
Unreal Goal Bots
Conceptual Design of a Reusable Interface

Koen V. Hindriks1, Birna van Riemsdijk1, Tristan Behrens2, Rien Korstanje1,
Nick Kraayenbrink1, Wouter Pasman1, and Lennard de Rijk1

1 Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands
{k.v.hindriks,m.b.vanriemsdijk}@tudelft.nl

2 Clausthal University of Technology, Julius-Albert-Straße 4, 38678 Clausthal,
Germany

behrens@in.tu-clausthal.de

Abstract. It remains a challenge with current state of the art tech-
nology to use BDI agents to control real-time, dynamic and complex
environments. We report on our effort to connect the Goal agent pro-
gramming language to the real-time game Unreal Tournament 2004.
BDI agents provide an interesting alternative to control bots in a game
such as Unreal Tournament to more reactive styles of controlling
such bots. Establishing an interface between a language such as Goal

and Unreal Tournament, however, poses many challenges. We focus
in particular on the design of a suitable and reusable interface to man-
age agent-bot interaction and argue that the use of a recent toolkit for
developing an agent-environment interface provides many advantages.
We discuss various issues related to the abstraction level that fits an
interface that connects high-level, logic-based BDI agents to a real-time
environment, taking into account some of the performance issues.

Categories and subject descriptors: I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Intelligent Agents; I.6.7 [Simulation
Support Systems]: Environments

General terms: Design, Standardization, Languages.

Keywords: agent-environment interaction, agent-oriented programming.

1 Introduction

Connecting cognitive or rational agents to an interactive, real-time computer
game is a far from trivial exercise. This is especially true for logic-based agents
that use logic to represent and reason about the environment they act in. There
are several issues that need to be addressed ranging from the technical to more
conceptual issues. The focus of this paper is on the design of an interface that
is suitable for connecting logic-based BDI agents to a real-time game, but we
will also touch on some related, more technical issues and discuss some of the
challenges and potential applications that have motivated our effort.

The design of an interface for connecting logic-based BDI agents to a real-time
game is complicated for at least two reasons. First, such an interface needs to be

F. Dignum (Ed.): Agents for Games and Simulations II, LNAI 6525, pp. 1–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 K.V. Hindriks et al.

designed at the right abstraction level. The reasoning typically employed by logic-
based BDI agents does not make them suitable for controlling low-level details of
a bot. Intuitively, it does not make sense, for example, to require such agents to
deliberate about the degrees of rotation a bot should make when it has to make
a turn. This type of control is better delegated to a behavioral control layer. At
the same time, however, the BDI agent should be able to remain in control and
the interface should support sufficiently fine grained control. Second, for reasons
related to the required responsiveness in a real-time environment and efficiency
of reasoning, the interface should not flood an agent with percepts. Providing a
logic-based BDI agent with huge amounts of percepts would overload the agents’
processing capabilities. The cognitive overload thus produced would slow down
the agent and reduce its responsiveness. At the same time, however, the agent
needs to have sufficient information to make reasonable choices of action while
taking into account that the information to start with is at best incomplete and
possibly also uncertain.

We have used and applied a recently introduced toolkit called the Environ-
ment Interface Standard to implement an interface for connecting agents to a
gaming environment, and we evaluate this interface for designing a high-level
interface that supports relatively easy development of agent-controlled bots. We
believe that making environments easily accessible will facilitate the evaluation
and assessment of performance and the usefulness of features of agent platforms.

Several additional concerns have motivated us to investigate and design an
interface to connect logic-based BDI agents to a real-time game. First, we be-
lieve more extensive evaluation of the application of logic-based BDI agents to
challenging, dynamic, and potentially real-time environments is needed to assess
the current state of the art in programming such agents. Such an interface will
facilitate putting agent (programming) platforms to the test. Although real-life
applications have been developed using agent technology including BDI agent
technology, the technology developed to support the construction of such agents
may be put to more serious tests. As a first step, we then need to facilitate
the connection of such agents to a real-time environment, which is the focus of
this paper. This may then stimulate progress and development of such platforms
into more mature and effectively applicable tools. Second, the development of
a high-level agent-game bot-interface may make the control of game bots more
accessible to a broader range of researchers and students. We believe such an
interface will make it possible for programmers with relatively little experience
with a particular gaming environment to develop agents that can control game
bots reasonably well. This type of interface may be particularly useful to pro-
totype gaming characters which would be ideal for the gaming industry [1]. We
believe it will also facilitate the application of BDI agent technology by students
to challenging environments and thus serve educational purposes. The develop-
ment of such an interface has been motivated by a project to design and create
a new student project to teach students about agent technology and multi-agent
systems. Computer games have been recognized to provide a fitting subject [2].
As noted in [1],

