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Abstract—Organizational modeling languages are used to
specify an agent organization in terms of its roles, organiza-
tional structure, norms, etc. Agents take part in organizations
by playing one or more of the specified roles. Using such an
organizational specification to organize a multi-agent system
can support agents’ effectiveness in attaining their purpose,
or prevent certain undesired behavior from occurring. In this
paper, we investigate the process of role enactment in orga-
nizations that have a so-called gatekeeper that is responsible
for admitting agents to the organization, like the well-known
OperA organizational modelling language. We propose an in-
teraction protocol between gatekeeper and agents that want to
play roles, resulting in admittance of agents to the organization
(or rejection). We analyze which kinds of reasoning are needed
for agents to participate in this protocol. In particular, agents
need to be able to reason about whether they have the necessary
capabilities to play a role in an organization. We make precise
what it means to have a capability and propose to integrate
reasoning about capabilities in agent programming languages
using reflection. We show how this kind of reflection about
capabilities can be used to program role enactment in the GOAL
agent programming language.

Keywords- agent programming; organizational modelling;
role enactment

I. INTRODUCTION

An organizational modeling language can be used to
specify an agent organization in terms of its roles, orga-
nizational structure, norms, etc. (see, e.g., [12], [15]). Such
an organizational specification abstracts from the individual
agents that will eventually play the roles in the organization.
Using an organizational specification is a sine qua non for
creating open multi-agent organizations that allow agents to
join or leave the organization.

Agents who want to enter and play roles in an organization
are expected to understand and reason about the organiza-
tional specification, if they are to operate effectively and
flexibly in the organization. Agents that are capable of such
organizational reasoning and decision making are called
organization-aware agents [21]. Our broader aim is the
development of languages and techniques for programming
organization-aware agents.

An important aspect that organization-aware agents should
be able to reason about is role enactment. In this paper
we consider organizations in which a dedicated agent (a

gatekeeper) is responsible for admitting agents to the organi-
zation. An example of an organizational modelling language
in which such a gatekeeper is present, is OperA [12].

The idea is that the gatekeeper asks agents who want
to join whether they have the necessary capabilities for
playing the desired role in the organization, and assigns
roles to agents on the basis of this. Although the idea of
the gatekeeper has been proposed in [12], it has not been
investigated which interactions should take place between
gatekeeper and an agent who wants to join the organization
(the applying agent), and what kind of reasoning is needed
on the part of the applying agent to participate in this
interaction.

We propose an interaction protocol between gatekeeper
and agents that want to play roles and analyze which kinds of
reasoning are needed for agents to participate in this protocol
(Section IV). In particular, agents need to be able to reason
about whether they have the necessary capabilities to play
a role in an organization. We make precise what it means
to have a capability and propose to integrate reasoning
about capabilities in agent programming languages using
reflection (Section V). We show how this kind of reflection
about capabilities can be used to program role enactment
in the GOAL agent programming language according to the
developed interaction protocol (Section VI). We illustrate
our framework using teamwork domain Blocks World for
Teams (Section II) and introduce GOAL in Section III. These
investigations contribute to the development of languages
and techniques for programming organization-aware agents.
We discuss related work and conclude the paper in Sections
VII and VIII.

II. BLOCKS WORLD FOR TEAMS

The Blocks World For Teams (BW4T) simulated envi-
ronment [16] has been developed as a testbed for human-
agent/robot teamwork. The environment consists of nine
rooms that are connected through halls. Colored blocks
are placed inside the rooms. Simulated robots should work
together to pick up blocks from the rooms, bring them to
the so-called drop zone and put them down there, in the
specified color sequence. Blocks only become visible once a
robot enters the room where these blocks are. Robots cannot
see each other but they can exchange messages. Once a robot



enters a room (including the drop zone), no other robots can
enter. Blocks disappear from the environment when dropped
in the hall or in the drop zone. Robots can be controlled
by agents or humans, thereby providing the possibility to
investigate human-agent robot teamwork. Here we consider
agent-only teams since human-agent interaction is not the
focus of this paper.

