on the game until 
they demonstrated proficiency at a 
simplified version of the task. Next 
they performed a series of trials, one 
for each treatment. The participants 
filled out a brief survey at the end of 
the experiment, evaluating team bur-
den, opacity, performance, and pref-
erence in each treatment.

Results
Our results include quantitative nu-
meric data as well as subjective rank-
ing data. For the former, we use stan-
dard approaches for normal data. For 
the ranked data, we used the non-
parametric Friedman test. Based on 
our design, and using the a = 0.05 
level of significance, the critical value 
is c 2(0.95, 3) = 7.815.

assessing Burden
We had predicted a decrease in agent 
management burden as autonomy in-
creased. We asked the participants to 
rank how demanding it was to work 
with the agent in each condition, on 
a scale of 1 (least demanding) to 4  
(most demanding). The results, shown  
in Figure 4a, indicate a very clear 
(c 2(0.95, 3) = 34.225) decrease in 
burden as autonomy increased. As a 
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Figure 4. Relationship between management burden and autonomy: (a) subject ranking of agent management workload as 
autonomy increased, (b) the average number of commands required as autonomy increased, and (c) the average subjective 
rankings of awareness as autonomy increased.
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second, independent measure of bur-
den, we also counted the number of 
commands the human player had to 
give to the agent teammate in each 
condition. Figure 4b shows the re-
sults, which correlate with the partic-
ipants’ subjective assessment.

assessing Opacity
We had also predicted an increased 
subject perception of opacity with 
increasing autonomy, as revealed in 
participants’ reports of more diffi-
culty understanding what was hap-
pening and anticipating the agent’s 
behavior. In an exit survey, we asked 
participants to rank their ongoing 
sense of awareness of current and 
future agent actions on a scale of 1 
(most aware) to 4 (least aware). The 
results in Figure 4c show opacity in-
creasing with increasing autonomy, 
as predicted (c 2(.95, 3) = 49.700). 
This confirms our prediction and  
validates our general expectations 
(see Figure 1b).

Quantitative performance 
assessment
We performed three quantitative per-
formance assessments: time to com-
plete task, idle time, and error rate.

Time to complete task. The simplest 
performance metric is time to comple-
tion (delivering all the required blocks 
in the requested order). Figure 5 shows 
the results, which appear promising 
at first glance. We can clearly see the 
inflection point where performance 
begins to degrade rather than im-
prove as autonomy increases, consis-
tent with the prediction of Figure 2c. 
The differences, however, were not 
statistically significant (p = 0.20). We 
believe that variability in completion 
time from run to run (approximately 
160 seconds) was larger than the pen-
alties from errors (such as 30 seconds 
of redundant activity). Nevertheless, 

for 83 percent of the participants, the 
highest-autonomy condition did not 
result in the lowest time.

Idle time. Another important perfor-
mance measure is idle time (or wait 
time).10 In BW4T, the agent player is 
in nearly constant motion once its hu-
man teammate assigns a task. Any idle 
time, such as time spent waiting for 
the next command, indicates an ineffi-
cient use of the agent. Figure 6a shows 
a clear and significant decrease in idle 
time from treatments 1 to 4. On the 
surface, this could be taken as a sign of 

more effective use of the agent player, 
suggesting improved performance. 
However, the time-to-completion re-
sults don’t support that conclusion. 
Furthermore, the amount of work 
done—the number of rooms entered 
and the number of boxes delivered—is 
fairly consistent across treatments. 

The human’s idle time, shown in 
Figure 6b, indirectly relates to interac-
tion efficiency, since the person’s own 
avatar may stop while the human gives 
a task to the agent partner.10 There is 
only a slight decrease as the agent’s 
autonomy increases, nowhere near as 

Figure 5. Time-to-completion as autonomy increases across treatments. This 
measure is the total time required to deliver all blocks in order.
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Figure 6. Average player idle time across treatment conditions: (a) agent player idle 
time and (b) human player idle time. The robot idle time decreases as autonomy 
increases, but this doesn’t necessarily equate to increased effectiveness.
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large as the change seen for the agent 
player. This could be due to an effec-
tive interface, but it also can be due to 
the ability to multitask and complete 
interactions concurrent with motion. 
The interesting take-away from this 
result is that keeping the agent busy 
doesn’t improve performance.

Error rate. For some kinds of tasks, 
error rate can be a good performance 
comparison. We measured this in 
three ways. 