Unreal Goal Bots 3

Building agents situated in dynamic, potentially antagonistic environments
that are capable of pursuing multiple, possibly conflicting goals not only teaches
students about the fundamental nature and problems of agency but also en-
courage them to develop or enhance programming skills.

Finally, an interesting possibility argued for in e.g. [2,3] is that the use of
BDI agents to control bots instead of using scripting or finite-state machines
may result in more human-like behavior. As a result, it may be easier to develop
characters that are believable and to provide a more realistic feel to a game.
Some work in this direction has been reported in [4], which uses a technique
called Applied Cognitive Task Analysis to elicit players’ strategies, on incorpo-
rating human strategies in BDI agents. [3] also discuss the possibility to use data
obtained by observing actual game players to specify the Beliefs, Desires, and
Intentions of agents. It seems indeed more feasible to somehow “import” such
data expressed in terms of BDI notions into sophisticated BDI agents, rather
than translate it to finite-state machines. The development of an interface that
supports logic-based BDI agent-control of bots thus may offer a very interesting
opportunity for research into human-like characters (see also [1,5,6,7]).

As a case study we have chosen to connect the agent programming language
Goal to the game Unreal Tournament 2004 (UT2004). UT2004 is a first-
person shooter game that poses many challenges for human players as well as
computer-controlled players because of the fast pace of the game and because
players only have incomplete information about the state of the game and other
players. It provides a real-time, continuous, dynamic multi-agent environment
and offers many challenges for developing agent-controlled bots. It thus is a suit-
able choice for putting an agent platform to the test. [8] argue that Unreal

Tournament provides a useful testbed for the evaluation of agent technology
and multi-agent research. These challenges also make UT2004 a suitable choice
for defining a student project as students will be challenged as well to solve these
problems using agent technology. Multi-agent team tasks such as coordination of
plans and behavior in a competitive environment thus naturally become avail-
able. In addition, the 3D engine, graphics and the experience most students
have with the game will motivate students to actively take up these challenges.
Moreover, as a competition has been setup around UT2004 for programming
human-like bots [5], UT2004 also provides a clear starting point for program-
ming human-like virtual characters. Finally, the Unreal engine has enjoyed
wide interest and has been used by many others to extend and modify the game.
As a result, many modifications and additional maps are freely available. It has,
for example, also been used in competitions such as the RobocupRescue com-
petition [9] which provides a high fidelity simulation of urban search and rescue
robots using the Unreal engine. Using the Unreal Tournament game as a
starting point to connect an agent platform to thus does not limit possibilities to
one particular game but rather is a first step towards connecting an agent plat-
form to a broad range of real-time environments. Moreover, a behavioral control
layer called Pogamut extending Gamebots is available for UT2004 [10,8] which
facilitates bridging the gap that exists when trying to implement an interface

4 K.V. Hindriks et al.

oriented towards high-level cognitive control of a game such as UT2004. Through-
out the paper the reader should keep in mind that we use these frameworks.
Technically, UT2004 is state of the art technology that runs on Linux, Windows,
and Macintosh OS.

Summarizing, the paper’s focus is on the design of a high-level interface for
controlling bots in a real-time game and is motivated by various opportunities
that are offered by such an interface. Section 2 discusses some related work.
Section 3 briefly introduces the Goal agent programming language. Section 4
discusses the design of an agent-interface to UT2004, including interface require-
ments, the design of actions and percepts to illustrate our choices, and the tech-
nology that has been reused. This section also introduces and discusses a recently
introduced technology for constructing agent-environment interfaces, called the
Environment Interface Standard [11,12]. Section 5 concludes the paper.

2 Related Work

Various projects have connected agents to UT2004. We discuss some of these
projects and the differences with our approach.