An interface that allows a GOAL agent to control a
simulated robot has been developed using the Environment
Interface Standard (EIS) [2]. Broadly speaking, this standard
specifies that agents can control entities in the environ-
ment through actions, and agents can observe the environ-
ment through percepts that are sent from the environment
to the agents. The actions made available to agents are
goTo(<Place>) to move to the specified place (a room,
the drop zone or a hall), goTo(<Block>) to move to the
specified block, pickUp to pick up a block (the robot has
to be close to the block) and putDown to put a block
down (if the robot is not holding a block, the action has
no effect). Percepts made available to agents are, for exam-
ple, at(<Me>,<Place>) which specifies in which place
the robot currently is, and color(<Block>,<Color>)
which is sent once an agent enters the room where <Block>
is located. The color sequence in which agents should
put down blocks at the drop zone is sent to agents ini-
tially as the percept sequence([<Color>]) which has
a list of colors as parameter, and the color that should
be delivered next is made available to agents using the
percept sequenceIndex(<N>), where <N> is an integer
referring to the N-th element in the color sequence.

We chose the BW4T domain for our studies as it is a
relatively simple domain in which nevertheless many issues
that arise in more complex organizations can be studied.
For example, the environment has limited visibility; actions
take time, which means that effective cooperation, which can
prevent unnecessary actions from being executed, can sig-
nificantly reduce the time needed to deliver all the required
blocks; communication can support effective teamwork, for
example by letting other agents know which blocks one has
discovered and which block one is carrying.

III. AGENT PROGRAMMING

GOAL is a high-level agent programming language for
programming cognitive agents, i.e., agents endowed with
high-level mental attitudes such as beliefs and goals. We
sketch the main programming constructs as far as they are
relevant for the remainder of the paper, using the BW4T
example. More details and formal semantics of GOAL can
be found in [14].

GOAL agents have a mental state consisting of knowledge,
beliefs and goals. The knowledge base represents static, gen-
eral domain knowledge and the belief base represents infor-
mation about the current state of the world and other agents.
Goals are declarative achievement goals, i.e., they represent

states of the world that the agent wants to achieve. Goals
are automatically removed from the goal base once they
are believed to be achieved. In principle several knowledge
representation languages can be used for representing the
mental state. In the current implementation, the knowledge
base and belief base are Prolog programs and the goal base
is a set of conjunctions of Prolog atoms. GOAL agents use
so-called mental state conditions to inspect the beliefs and
goals of an agent’s mental state. A mental state condition
bel(φ) holds if φ follows from the union of the knowledge
and belief base. Similarly, a-goal(φ) holds if φ follows from
the union of knowledge and one of the goals in the goal
base, and φ does not follow from the union of belief base
and knowledge base. Logical combinations of these mental
state atoms can also be used.

Agents pursue their goals by executing actions.
Actions are selected in GOAL by so-called action
rules of the form if <cond> then <action> where
<cond> is a mental state condition. For example,
the action rule if a-goal(holding(Block)),
bel(at(Block)) then pickUp specifies that the
agent should pick up a block if it wants to hold the
block and is standing at the location of the block.
These rules provide agents with the capability to react
flexibly and reactively to environment changes but
also allow a programmer to define more complicated
strategies for pursuing goals. External actions correspond
to actions offered by the EIS interface for a certain
environment, and have an effect in this environment, while
internal actions are only used for updating beliefs. GOAL
offers built-in actions for adopting and dropping goals,
inserting and deleting beliefs, and for sending messages
to other agents (send(<Receiver>,<Content>) and
sendonce(<Receiver>,<Content>), the latter for
sending a message only once instead of each time the
condition of the rule of which it is a consequent holds).
We use ρ to denote action rules and ant(ρ) and cons(ρ)
to refer to the antecedent (the mental state condition) and
consequent (the action) of ρ. The consequent of an action
rule may consist of combinations of one internal or external
action and several built-in actions.

