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that they will function less like tools and more like 
teammates.1–3

Many approaches to designing more team-like 
cooperation between humans and machines have 
been proposed, including function allocation, su-
pervisory control, adaptive automation, dynamic 
task allocation, adjustable autonomy, mixed-
initiative interaction—most recently regrouped 
under the rubric of cooperative robotics. All these 
approaches rely on the levels of autonomy concept 
as the benchmark for machine performance and 
the criterion for decisions about human-machine 
task allocation.

In this article, we argue that the concept of lev-
els of autonomy is incomplete and insuffi cient as 
a model for designing complex human-machine 
teams, largely because it does not suffi ciently ac-
count for the interdependence among their mem-
bers. Building on a theory of joint activity,4,5 we 
introduce the notion of coactive design,6 an approach 
to human-machine interaction that takes interdepen-
dence as the central organizing principle among peo-
ple and agents working together as a team.

What Is Autonomy?
The word autonomy, derived from a combination 
of Greek terms signifying self-government (auto

means self, and nomos means law), today has 
two basic senses in everyday use.7 The fi rst sense, 
self-suffi ciency, is about the degree to which an 
entity operates without outside help. For exam-
ple, a Roomba robot can vacuum a room without 
assistance. The second sense refers to an entity’s 
self-directedness, or the degree of freedom from 
outside control. The Mars Rover, which was 
tightly controlled by NASA engineers, is such as 
example.

In our discussion, we will use the terms self-
suffi ciency and self-directedness to distinguish 
between these two senses of autonomy.

Pervasiveness of the Levels 
of Autonomy Concept
The concept of levels of autonomy is usually at-
tributed to the pioneering work of Thomas Sheri-
dan and William Verplank.8 Their ideas were de-
rived from a teleoperation study with underwater 
robots. Although the original 1978 work is often 
cited, the original three page table is usually con-
densed and simplifi ed as shown in Table 1. The 
“levels” were used to describe the space of design 
options, as they saw them. They range from te-
dious and error-prone manual operation, where 
humans are required to do everything (level 1), to 
fully autonomous operations, where the machine 
can perform the entire task without assistance or 
direction (level 10). Sheridan and Verplank real-
ized the unlikelihood of achieving a completely au-
tonomous solution because they “simply [did] not 

As automation becomes more sophisticated, 

the nature of its interaction with people will 

need to change in profound ways. Inevitably, soft-

ware and robotic agents will become so capable 
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have available at [that] time such de-
vices or the understanding to build 
such devices” (p. 1–10) for their de-
manding environment. Given this re-
alization, they suggested two things:

• levels of automation as a means to 
gain some of the benefits of auton-
omy while not requiring a fully au-
tonomous solution and

• supervisory control, in which hu-
mans allocate tasks to one or more 
machines and then monitor them.

For the second suggestion, once con-
trol is given to the machine, it is ide-
ally expected to complete the tasks 
without human intervention. The 
job of the machine’s designer is to 
determine what needs to be done 
and then provide the capability (self- 
sufficiency) for the machine to do it. 
This is often described as finding the 
appropriate level of autonomy.

Although the supervisory-control 
approach fulfilled its initial purpose, 
its static nature did not address re-
quirements for variable task alloca-
tion in different situations, which 
spurred interest in research on dy-
namic and adaptive function allo-
cation. Dynamic interaction of this 
sort has been suggested as a unifying 
theme in human-robot interaction9 
and has led to numerous proposals 
for dynamic adjustment of autonomy  

level10 —in this case, the self-
directedness aspect. Such approaches  
have been variously called adjustable 
autonomy, dynamic task allocation, 
sliding autonomy, flexible autonomy,  
and adaptive automation. In each 
case, the system must decide at run-
time which functions to automate 
and to what level of autonomy.11