Most projects that connect agents to UT2004 are built on top of Gamebots [8]
or Pogamut [10], an extension of Gamebots: See e.g. [13,14] which use Gamebots
and [7] which use Pogamut.1 Gamebots is a platform that acts as a UT2004
server and thus facilitates the transfer of information from UT2004 to the client
(agent platform). The GameBots platform comes with a variety of predefined
tasks and environments. It provides an architecture for connecting agents to
bots in the UT2004 game while also allowing human players to connect to the
UT2004 server to participate in a game. Pogamut is a framework that extends
GameBots in various ways, and provides a.o. an IDE for developing agents and a
parser that maps Gamebots string output to Java objects. We have built on top
of Pogamut because it provides additional functionality related to, for example,
obtaining information about navigation points, ray tracing, and commands that
allow controlling the UT2004 gaming environment, e.g. to replay recordings.

A behavior-based framework called pyPOSH has been connected to UT2004
using Gamebots [14]. The motivation has been to perform a case study of a
methodology called Behavior Oriented Design [1]. The framework provides sup-
port for reactive planning and the means to construct agents using Behavior
Oriented Design (BOD) as a means for constructing agents. BOD is strongly
inspired by Behavior-based AI and is based on “the principle that intelligence is
decomposed around expressed capabilities such as walking or eating, rather than
around theoretical mental entities such as knowledge and thought.” [14] These
agents thus are behavior-based and not BDI-based.

Although we recognize the strengths and advantages of a behavior-based ap-
proach to agent-controlled virtual characters, our aim has been to facilitate the
use of cognitive agents to control such characters. In fact, our approach has been
to design and create an interface to a behavior-based layer that provides access
1 [15] is an exception, directly connecting ReadyLog agents via TCP/IP to UT2004.

Unreal Goal Bots 5

to the actions of a virtual character; the cognitive agent thus has ready access to
a set of natural behaviors at the right abstraction level. Moreover, different from
[1] the actions and behaviors that can be performed through the interface are
clearly separated from the percepts that may be obtained from sensors provided
by the virtual environment (although the behaviors have access to low-level de-
tails in the environment that is not all made available via the interface). The
main difference with [1] thus is the fact that cognitive agent technology provides
the means for action selection and this is not all handled by the behavior-layer
itself (though e.g. navigation skills have been “automated”, i.e. we reuse the
navigation module of Pogamut).

An interface called UtJackInterface is briefly discussed in [16]. This interface
allows JACK agents [17] to connect to UT2004. The effort has been motivated
by the “potential for teaming applications of intelligent agent technologies based
on cognitive principles”. The interface itself reuses components developed in the
Gamebots and Javabots project to connect to UT2004. As JACK is an agent-
oriented extension of Java it is relatively straightforward to connect JACK via
the components made available by the Gamebots and Javabots projects. Some
game-specific JACK code has been developed to “explore, achieve, and win” [16].
The interface provides a way to interface JACK agents to UT2004 but does not
provide a design of an interface for logic-based BDI agents nor facilitates reuse.

The cognitive architecture Soar [18] has also been used to control computer
characters. Soar provides so-called operators for decision-making. Similar to
Goal - which provides reserved and user-defined actions - these operators allow
to perform actions in the bots environment as well as internal actions for e.g.
memorizing. The action selection mechanism of Soar is also somewhat similar to
that of Goal in that it continually applies operators by evaluating if-then rules
that match against the current state of a Soar agent. Soar has been connected
to UT2004 via an interface called the Soar General Input/Output which is a do-
main independent interface [19]. Soar, however, does not provide the flexibility of
agent technology as it is based on a fixed cognitive architecture that implements
various human psychological functions which, for example, limit flexible access
to memory. An additional difference is that Soar is knowledge-based and does
not incorporate declarative goals as Goal does.

Similarly, the cognitive architecture ACT-R has been connected to Unreal

Tournament [20]. Interestingly, [20] motivate their work by the need for cog-
nitively plausible agents that may be used for training. Gamebots is used to
develop an interface from Unreal Tournament to ACT-R.