Actions have to be specified in the action spec-
ification section using preconditions which have to
hold in order to execute the action and postcondi-
tions which specify updates to the belief base. For
example, the following gives a specification of the
goTo(Place) action for the case where the agent is not
already going somewhere. Another similar specification has
to be added to represent the case where the agent is already
going somewhere. The action can be executed if the agent
is currently not at Place, and the postcondition records
where the agent is going. The latter is useful to prevent
continuous selection of the goTo(Place) action while the
agent is already traveling to Place.



goTo(Place) {
pre { not(at(Place)), not(traveling(_)) }
post { traveling(Place) } }

Modules in GOAL provide a means to structure action
rules into clusters of such rules and corresponding knowl-
edge to define different strategies for different situations.
Modules have a context condition which is a mental state
condition that specifies when the agent can enter the module,
in which case its action rules can be executed. Our BW4T
agents have the following modules:

module searchBlock {
context { a-goal(allRoomsChecked) }
<action rules for checking rooms>

}

module deliverBlock {
context { a-goal(allBlocksDelivered) }

<action rules for delivering blocks>
}

A module with a goal context condition can be
entered when the agent has the goal, and will
be exited when the agent no longer has the
goal. In the knowledge base it is specified what
allRoomsChecked and allBlocksDelivered mean.
For example, the latter holds when the sequence index
(representing the index of the next color to be delivered)
equals the length of the required color sequence plus
one. We refer to the context condition of a module m as
context(m).

Percept rules are similar to action rules and are mainly
used to process percepts received from the environment and
messages received from other agents. These rules allow
(pre)processing of percepts and allow a programmer to
flexibly decide what to do with received percepts (updat-
ing by inserting or deleting beliefs, adopting or dropping
goals, or sending messages to other agents). For exam-
ple, the percept rule if bel(percept(place(Place)))
then insert(place(Place)) inserts beliefs about which
places there are upon receipt of a corresponding percept.

IV. INTERACTION FOR ROLE ENACTMENT

In this section we propose a basic interaction protocol
between gatekeeper and applying agent (Section IV-A), and
we discuss the kinds of reasoning needed for the applying
agent (Section IV-B).

A. Interaction Protocol

We use the notation of [13] to distinguish different kinds
of messages: the prefix “!” for imperative messages (re-
quests), “?” for interrogative (questions), and “:” for declar-
ative (information). Figure 1 shows the basic interaction
protocol, where the applying agent agt sends a message to
the gatekeeper that it wants to play a certain role, i.e., that
it wants to become a role-enacting agent or rea for short
[12] (!rea(agt,Role)). The gatekeeper replies by asking
the agent whether it has the capabilities to play this role
(?cap(agt,Cap)). It does this for each required capability

g : GateKeeper agt  : Agent
!rea(agt, Role)

[reqCap(Role, Cap)] ?cap(agt, Cap)

[cap(Cap)] :cap(agt, Cap)

[notCap(Cap)] :notCap(agt, Cap)

[canPlay(agt, Role)] :rea(agt, Role)

[cannotPlay(agt, Role)] :reject

[for all reqCap(Role, Cap)]loop

Figure 1. Role Enactment Interaction Protocol in UML.

(reqCap(Role, Cap)). The agent replies by informing
the gatekeeper of the capabilities it has (:cap(agt,Cap)
and :notCap(agt,Cap)). If the agent has all required
capabilities, it can play the role (canPlay(agt, Role))
and the gatekeeper informs the agent that it is now playing
the role (:rea(agt,Role)). If the agent does not have all
required capabilities, its request to play the role is rejected.

In this approach, the gatekeeper assumes the applying
agent is not lying about its capabilities. Telling the truth
may be enforced by imposing sanctions in case the agent
fails to exhibit behavior required by its role.

The enactment protocol can be extended in various ways.
In particular, the gatekeeper and the applying agent could
negotiate about whether the latter is allowed to play the
role even if it does not have all required capabilities. The
agent might then have to do some additional things in return.
Also, the gatekeeper could propose other roles that the agent
would be able to play, given the capabilities that it has.
Moreover, the gatekeeper may request the applying agent
to perform certain tasks to demonstrate that it has required
capabilities, rather than only asking the agent whether it has
them. Exploring these extensions is left for future work.

B. Agent Reasoning

To take part in the interaction protocol with a gatekeeper,
an applying agent has to take the decision of requesting to
play a certain role in the organization. For this, the agent
has to reason about whether it wants to play the role, given
its own goals [10]. Moreover, it has to reason about whether
it can play the role, i.e., about whether it has the required
capabilities. In this paper we focus on the latter. Reasoning
about whether the agent can play the role can be done
already before the agent decides to request to play the role
(such that the agent can decide not to request to play the
role if it does not have the capabilities to do it), but it
becomes essential when the gatekeeper asks the agent about
its capabilities.