Mixed-initiative interaction is de-
fined as “a flexible interaction strat-
egy, where each agent can contribute 
to the task what it does best” (p. 14).12 
Its contribution is in the perspective  
that people can work in parallel 
alongside autonomous systems, so it 
adopts the stance that the perception, 
problem-solving, and task-execution 
processes are subject to an ongoing 
give and take that can be initiated 
by either the human or the machine, 
rather than explicitly determined 
by the original system designer. Al-
though it is more sophisticated in 
some ways than function allocation, 
in practice this approach still tends 
to be autonomy-centric, focusing on 
fluid management of task assignment 
and the authority to act—the self- 
directedness aspect of autonomy. The 
influence of the levels of autonomy 
concept is apparent in James Allen’s 
proposal for mixed-initiative interac-
tion levels.12

The classic Sheridan-Verplank lev-
els are widely cited and have had a 

significant impact on the outlook of 
robot designers. A recent survey of 
human-robot interaction concluded 
that “perhaps the most strongly  
human-centered application of the 
concept of autonomy is in the notion 
of level of autonomy” (p. 217).9 This 
seems counterintuitive. Why should 
the independence of a given robotic 
partner play a more dominant role 
in human-centered design of joint 
activity than the interdependence 
among the set of human-robotic team 
members?

Problems with the Levels  
of Autonomy Concept
Significant nuances in the original 
Sheridan-Verplank work have been 
forgotten through frequent use of the 
simplified list shown in Table 1. As a 
basis for our discussion, Figure 1 illus-
trates the richer detail in the original 
work. In this excerpt from the com-
plete model, we have altered Sheri-
dan’s level 6 by adding the tell func-
tions and associated text from level 8. 
We did this to incorporate all the basic 
elements in a single level for discussion 
purposes, but it does not significantly 
alter the original intention because the 
original table had a footnote indicat-
ing other possible variations.

The first column is the descrip-
tion that corresponds to an item on 
the simplified version of the list from 
Raja Parasuraman, Thomas Sheri-
dan, and Christopher Wickens.11 The 
second column represents the human 
functions in the activity and the third 
represents the functions the computer 
performs. Interestingly, arrows were 
used between the second and third 
columns in the original work, creat-
ing a small causal diagram. This rep-
resentation more clearly shows that 
two parties are involved in the activ-
ity, as opposed to the list in Table 1, 
which focuses solely on the computer. 
Additionally, these arrows represent a 

Table 1. Levels of automation.*

Level Description

High 10. The computer decides everything, acts autonomously, ignoring the human.

  9. The computer informs the human only if it, the computer, decides to.

  8. The computer informs the human only if asked, or

  7. The computer executes automatically, then necessarily informs the human, and

  6.  The computer allows the human a restricted time to veto before automatic 
execution, or

  5. The computer executes that suggestion if the human approves, or

  4. The computer suggests one alternative

  3. The computer narrows the selection down to a few, or

  2. The computer offers a complete set of decision/action alternatives, or

Low   1.  The computer offers no assistance; the human must take all decisions  
and actions.

*Adapted from an earlier work.11
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workflow with dependencies connect-
ing the functions. Insightfully, Sheri-
dan and Verplank understood that 
even their original richer description 
had limitations and stated that “as 
computer control and artificial intel-
ligence become more sophisticated, 
certain human functions in teleop-
eration may be replaced, but greater 
need and demand will be placed upon 
other human functions, and in these 
respects the need for improved man-
computer interaction will increase, 
not diminish” (p. 1–10).8

With this in mind, we have out-
lined several problems with the sim-
plified concept of levels of autonomy 
as it is usually formulated.

Problem 1: Functional  
Differences Matter
There are significant differences be-
tween performing an action and mak-
ing a decision as well as between dif-
ferent kinds of actions. Sheridan and 
Verplank’s original work provided a 
table of behavior elements that can be 
used to characterize a system. Their 
list included request options, get op-
tions, select action, approve action, 
start action, and tell functions. In this 
regard, the original levels model mixes 
apples and oranges—task work and 
teamwork. For example, in their level 1,  
the human handles the entire task 
without automation by performing  
the get options, select action, and 
start action functions. These are 
task-work components. On the other 
hand, the request options, approve 
action, and tell elements engage both 
parties in a simple form of teamwork.