Arguably the work most closely related to ours that connects high-level agents
to Unreal Tournament is the work reported on connecting the high-level
logic-based language ReadyLog (a variant of Golog) to UT2004 [15]. Agents
in ReadyLog also extensively use logic (ECLiPSe Prolog) to reason about the
environment an agent acts in. Similar issues are faced to provide an interface
at the right abstraction level to ensure adequate performance, both in terms
of responsiveness as well as in terms of being effective in achieving good game
performance. A balance needs to be struck in applying the agent technology

6 K.V. Hindriks et al.

provided by ReadyLog and the requirements that the real-time environment
poses in which these agents act. The main differences between our approach and
that of [15] are that our interface is more detailed and provides a richer action
repertoire, and, that, although ReadyLog agents are logic-based, ReadyLog

agents are not BDI agents as they are not modelled as having beliefs and goals.
Summarizing, our approach differs in various ways from that of others. Im-

portantly, the design of the agent interface reported here has quite explicitly
taken into account what would provide the right abstraction level for connecting
logic-based BDI agents such as Goal agents to UT2004. As the discussion below
will highlight (see in particular Figure 1), a three-tier architecture has been used
consisting of the low-level Gamebots server extension of UT2004, a behavioral
layer provided by a particular bot run on top of Pogamut, and, finally, a logic-
based BDI layer provided by the Goal agent platform. Maybe just as important
is the fact that we have used a generic toolkit [11,12] to build the interface that is
supported by other agent platforms as well. This provides a principled approach
to reuse of our effort to facilitate control of Unreal bots by logic-based BDI
agents. It also facilitates comparison with other agent platforms that support
the toolkit and thus contributes to evaluation of agent platforms.

3 Agent Programming in Goal

Goal is a high-level agent programming language for programming rational or
cognitive agents. Goal agents are logic-based agents in the sense that they use
a knowledge representation language to reason about the environment in which
they act. The technology used here is SWI Prolog [21]. Due to space limitations,
the presentation of Goal itself is very limited and we cannot illustrate all features
present in the language. For more information, we refer to [22,23], which provides
a proper introduction to the constructs introduced below and discusses other fea-
tures such as modules, communication, macros, composed actions, and more.

The language is part of the family of agent programming languages that in-
cludes e.g. 2APL, Jadex, and Jason [24]. One of its distinguishing features is
that Goal agents have a mental state consisting of knowledge, beliefs and goals
and Goal agents are able to use so-called mental state conditions to inspect
their mental state. Mental state conditions allow to inspect both the beliefs and
goals of an agent’s mental state which provide Goal agents with quite expressive
reasoning capabilities.

A Goal agent program consists of various sections. The knowledge base is a
set of concept definitions or domain rules, which is optional and represents the
conceptual or domain knowledge the agent has about its environment. For the
purposes of this paper, the knowledge section is not important and we do not
explain the relation to beliefs and goals here (see for a detailed discussion [23]).
The beliefs section defines the initial belief base of the agent. At runtime a belief
base, which is a set of beliefs coded in a knowledge representation language (i.e.
Prolog in our case), is used to represent the current state of affairs. The goals
section defines the initial goal base, which is a set of goals also coded in the same

Unreal Goal Bots 7

knowledge representation language, used to represent in what state the agent
wants to be. The program section consists of a set of action rules which together
define a strategy or policy for action selection. The actionspec section consists
of action specifications for each action made available by the environment; an
action specification consists of a precondition that specifies when an action can be
performed and a postcondition that specifies the effects of performing an action.
Although Goal provides the means to write pre- and post-conditions it does not
force a programmer to specify such conditions, and actions may be introduced
with empty pre- and/or postconditions; we will discuss the usefulness of empty
conditions later in the paper again. Finally, a set of the percept rules specify how
percepts received from the environment modify the agent’s mental state.

Actions are selected in Goal by so-called action rules of the form

if <cond> then <action>

where <cond> is a mental state condition and <action> is either a built-in or an
action made available by the environment. These rules provide Goal agents with
the capability to react flexibly and reactively to environment changes but also
allow a programmer to define more complicated strategies. Modules in Goal

provide a means to structure action rules into clusters of such rules to define
different strategies for different situations [25]. Percept rules are special action
rules used to process percepts received from the environment. These rules allow
(pre)processing of percepts and allow a programmer to flexibly decide what to
do with percepts received (updating by inserting or deleting beliefs, adopting
or dropping goals, or send messages to other agents). Additional features of
Goal include a.o. a macro definition construct to associate intuitive labels with
mental state conditions which increases the readability of the agent code, options
to apply rules in various ways, and communication.