In order to develop general techniques that allow agents to
answer a gatekeeper’s questions about their capabilities, we
need to make precise what kind of capabilities the gatekeeper



can ask about. We propose to distinguish four capability
types: capabilities to execute actions, to perceive aspects of
the environment in which the agents operate, to communicate
information, questions or requests, and to achieve goals. We
believe this to be a suitable distinction since these four types
of capabilities correspond to the commonly adopted notion
of intelligent agents as being reactive (able to perceive and
react to changes in the environment), proactive (act towards
achieving goals) and social (communicate with other agents).

For example, in the BW4T domain we distinguish a
searcher role (responsible for checking all rooms for the
blocks and providing the information about block locations
and colors to other agents) and a deliverer role (responsible
for picking up the blocks of the correct color and dropping
them at the drop zone). For the searcher role, the following
are examples of capabilities: the capability to execute the
action of going to a place (ableToDo(goTo(<Place>))),
the capability to perceive blocks and their colors
(ableToPerceive(color(<Block>, <Color>))),
the capability to send information about blocks
to other agents (ableToSay(send(<Agent>,
at(<Block>,<Color>,<Room>)))), and the capability
to achieve the goal of having checked all rooms
(ableToAchieve(allRoomsChecked)).

Which and how many capabilities are required for agents
to enact a role is a modeling choice and reflects the bal-
ance between regulation and autonomy demanded by the
application [20]. Basically, the less demands are placed on
role enactment, the more autonomy is allowed to specific
role-enacting agents, but the less guarantees can be made
concerning the overall organisational behaviour.

In the following sections we make precise how cognitive
agents can be programmed to reason about whether they
have the capabilities to play a role.

V. REFLECTION ON CAPABILITIES

In order to program agents that reason about whether they
have the necessary capabilities, we need to make precise
what it means that an agent has certain capabilities (Sections
V-A and V-B). This is important to establish a proper
grounding for the development of a mechanism that allows
an agent to derive whether it has the necessary capabilities,
as we do in Section V-C.

A. Meaning of Capability

Our interpretation of capability is based on the philo-
sophical idea that “can” implies ability and opportunity [8].
We then take capability to mean the former. This implies
that having a capability is a necessary but not sufficient
prerequisit for exhibiting behavior that demonstrates the
capability.

This interpretation of capability as ability follows [19], in
which the notion of capability is investigated in the context
of BDI logic. In agent programming, capabilities have been

introduced as a modularization construct [6], [4] comparable
to modules in GOAL. This construct encapsulates basically
a set of plans and exposes an interface that expresses which
goals can be achieved using these plans. That is, capability
is taken as the capability to achieve goals, which is also the
capability type considered in [19].

In contrast with the approaches discussed above, we
propose to consider not only the capability to achieve goals
but also the capability to execute actions, to receive percepts
and to communicate (Section IV-B).

For this (and in line with suggestions in [19]), we interpret
capability as the agent source code fulfilling “minimal”
requirements that should allow the agent to use the capa-
bility. For example, considering the capability to pick up
a block, if the software steering a robot never calls the
gripper, one can be certain that the robot will never pick
up a block. Another (weaker) interpretation is a notion of
physical capability where one could for example say that
a robot is capable of performing an action to pick up a
block if it has a gripper. Another (stronger) interpretation is a
notion of behavioral capability which refers to the execution
of the agent program, where an agent is said to have the
capability if there are circumstances, like the initial state of
the environment and the contributions of other agents, in
which the use of the capability will be demonstrated by the
agent. We consider physical capability too weak a notion.
Behavioral capability would require an agent to reason about
its own execution in combination with the execution of other
agents in the MAS and the environment in which the MAS
executes, which goes beyond what is possible with current
agent reasoning techniques.

B. Formalizing Capability

We start by formalizing the capability to execute actions,
to perceive and to communicate as they are closely related.
Then we formalize the capability to achieve goals.