The model also mixes reasoning 
(get options), decisions (select action), 
and actions (start action). Moreover, 
the entire approach reinforces the 
erroneous notion that “automation 
activities simply can be substituted 
for human activities without other-
wise affecting the operation of the 
system.”13

Parasuraman, Sheridan, and Wick-
ens’ work attempted to address some 
of these problems by associating  
activity types with the 10 levels.11 
They proposed four types (acquisi-
tion, analysis, decision, and action), 
but this merely highlights the impor-
tance of functional differences be-
tween the elements and ignores the 
issues of interdependence relating to 
such activities.

Problem 2: Levels Are Neither 
Ordinal nor Representative  
of Value
Another problem is that the term 
level implies an ordinal relationship. 
Authors who reproduce the con-
densed version often add the low and 
high labels to levels 1 and 10, respec-
tively, as in our Table 1. These labels 
imply that the levels are of increas-
ing autonomy, but are they really? 
The get options function seems like a  
lower level of autonomy than the se-
lect option. However, if the “getter”  
of the options can filter the op-
tions and the receiver has no other 
means to know what the options 
are, is it really a lower level? Who 
holds the power in this relationship? 
Which has a higher value: a start 
action or tell? It probably depends 
on the criticality of what is being 
started and the importance of what 
is being told. For these and other  

reasons, it is more productive to 
think about autonomy in terms of 
multiple task-specific dimensions 
rather than in terms of a single, uni-
dimensional scale.7

The perspective in which we view a 
system can also affect our assessment 
of autonomy. For example, ambiguity 
about the term autonomy comes into 
play in Figure 1. Because the level 
shown is six out of 10, we could con-
sider the machine semiautonomous— 
that is, at a mid-level of autonomy. 
However, with respect to the self-
sufficiency perspective on autonomy, 
the machine could be viewed instead 
as fully autonomous because it can 
perform all aspects of the task work. 
On the other hand, from a self- 
directedness perspective, a machine 
functioning at this level would have 
no autonomy since the performance 
of its task work is completely subject 
to the direction and initiative of the 
human.

Our assessment of a system’s au-
tonomy also depends on the way we 
define the boundaries of its sphere 
of action. Consider the vehicles that 
competed in the DARPA Urban Chal-
lenge, which were designed to find 
their way over a given course in “fully 
autonomous” fashion. Although fully 
autonomous with respect to this one 
particular task, they might be far 
from autonomous with respect to  

Figure 1. Altered excerpt of Sheridan-Verplank’s level 6 automation. Our goal was to 
incorporate all the basic elements in a single level for discussion purposes and more 
clearly show that two parties (computer and human) are involved in the activity. 
The solid arrows depict hard constraints that enable or prevent the possibility of an 
activity. The dashed arrow indicates soft interdependence, which includes optional 
commands. (Adapted from an earlier work.8)
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related tasks, such as going to the 
store and getting groceries.

This also applies in the other di-
rection. Several entries in the Urban 
Challenge were unsuccessful at com-
pleting the task but were success-
ful at aspects of the task. For exam-
ple, some could follow the road but 
not deal with traffic. These might be 
called semiautonomous, but all this 
term tells us is that the machine could 
not do everything on its own. If we 
redefine the task as something sim-
pler, such as following a road with-
out traffic, then we could once again 
describe the car as fully autonomous. 
In fact, virtually any machine could 
be considered fully autonomous if we 
define the grain size of its task to be 
sufficiently small. These examples 
make it obvious that the property of 
autonomy is not a mere function of 
the machine, but rather a relationship 
between the machine and a task in a 
given situation.