4 Agent Interface for Controlling Unreal Bots

One of the challenges of connecting BDI agents such as Goal agents to a real-
time environment is to provide a well-defined interface that is able to handle
events produced by the environment, and that is able to provide sensory infor-
mation to the agent and provides an interface to send action commands to the
environment. Although Gamebots or Pogamut do provide such interfaces they
do so at a very low-level. The challenge here is to design an interface at the
right abstraction level while providing the agent with enough detail to be able
to “do the right thing”. In other words, the “cognitive load” on the agent should
not be too big for the agent to be able to efficiently handle sensory information
and generate timely responses; it should, however, also be plausible and provide
the agent with more or less the same information as a human player. Similarly,
actions need to be designed such that the agent is able to control the bot by
sending action commands that are not too finegrained but still allow the agent to
control the bot in sufficient detail. Finally, the design of such an interface should
also pay attention to technical desiderata such as that it provides support for

8 K.V. Hindriks et al.

debugging agent programs and facilitates easy connection of agents to bots. This
involves providing additional graphical tools that provide global overviews of the
current state of the map and bots on the map as well as event-based mechanisms
for launching, killing and responding to UT server events. In the remainder of
this section, we describe in more detail some of the design choices made and the
advantages of using the Environment Interface toolkit introduced in [11,12]. We
begin with briefly discussing Unreal Tournament 2004 and then continue
with discussing the interface design.

4.1 Unreal Tournament

UT2004 is an interactive, multi-player computer game where bots can compete
with each other in various arenas. The game provides ten different game types
including, for example, DeathMatch in which each bot is on its own and competes
with all other bots present to win the game where points are scored by disabling
bots, and Team DeathMatch which is similar to DeathMatch but is different
in that two teams have to compete with each other. One of the key differences
between DeathMatch and Team DeathMatch is that in the latter bots have to act
as a team and cooperate and coordinate. The game type that we have focused on
is called Capture The Flag (CTF). In this type of game, two teams compete with
each other and have as their main goal to conquer the flag located in the home
base of the other team. Points are scored by bringing the flag of the opponent’s
team to one’s own home base while making sure the team’s own flag remains in
its home base.

The CTF game type requires more complicated strategic game play [15] which
makes CTF very interesting for using BDI agents that are able to perform high-
level reasoning and coordinate their actions to control bots. An interface “at
the knowledge level” [26] facilitates the design of strategic agent behavior for
controlling bots as the agent designer is not distracted by the many low-level
details concerning, for example, movement. That is, the interface discussed below
allows an agent to construct a high-level environment representation that can be
used to decide on actions and focus more on strategic action selection. Similarly,
by facilitating the exchange of high-level representations between agents that are
part of the same team, a programmer can focus more on strategic coordination.
As one of our motivations for building an agent interface to UT2004 has been to
teach students to apply agent technology in a challenging environment, we have
chosen to focus on the CTF game type and provide an interface that supports all
required actions and percepts related to this scenario (e.g. this game type also
requires that agents are provided with status information regarding the flag, and
percepts to observe a bot carrying a flag).2

2 Our experience with student projects that require students to develop soccer agents
using basically Java is that students spent most of their time programming more
abstract behaviors instead of focussing on the (team) strategy. Similar observations
related to UT2004 are reported in [13], and have motivated e.g. [10]. We hope that
providing students with a BDI programming language such as Goal will focus their
design efforts more towards strategic game play.

Unreal Goal Bots 9

4.2 Requirements

As has been argued elsewhere [1], in order to make AI accessible to a broad
range of people as a tool for research, entertainment and education various re-
quirements must be met. Here, we discuss some of the choices we made related
to our objective of making existing agent technology available for programming
challenging environments.

The tools that must be made available to achieve such broad goals as making
AI, or, more specifically, agent technology accessible need to provide quite dif-
ferent functionality. One of the requirements here is to make it possible to use
an (existing) agent platform to connect to various environments. We argue that
agent programming languages are very suitable as they provide the basic building
blocks for programming cognitive agents. Agent programming languages, more-
over, facilitate incremental design of agents, starting with quite simple features
(novices) to more advanced features (more experienced programmers).