1) Actions, Percepts and Communication: First, we note
that actions concern environment actions rather than in-
ternal actions, since role specifications refer only to the
former. Internal actions are implementation details from the
perspective of the organization, and their execution is not
observable from outside the agent. In order to make precise
what we mean by having an ability, we introduce Actenv and
Perceptsenv as the set of actions and percepts processable
by the sensors as offered by the (physical representative of
the agent in the) environment, such as a simulated robot as
in the case of the BW4T domain.1 Actions in Actenv and
percepts in Perceptsenv are of the form a(x0, . . . , xn) and
p(x0, . . . , xn), respectively, where a and p are the action

1We assume that all agents are connected to physical representatives
offering the same actions and percepts. This framework could be extended
by having different physical capabilities for the different kinds of physical
representatives, and making explicit which agent is connected to which
representative. We omit this here for reasons of simplicity.



and percept names, and x0, . . . , xn are variables which can
be instantiated with ground terms at run-time.2

In order to formalize capability, we need to define the
minimal source code requirements without which the agent
can never use the capability.

A minimal source code requirement for using a capability
is that it “occurs” in the source code. For actions this means
that they occur in the consequent of action rules ActRulesi
of a GOAL agent i. The GOAL syntax requires that these
actions are also included in the action specification section
ActSpeci, i.e., occurrence in action rules implies occurrence
in the action specification. For the processing of percepts it
is necessary that corresponding percept rules PerceptRulesi
exist. For communication of certain information, requests or
questions the source code needs to contain action rules or
percept rules that have these kinds of communication in their
consequent.

To make this precise, we introduce the following defini-
tions. Let varx(e) be the expression e in which variables are
substituted by the variables x0, x1, . . . in order of appear-
ance, i.e., the first variable is substituted by x0, the second
by x1, etc. This is introduced for technical convenience,
to ensure that we do not distinguish, e.g., actions with the
same action name but with different variable names. We use
α ∈ cons(ρ) to denote that action α occurs in the consequent
of rule ρ, and φ ∈ ant(ρ) to denote that mental state formula
φ occurs in the antecedent of ρ. Let Acti = {varx(α) |
∃ρ ∈ ActRulesi : α ∈ cons(ρ)} ∩ {varx(α) | α ∈ ActSpeci}
be the set of (internal and environment) actions of agent i
that occur in the action rules.3 Then we define the set of
environment actions occurring in the source code of GOAL
agent i as Actenv

i = Actenv∩Acti. Let Perceptsi = {varx(p) |
∃ρ ∈ PerceptRulesi : bel(percept(p)) ∈ ant(ρ)} be the set
of percepts occurring in the antecedent of percept rules of
agent i. Since percepts always come from the environment,
there exist no “internal” percepts in analogy of internal
actions, so Perceptsi ⊆ Perceptsenv should hold. However,
this is not enforced by the GOAL language, which means
that the programmer could in principle write percept rules
for percepts that are never generated by the environment.
We do not want to include those in the percepts an agent
is able to perceive, since the corresponding rules will never
fire because their percepts will never be received. Therefore
we define the set of percepts that a GOAL agent i is
able to perceive as Perceptsenv

i = Perceptsenv ∩ Perceptsi.
We define the set of communication actions in the source
code of a GOAL agent as Commsi = {varx(c) | ∃ρ ∈

2One could extend the framework by making the domain of the variables
precise, for example, to allow to specify that only blocks can be picked
up and no other elements of the environment. We omit this for reasons of
simplicity.

3We take the intersection of actions in action rules and in the action
specification to extract internal and environment actions from all actions that
may occur in action rules, such as communication and goal modification
actions.

ActRulesi ∪ PerceptRulesi : c ∈ cons(ρ)}, where c is a
built-in send action.

The capability to execute environment actions, to process
percepts, and to communicate, are then defined, respectively,
as follows.

Definition 1: (capability)

ableToDoi(α) ⇔ α ∈ Actenv
i

ableToPerceivei(p) ⇔ p ∈ Perceptsenv
i

ableToSayi(c) ⇔ p ∈ Commsi

2) Goals: Defining what it means to be able to achieve
goals depends to some extent on what notion of goal one
uses. In this paper, we consider a common notion of goals,
namely declarative achievement goals which express a state
that agents want to reach.