Problem 3: Autonomy Is Relative  
to the Context of the Activity
Autonomous capabilities are relative 
to the context of the task for which 
they were designed. When a design-
ers consider what level of autonomy 
is appropriate, they are assuming 
some level of granularity and using  
that to define activity boundaries. 
Sheridan and Verplank’s original table  
title was “Levels of automation in 
man-computer decision making for 
a single elemental decisive step.” In 
other words, level 10 represents full 
autonomy relative to the single ele-
mental decisive step or activity. Un-
fortunately, over time researchers 
have generalized this to all activity 
in complex systems involving teams 
of humans and machines. This goes 
far beyond the original scope and 
might explain Sheridan’s comment 
that “surprisingly, the level descrip-
tions as published have been taken 

more seriously than were expected” 
(p. 206).14 

Functions are not automated in 
isolation from task context. There-
fore, when system designers auto-
mate a subtask, they are really per-
forming a type of task distribution 
and, as such, have introduced novel 
elements of interdependence within 
the system. This is the lesson to be 
learned from studies of the substi-
tution myth,13 which states that re-
ducing or expanding the role of au-
tomation in joint human-automation 
systems can change the nature of in-
terdependent and mutually adapted 
activities in complex ways. To ef-
fectively exploit automation’s capa-
bilities (versus merely increasing au-
tomation), we must coordinate the 
task work—and the interdependence 
it induces among players in a given  
situation—as a whole.

As an example, consider the major 
assumption underlying the Sheridan-
Verplank levels that the human, in a 
supervisory role, is the initiator of the 
activity and has an implied obligation 
to monitor the activity. Although this 
is not explicit in the model, it can be 
derived from the fact that the request 
options action is only available to 
the human and that the tell option is 
only available to the computer. Roles 
are not simple titles; rather they are 
mechanisms by which we describe ca-
pabilities and their interdependence.

Problem 4: Levels of Autonomy 
Encourage Reductive Thinking
Previous essays in this department 
have raised the issue of “keeping 
things too simple” in the design of 
cognitive systems.15 The levels of au-
tonomy concept demonstrates several 
of these oversimplifications. Some 
have already been mentioned, such 
as ignoring functional differences, 
which could include treating hetero-
geneous elements as homogeneous 

and ignoring task context. Another 
problem is the tendency to view ac-
tivity as sequential when it is actually 
simultaneous. Although task work 
often entails sequential dependencies 
and can be reasonably decomposed 
by looking at individual capabili-
ties, we cannot uniquely describe or 
design teamwork in this way. Team-
work is necessarily based on the  
interaction among the participants, 
whereas a simplifying notion of levels 
treats elements as cleanly separable.

Using Figure 1 as an example 
again, there seems to be a sequen-
tial ordering of the task elements. 
This might be appropriate for some 
tasks but not in general. Most team-
work occurs concurrently. Looking 
at the description of level 6 in the 
first column of Figure 1, it includes 
the phrase “informs the human in 
plenty of time to stop it.” This im-
plies the human is concurrently mon-
itoring and assessing the computer’s 
activity on some level. It would also 
suggest the need for a stop function, 
although none is included. The sim-
plification here might explain the ap-
parent oversight of including a stop 
behavioral element, and it is indica-
tive of the problems faced when using 
a model with a solitary focus on lev-
els of autonomy.

Problem 5: The Levels of Autonomy 
Concept Is Insufficient to Meet 
Future Challenges
Many of the challenges facing de-
signers are related to teamwork. An 
earlier article in this department pro-
posed 10 challenges for making au-
tomation a “team player.”5 These 
challenges include directability, trans-
parency, and predictability. These 
challenges deny the intrinsic validity 
of any levels of autonomy concept. 
Each of these challenges must be ad-
dressed not by making the machines 
more independent, but by making 
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them more capable of supporting sys-
tem interdependence.

Many supportive behaviors are 
what might be called soft system con-
straints and are not essential to task 
completion—that is, although the 
performer is, strictly speaking, self-
sufficient, it can benefit from support. 
Joint activity is not exclusively about 
the hard constraints that enable or 
prevent the possibility of an activity, 
as the solid arrows in Figure 1 depict. 
Joint activity also includes soft inter-
dependence, which includes optional 
commands, such as the ability to re-
quest the final status of the action (see 
the dashed arrow in Figure 1). Soft 
interdependence also includes help-
ful things that a participant might do 
to facilitate team performance. For 
example, team members can signal 
progress appraisals16 (“I’m running 
late”), warnings (“Watch your step”), 
helpful adjuncts (“Do you want me 
to pick up your prescription when I 
go by the drug store?”), and obser-
vations about relevant unexpected 
events (“It has started to rain”).