Additional tools typically need to be available to provide a user-friendly devel-
opment environment, such as tools to inspect the global state of the environment
either visually or by means of summary reports. Auxiliary tools that support
debugging are also very important. Goal provides an Integrated Development
Environment with various features for editing (e.g. syntax highligting) and de-
bugging (e.g. break points). Similar requirements are listed in [19], which adds
that it is important that the setup is flexible and allows for low-cost development
such that easy modifications to scenarios etc are feasible. For example, in the
student project, we plan to use at least two maps to avoid student teams to bias
their agents too strongly with respect to one map. This presumes easy editing
of maps, which is facilitated by the many available UT2004 editors.

4.3 Interface Design

The Environment Interface Standard (EIS) [11,12] is a proposed standard for in-
terfaces between (agent-)platforms and environments. It has been implemented
in Java but its principles are portable. We have chosen to use EIS because it
offers several benefits. First of all, it increases the reusability of environments.
Although there are a lot of sophisticated platforms, the exchange of environ-
ments between them is very rare, and if so it takes some time to adapt the
environment. EIS on the other hand makes complex multi-agent environments,
for example gaming environments, more accessible. It provides support for event
and notification handling and for launching agents and connecting to bots.

EIS is based on several principles. The first one is portability which means
in this context that the easy exchange of environments is facilitated. Environ-
ments are distributed via jar-files that can easily be plugged in by platforms that
adhere to EIS. Secondly, it imposes only minimal restrictions on the platform
or environment. For example, there are no assumptions about scheduling, agent
communication and agent control. Also there are no restrictions on the use of
different technical options for establishing a connection to the environment, as
TCP/IP, RMI, JNI, wraping of existing Java-code et cetera can be used. An-
other principle is the separation of concerns. Implementation issues related to

10 K.V. Hindriks et al.

the agent platform are separated from those related to the environment. Agents
are assumed to be percept-processors and action-generators. Environment enti-
ties are only assumed to be controllable, i.e. they can be controlled by agents
and provide sensory and effectoric capabilities. Otherwise EIS does not assume
anything about agents and entities and only stores identifiers for these objects,
and as such assures the interface is agnostic about agent and bot specifics.

EIS provides various types of implementation support for connecting an
agent platform to an environment. It facilitates acting, active sensing (actions
that yield percepts), passive sensing (retrieving all percepts), and percepts-as-
notifications (percepts sent by the environment). Another principle is a standard
for actions and percepts. EIS provides a so called interface intermediate lan-
guage that is based on an abstract-syntax-tree-definition. The final principle is
the support for heterogeneity, that is that EIS provides means for connecting
several platforms to a single instance of an environment. EIS is supported by
and has been tested with 2APL, Jadex, Jason, and by GOAL.

The connection established using EIS between Goal-agents, which are exe-
cuted by the GOAL-interpreter, and UT2004 bots in the environment consists of
several distinct components (see Fig. 1). The first component is Goal’s support
for EIS. Basically this boils down to a sophisticated MAS-loading-mechanism
that instantiates agents and creates the connection between them and entities,
together with a mapping between Goal-percepts/actions and EIS ones. Con-
necting to EIS is facilitated by Java-reflection. Entities, from the environment-
interface-perspective, are instances of UnrealGOALBot, which is a heavy exten-
sion of the LoqueBot developed by Juraj Simlovic. LoqueBot on the other hand
is built on top of Pogamut[10]. Pogamut itself is connected to GameBots, which
is a plugin that opens UT2004 for connecting external controllers via TCP/IP.

Entities consist of three components: (1) an instance of UnrealGOALBot that
allows access to UT, (2) a so called action performer which evaluates EIS-actions
and executes them through the UnrealGOALBot, and (3) a percept processor
that queries the memory of the UnrealGOALBot and yields EIS-percepts.