We see two ways of defining the capability to achieve
goals. Since goals express desired states that are to be
reached, one could say that an agent is able to achieve a
goal φ if the source code enables the agent to come to
believe that φ is the case. This reflects the usual notion
of goal achievement as also built into the semantics of
GOAL. Defining this for GOAL involves extracting from the
source code the kinds of formulas that may be added to the
belief base as a result of action execution, explicit insertion
using the predefined insert action, and sending messages to
oneself (which also inserts the content of the message into
the belief base).4

A second way of defining the capability of
achieving goal φ corresponds to the interpretation proposed
in [19]: “We understand having a capability (for) φ as
meaning that the agent has at least one plan that has as its
trigger the goal φ.” The capability to achieve a goal is thus
understood as the capability to proactively pursue the goal
once it is adopted (using the plans that have been defined
for them), rather than as the capability to come to believe,
possibly “by accident”, that the goal has been achieved.
We argue that for organization-aware agents it is important
that they can proactively pursue goals in order to be able
to act towards achieving the objectives of the roles they
are playing. Consequently, we follow the interpretation of
[19] and define that an agent has the capability to achieve
a goal if it occurs in the agent program.5

In GOAL, this interpretation of capability to achieve a
goal φ translates to the existance of goal conditions in action
rules and context conditions of modules corresponding to
φ. Let Goalsi = {varx(φ) | ∃ρ ∈ ActRulesi : a-goal(φ) ∈
ant(ρ) or ∃m ∈ Modulesi : a-goal(φ) ∈ context(m)} be

4Note that in GOAL, percepts are not inserted directly into the belief
base but the programmer has to define percept rules that explicitly do this.

5Typically, one would expect that if a goal occurs in an agent program,
the source code enables the agent to come to believe that the goal is
achieved. One could argue that if this does not hold, the programmer did
not make proper use of goals.



the set of goals occurring in the antecedent of action rules
or in context conditions of modules of agent i. Then the
capability to achieve a goal is defined as follows.

Definition 2: (capability)

ableToAchievei(φ)⇔ φ ∈ Goalsi

C. Derivation of Beliefs about Capabilities

In Section V-B, we have defined what it means that an
agent has certain capabilities. These definitions, however, do
not specify how an agent should determine whether it has
these capabilities, i.e., they do not specify how an agent can
reflect on its own capabilities.

Reflection is not uncommon in programming languages
(see, e.g., Java and Maude [7]). It allows a program to refer
to itself at run-time, which facilitates a modification of its
run-time behavior based on these reflections. In Java one
can use reflection to determine at run-time, for example,
which methods are contained in a class (of a certain object),
whether the class is public or abstract, and what its super-
class is. Also, the agent modelling language DESIRE [5] of-
fers functionality to reason at an arbitrary set of meta-levels
in which epistemic information about level n is reflected
upwards to level n + 1 and vice versa. However, DESIRE
is a modelling language and not an agent programming
language, and meta-level reasoning in that framework has
not focused on reasoning about capabilities for the purpose
of role enactment.

In Java, reflection is incorporated in the language by
means of the Class class. One can invoke the method
getClass() on an object, which returns a Class ob-
ject. On the latter one can then invoke methods like
getSuperclass() to get its super-class. When incorporat-
ing reflection into agent programming languages, it should
be integrated into the language’s existing agent-oriented
constructs. One approach is to add actions to the language
by means of which the programmer can obtain information
about the agent’s program. An example of this is a construct
in Jason [3] for inspecting an agent’s plans. In this paper,
we propose the use of beliefs for expressing reflection in
cognitive agent programming languages. An agent might,
e.g., believe that it has the capability of executing a certain
action. Using beliefs, we obtain a single basic mechanism
for an agent’s reflective capabilities.

We specify that a GOAL agent should be able to derive
the following beliefs about capabilities. In Section VI we
address how this can be implemented in GOAL and how it
can be used for programming role enactment.
Let ∀ : e represent the universal quantification over all

variables in the expression e.

ableToDoi(α) ⇒ ∀beli(ableToDo(α))
ableToPerceivei(p) ⇒ ∀beli(ableToPerceive(p))
ableToSayi(c) ⇒ ∀beli(ableToSay(c))
ableToAchievei(φ) ⇒ ∀beli(ableToAchieve(φ))

The framework could be extended to allow the derivation of
capabilities to achieve logical combinations of goals from
the capability to achieve basic goals, but we omit this for
reasons of space.