Our observations suggest that good 
teams can be distinguished from 
great ones by how well they support 
requirements arising from soft inter-
dependence. Although social science 
research on teamwork indicates it as 
an important factor in team perfor-
mance,17 interdependence (particu-
larly soft interdependence) has not 
received adequate attention in the re-
search literature.6

Teamwork is largely about enhanc-
ing each member’s performance, not 
merely effective task distribution. In 
response to the MABA-MABA (men-
are-better-at/machines-are-better-at)  
Fitts’ List model,18 an alternative 
human-centered view was expressed 
in this department as the Un-Fitts 
List.19,20 The intent was to emphasize 
the ways in which people and ma-
chines cannot simply divide up the 

work, but rather mutually enhance 
their competencies and mitigate their 
limitations. Such a view is consistent 
with our view of interdependence and 
its role in design.

Consider the hypothetical level 6 in 
Figure 1. If we consider the interdepen-
dence in the activity, we can concoct 
a table patterned after the Sheridan- 
Verplank levels of automation but 
based on the Un-Fitts List (see Figure 2). 
We have added some potential inter-
dependence that might be appropri-
ate for such an activity. We allow the 
sequential-work-flow assumption to 
persist only to maintain consistency 
in the discussion. The focus of Figure 2  
is the diversity of interdependence 
among the activities.

Although we apply this process 
to a single level within the original 
Sheridan-Verplank list here, it can be 
applied to any of the levels with dif-
ferent results, based on the varying 

interdependence within the activity. 
If we move beyond the single decisive 
element portrayed by the Sheridan-
Verplank list toward activity to sup-
port the future envisioned roles, the 
interdependence become much more 
complex and generating such a table 
becomes even more interesting. Such 
a construction calls out the ways in 
which changes to the level of auton-
omy affect interdependence and how 
the interdependence affects the total 
work system. Levels by themselves do 
not provide this information, which 
leads to the next problem.

Problem 6: Levels Provide 
Insufficient Guidance  
to the Designer
Levels of autonomy do not provide 
principles or guidelines for design-
ers as they build human-machine 
systems. Previous articles have dis-
cussed the challenge of bridging the 

Figure 2. Example of an interdependence analysis based on the Figure 1 example.  
We added some potential interdependence and allow the sequential-work-flow  
assumption to persist only to maintain consistency in the discussion. The solid  
arrows depict hard constraints, and the dashed arrow indicates soft interdependence.  
(Adapted from an earlier work.8)
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gap from cognitive engineering prod-
ucts to software engineering.21 The 
levels of autonomy concept provides 
no assistance here. Parasuraman, 
Sheridan, and Wickens suggested us-
ing levels of autonomy in combina-
tion with human performance as an 
evaluative criterion for automation 
design.11 Although we agree that 
human-performance measures are im-
portant and useful, it is unclear what 
value the descriptive levels of auton-
omy provide other than as a label-
ing mechanism. They provide no as-
sistance to the designer, whose only 
option is to build it and try it, then 
build something else and compare the 
results.

Interdependence, however, affords 
a great deal of predictive power. It 
can inform the designer of what is 
and is not needed, what is critical, 
and what is optional. Most impor-
tantly, it can indicate how changes in 
capabilities affect relationships.

This extends the human-centered 
approaches where designers typically 
ask, “How can we keep the human in 
the loop?” or “How do we reduce the 
burden on the human?” These types 
of questions lead designers to focus on 
usability issues. Understanding the in-
terdependence in the human-machine 
system in the context of the antici-
pated activity can provide a wealth 
of guidance to a designer. In fact, we 
posit that it is through understand-
ing the dynamic interdependence 
within the macrocognitive work that 
the system developer can answer such 
questions as “What should be auto-
mated?” and “How do we reduce the 
burden on the human?” More impor-
tantly, it has the potential to answer 
richer questions, such as “How will 
this change affect the work system?”