First was the amount of time that 
both players spent holding the same 
color block (see Figure 7a). Because  
the blocks the players were supposed 
to move were different colors, hold-
ing the same color block represented 
redundant or inefficient activity. This 
type of error, for the most part, only 

occurred in treatment 4 and is a side 
effect of the opacity of the highest-
autonomy condition. These results 
are no surprise, because this is the 
only treatment in which the agent 
player could make its own decision 
about which block to pick up, but 
they do emphasize that functional 
differences matter when automating 
tasks.11

Second was the number of boxes 
lost (dropped in the hallway or placed 
in the drop zone in the wrong order). 
BW4T is very simple, and the human 
players didn’t make many mistakes 
(and the agent players didn’t make 
any, because they were programmed 
to perform perfectly). Of the 10 lost 
boxes, 50 percent were in treatment 
4 and 30 percent in treatment 1 (see 
Figure 7b). The losses in treatment 1  

were most likely due to the high work-
load imposed by the minimal auton-
omy. However, treatment 4 doesn’t 
have the workload challenges of treat-
ment 1—in fact, it was clearly ranked 
as the least burdensome—so why 
would it have the highest occurrence 
of errors? We believe it’s a side effect 
of the high opacity of the highest- 
autonomy condition.

Our third measure of error was 
the number of times the agent player 
blocked the human player from en-
tering a room. This is an indirect 
measure, because it is possible that 
the most efficient act would be to 
wait outside a blocked door, but in 
general it indicates poor coordina-
tion. As Figure 7c shows, the agent 
blocked the human player most of-
ten (by far) in treatment 4, indicating  
significantly more coordination break-
downs than in any other treatment.

Subjective performance 
assessment
We also assessed performance ac-
cording to the participants’ subjective 
impressions of each treatment.

Performance assessment. We asked the 
participants to identify which team 
they felt performed best. Treatment 3  
was the clear winner, with 63 percent  
of participants selecting it (see 
Figure 8a). Only 17 percent chose  
treatment 4.

Figure 7. Error rates across treatment conditions: (a) average time players spent holding the same color box, (b) the number of 
lost boxes, and (c) the number of times the agent player blocked its human teammate from entering a room.
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User preference. Human acceptance 
is an important component of over-
all system performance in tasks like 
ours. We asked participants to rank 
the agents according to which one 
they would like to play with again, 
on a scale of 1 (most like to) to 4 
(least like to). 

Figure 8b shows the results. Users 
preferred treatment 3 with statisti-
cal significance (c 2(.95, 3) = 22.150). 
This result also demonstrates the  
inflection point we anticipated from 
the increasing opacity in the sys-
tem (see Figure 2c). We suspect this 
is because in treatment 3, the human 
holds the overall plan and most of the 
context and exercises the greatest de-
gree of creativity. Transparency and 
control may be more important than 
autonomy, especially in light of the 
particulars of the autonomous task.

We asked participants for their rea-
sons for ranking treatment 3 higher.  
Responses included the following  
statements: 

•	 “shared information,”
•	 “ability to anticipate,”
•	 “predictable,”
•	 “low burden,”
•	 “cleverest,” and
•	 “automatic, but still have control.”

The first three reasons correlate 
with our predictions about opac-
ity. The comment about low burden 
is interesting, because treatment 4 
was objectively the least burdensome. 
This comment suggests that there 
might be other types of burden be-
sides the manual workload of tasking 
the agent. The comment about treat-
ment 3 being cleverest is also interest-
ing, because the agent in treatment 4 
is objectively the most capable. This 
suggests that being more indepen-
dent might not necessarily lead to be-
ing viewed as more clever. The final 
response is also important because 

it relates to the broader issue of the 
best way to make automation a team 
player.12 We focused on opacity to 
keep the experiment simple, but in-
creased autonomy no doubt also af-
fects predictability, directability, and 
other challenges.

The results of our initial limited 
evaluation support our claim 

that increasing autonomy does not 
always improve performance of the 
human-machine system. In the BW4T 
domain, this was the result of opac-
ity in the system due to increasing au-
tonomy without accounting for the 
interdependence of the players and 
the coordination challenges that cre-
ates. The ability to work with oth-
ers becomes increasingly important 
as interdependence in the joint activ-
ity grows, and in complex and un-
certain domains, it might be more 
valuable than the ability to work 
independently.

In our experiment, the independent 
activity in treatment 4 inhibited the 
team’s ability to engage in what most 
people would consider “natural” coor-
di nation, resulting in a breakdown of  
common ground,14 a reduction in each 
player’s individual situation awareness, 
and an increase in errors. While obvi-
ous in this simple, abstract domain, 

the problem remains prevalent in 
many systems today.7–9 Considering 
interdependence when designing an 
agent’s autonomous capabilities can 
mitigate these effects and will enable 
future systems to achieve improved 
results.
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