In the logic of [19] the interplay between beliefs and
capabilities is also investigated. Their basic logical system
has an axiom that expresses that having a capability implies
believing to have the capability. This corresponds to the
above specification. A variant of the logic where the bi-
implication is an axiom is mentioned, which has the effect
of collapsing mixed nested modalities to their simplest
form. For agent programming we cannot guarantee the
bi-implication without imposing further constraints on the
agent program, since actions could add false beliefs about
capabilities. Such constraints would disallow the use of
actions that result in the addition of these false beliefs.

VI. PROGRAMMING ROLE ENACTMENT

The above lays the foundations for allowing GOAL agents
to reflect on their capabilities. In this section, we propose
programming patterns that show how reflection can be
used in a GOAL program for programming role enactment,
according to the interaction protocol proposed in Section IV.

The first step in the protocol is to send a message to the
gatekeeper that the agent wants to play a certain role. The
condition for the corresponding action rule is thus that the
agent has the goal of playing the role. The notation imp for
imperative is used in GOAL in place of !.

if bel(me(Agt)), a-goal(rea(Agt,Role))
then sendonce(gatekeeper, imp(rea(Agt,Role))).

Then the gatekeeper asks the agent whether it has the
necessary capabilities to play the role. The agent answers
according to the protocol that it has or does not have these
capabilities. This is where the agent needs reflection on
its own capabilities. We represent an agent’s capabilities
in the belief base as cap(<Cap>) to allow this reflection,
in accordance with the specification in Section V-C. We
wrap the capabilities in the predicate cap to allow the
specification of rules for any type of capability. To make it
easier for programmers to use reflection about capabilities,
a corresponding program transformation could add these
beliefs automatically. Alternatively, an extension of GOAL
could adapt the semantics of beliefs such that these beliefs
can be derived without adding them to the belief base
explicitly. The latter would be more flexible as it would also
support the agent acquiring new capabilities at run-time, e.g.,
through exchange of plans.

The following action rule is used to reply that the agent
has the necessary capability. A rule for replying that the



agent does not have the capability can be programmed
analogously. The notation int for interrogative is used in
GOAL in place of ?.
if bel(me(Agt), received(gatekeeper, int(cap(Agt,Cap))),

cap(Cap))
then sendonce(gatekeeper,cap(Agt,Cap)).

If the agent has all necessary capabilities to play the role,
the gatekeeper sends a message to the agent that it is now
playing the role. This message can be handled by inserting
its content into the belief base of the agent, to record which
roles it is playing.
if bel(received(gatekeeper, rea(Agt,Role)))

then insert(rea(Agt,Role)).

Once a role has been enacted, the organization expects
the agent to pursue the role’s objectives. This may involve
reasoning about conflicts between the agent’s own goals and
the role’s objectives, reasoning about prioritization of goals,
etc. (cf. [10]). In future work we will investigate how this
kind of reasoning can be programmed in GOAL.

VII. RELATED WORK

Our interaction protocol is similar to the protocol for role
enactment proposed in [1]. The main difference is that that
protocol assumes that the applying agent rejects to play the
role if it does not have the required capabilities. In our
case, the applying agent informs the gatekeeper about its
capabilities and the decision to accept or reject is made by
the gatekeeper. Our approach is easier to extend to a setting
where applying agent and gatekeeper negotiate about the
conditions for role enactment if the agent does not have
all required capabilities: as the gatekeeper takes the final
decision on whether to let the agent play the role, it can
also modify the conditions under which it lets the agent
play the role. It does not seem natural to let the applying
agent decide this. Moreover, if the applying agent tells the
gatekeeper which capabilities it has, the gatekeeper might
also propose the agent to play a different role that better
matches its capabilities.

In [10], [11] role enactment is also studied in the context
of agent programming languages. These approaches focus
on defining the result of role enactment (e.g., the adoption
of objectives of the role as goals) rather than on the role
enactment process itself. In [10], compatibility between the
goals of the agent and those of the role is investigated and
taken as a prerequisit for enacting the role. These approaches
do not address how an agent can reason about whether it has
the required capabilities to play a role.