As an example, consider our level 6 
in Figure 1. What is the impact of al-
lowing the computer to move from the 
get options to select action functions 

without requiring the human request 
function? Here, some amount of risk 
analysis might be required to assess 
the consequences of leaving it com-
pletely to the system. Making this 
change might enable a higher level of 
autonomy, but is it better? How does 
it affect the system?

Now look at Figure 2. Identifying 
the interdependence suggests sev-
eral impacts. Not only does allowing 
the computer to select the action re-
duce the directability of the automa-
tion by eliminating the computer’s 
dependence on the human to initiate 
action selection, it also reduces trans-
parency because the human no lon-
ger has access to the options. Both 

of these limit the work system’s abil-
ity to leverage the human’s ability to 
improve the overall work system’s 
effectiveness.

Toward Coactive Design
Building on the theory of joint activ-
ity,4,5 we are working on a coactive 
design approach6 that is intended to 
provide prescriptive guidance to de-
signers of sophisticated human-machine 
systems. Coactive design takes inter-
dependence as the central organizing 
principle among people and agents 
working together as a team. The ap-
proach also embraces the idea that 

effective coordination in human-
machine activity has much to learn 
from the various forms of social regu-
lation that enable people to work well 
together.22

Besides implying that two or more 
parties are participating in an activ-
ity, the term coactive is meant to con-
vey the reciprocal and mutually con-
straining nature of actions and effects 
that are conditioned by coordination. 
In joint activity, individual partici-
pants share an obligation to coordi-
nate, to a degree sacrifi cing their in-
dividual autonomy in the service of 
progress toward group goals.

By its nature, joint activity im-
plies the greater parity of mutual as-
sistance, enabled by intricate webs 
of complementary, reciprocal affor-
dances, and obligations. Thus, coact-
ive design considers the mutual inter-
dependence of the all parties instead 
of merely focusing on the dependence 
of one of the parties on the other. It 
recognizes the benefi ts of designing 
agents with the capabilities they need 
to be interdependent.

As we try to design more sophisti-
cated human-machine work systems, 
we move along a maturity continuum 
from dependence to independence 
to interdependence. The process is a 
continuum because a small level of 
agent independence through auton-
omy is a prerequisite for interdepen-
dence. However, independence is not 
the supreme achievement in human-
human interaction,23 nor should it 
be in human-machine systems. Imag-
ine a completely capable, autono-
mous human possessing no skills for 
coactivity—how well would such a 
person fi t in most everyday situations?

This maturation process cannot 
only be seen in individual systems but 
also in the human-machine systems 

Coactive design takes 

interdependence as the 

central organizing principle 

among people and agents 

working together as a 

team.
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field as a whole. Consider the history 
of unmanned aerial vehicle (UAV) 
R&D. The first goal in development 
was a standard engineering challenge 
to make the UAV self-sufficient for 
some tasks (such as stable flight and 
waypoint following). As the capa-
bilities and robustness increased, the 
focus shifted to the problem of self-
directedness by the machine (“What 
am I willing to let the UAV do auton-
omously?”). The future developments 
of UAVs suggest yet another shift, as 
discussed in the “Unmanned Systems 
Roadmap,”24 which states that un-
manned systems “will quickly evolve 
to the point where various classes of 
unmanned systems operate together 
in a cooperative and collaborative 
manner” (p. 2). This requires a focus 
on interdependence (“How can I get 
multiple UAVs to work effectively as a 
team with their operators?”).

This progression of development is 
a natural maturation process that ap-
plies to any form of sophisticated au-
tomation. Awareness of interdepen-
dence was not critical to the initial 
stages of UAV development, but it be-
comes an essential factor in realizing 
a system’s full potential.

We believe that increased effec-
tiveness in human-agent teamwork 
hinges not merely on trying to make 
machines more independent through 
their autonomy, but also in striving 
to make them better team players5 by 
making them more capable of sophis-
ticated interdependent joint activity 
with people.
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