Our notion of capability is different from [6], [4] in that
it does not introduce capability as a construct in the agent
programming language, primaly used for modularization.
Rather, our notion of capability is a derived notion de-
fined on the basis of an agent’s source code. This notion
of capability considers not only the capability to achieve
goals (as done in [6], [4], [19]) but also the capability to
execute actions, to receive percepts and to communicate. It

differs from [19] in that the latter investigates the notion of
capability in the context of BDI logic, while we make precise
what these capabilities mean in the context of cognitive
agent programming.

Comparing reflection as we use it with reflection in Java,
we can see similarities. In both cases, reflection is used
to inspect a program’s structure. A difference is that this
inspection is relatively direct in the case of Java (e.g., getting
the methods of a class), while our definitions for reflection
in agent programming are somewhat more involved due to
the intuitive meaning of capability that we aim to express
through reflection. For example, we define the cability to
execute an action as the agent having a corresponding
definition in the action specification as well as having an
action rule that has this action as its consequent. Moreover,
the agent should have the physical ability to execute this
action. An interpretation of reflection that would be closer
to the way it is used in Java, is to introduce mechanisms
that allow direct reference to the agent’s source code. For
example, allowing to retrieve all actions for which the agent
has action specifications, or all action rules that have a
certain action in their consequent. While we consider this an
interesting direction to explore, it would “only” provide the
means to inspect an agent’s source code, but would not give
guidance with respect to appropriate notions of capability.

Our formalization of the notion of capability and the
patterns for programming role enactment are developed for
the language GOAL. However, since other cognitive agent
programming languages (e.g., [3], [9]) are built on similar
basic notions as GOAL like beliefs, goals and action selec-
tion rules, we expect that similar definitions can be given
for other languages. In particular, since the four capability
types that we distinguish are general and correspond to the
commonly adopted notion of intelligent agents (see Section
IV-B), it can be expected that these notions can naturally
be transferred to other languages. Moreover, other cognitive
agent programming languages all have a notion of belief,
and so the idea of incorporating reflection using beliefs can
be transferred to other languages.

Finally, we note that reflection on capabilities can be
useful in other situations than role enactment, for example
when one agent asks another agent to do something. The
latter can reflect on its capabilities and reply whether it
would be able to do it. To the best of our knowledge,
a general framework for reflection on capabilities as we
propose here has not been introduced in such other contexts.

VIII. CONCLUSION AND FUTURE WORK

If we want to design agents that are able to join dif-
ferent organisations on behalf of their owners, then these
agents should be capable of reasoning about role enactment.
In this paper we have proposed an interaction protocol
between the gatekeeper (responsible for admitting agents
to organizations), and agents that want to play roles. We



have analyzed which kinds of reasoning are needed for
agents to participate in this protocol: in particular reasoning
about whether they have the necessary capabilities to play
a role in an organization. We have made precise what it
means to have a capability and we have proposed the use
of beliefs for reflection on capabilities. We have proposed
programming patterns to show how this kind of reflection
about capabilities can be used to program role enactment
in the GOAL agent programming language according to the
developed interaction protocol.

In future work, it would be interesting to investigate the
relation between an approach that uses a gatekeeper for
matching agents and roles, and work on semantic match-
making in service-oriented systems (e.g., [17]). The latter
facilitaties a more semantic definition of capability and the
application of existing flexible matchmaking algorithms.

we aim to investigate how other kinds of organizational
reasoning such as reasoning about whether the agent wants
to play a role, and reasoning about how to comply with
norms governing agent behavior, can be programmed. In
[18] an approach for the latter is proposed in the context of
AgentSpeak(L). It will have to be investigated to what extent
norms of organizational modelling languages such as OperA
can be reasoned about using this mechanism. Moreover, we
believe it is interesting to investigate the balance between
organizational regulation and agent autonomy, and what
the implications are for agent reasoning. For example, if
the agent program contains elaborate reasoning strategies
on how to solve a particular teamwork problem, this may
conflict with the strategies imposed by the organization if
these are too regulative. It needs to be investigated to what
extent the agent can adapt to the strategies imposed by the
organization.

In general, we aim to investigate to what extent existing
agent programming languages support organizational rea-
soning and decision making, and which general reasoning
mechanisms should be supported. We conjecture that the
more advanced the reasoning, the more reflective mecha-
nisms such as the one proposed in this paper are needed.
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