The instantiation of EIS for connecting Goal to UT2004 distinguishes three
classes of percepts. Map-percepts are sent only once to the agent and contain
static information about the current map. That is navigation-points (there is a
graph overlaying the map topology), positions of all items (weapons, health, ar-
mor, power-ups et cetera), and information about the flags (the own and the
one of the enemy). See-percepts on the other hand consist of what the bot
currently sees. That is visible items, flags, and other bots. Self-percepts con-
sist of information about the bot itself. That is physical data (position, ori-
entation and speed), status (health, armor, ammo and adrenaline), all carried
weapons and the current weapon. Although these types of percepts are im-
plemented specifically for UT2004, the general concepts of percepts that are
provided only once, those provided whenever something changes in the visual
field of the bot, and percepts that relate to status and can only have a single
value at any time (e.g. current weapon) can be reapplied in other EIS instanti-
ations. Here are some examples: bot(bot1,red) indicates the bot’s name and

Unreal Goal Bots 11

its team, currentWeapon(redeemer) denotes that the current weapon is the
Redeemer, weapon(redeemer,1), indicates that the Redeemer has one piece of
ammo left, and pickup(inventoryspot56,weapon,redeemer) denotes that a
Redeemer can be picked up at the navigation-point inventoryspot56.

GOAL Interpreter EIS

UnrealGOALBot

Pogamut

UT2004

GameBots

Fig. 1. A schematic overview of the implementation. The Goal-interpeter connects
to the EIS via Java-reflection. EIS wraps UnrealGOALBot, a heavy extension of Lo-
quebot. UnrealGOALBot wraps Pogamut, which connects to GameBots via TCP/IP.
GameBots is an Unreal-plugin.

Actions are high-level to fit the BDI abstraction. The primitive behaviors that
are used to implement these actions are based on primitive methods provided
by the LoqueBot. Design-choices however were not that easy. We have identi-
fied several layers of abstraction, ranging from (1) really low level interaction
with the environment, that is that the bot sees only neighboring waypoints and
can use raytracing to find out details of the environment, over (2) making all
waypoints available and allowing the bot to follow paths and avoid for example
dodging attacks on its way, to (3) very high-level actions like win the game.
The low level makes a very small reaction-time a requirement and is very easy
to implement, whereas the high level allows for longer reaction times but re-
quires more implementation effort. We have identified the appropriate balance
between reaction-time implementation effort to be an abstraction layer in which
we provide these actions: goto navigates the bot to a specific navigation-point
or item, pursue pursues a target, halt halts the bot, setTarget sets the target,
setWeapon sets the current weapon, setLookat makes the bot look at a spe-
cific object, dropweapon drops the current weapon, respawn respawns the bot,
usepowerup uses a power-up, getgameinfo gets the current score, the game-type
and the identifier of the bot’s team. Due to space limitations we do not provide
all the parameters associated with these actions in detail. Note that several but
in particular the first two actions take time to complete and are only initiated
by sending the action command to UT2004. Durative actions such as goto and
pursue may be interrupted. The agent needs to monitor the actions through
percepts received to verify actions were succesful. EIS does support providing
percepts as “return values" of actions but this requires blocking of the thread

12 K.V. Hindriks et al.

executing the action and we have chosen not to use this feature except if there
is some useful “immediate" information to provide which does not require block-
ing. Special percepts were implemented to monitor the status of the goto action,
including e.g. whether the bot is stuck or has reached the target destination.
Moreover, the agent can control the route towards a target destination but may
also delegate this to the behavioral control layer.

4.4 An Example: The Unreal-Pill-Collector

Figure 2 shows the agent-code of a simple Goal-agent that performs two tasks:
(1) collecting pills and (2) setting a target for attack. The agent relies on the
reception of percepts that are provided by the environment to update its beliefs
during runtime. The beliefs present in the beliefs section in the agent program
code are used to initialize the belief state of the agent. The first fact listed states
that initially the agent has no target. The second fact represents the initial
parameters associated with the bot’s position, its rotation, velocity and moving
state, together called the physical-state of the bot (the moving state of a bot
can be stuck, moving, and reached). Similarly, the goals section is used to
initialize the agent’s goal base and initially will contain the goal of collecting
special items, represented simply by the abstract predicate collect, and the
goal to target all bots (implicitly only bots part of another team will be targeted
as it is not possible in UT2004 to shoot your own team mates). The first rule in
the program section makes the bot go to the specific location of a special-item
(a so-called pickup location) if the agent knows about such a location and has
the goal of collecting special items. The second rule sets the targets from none
to all bots.

In the example only two out the total number of actions that were briefly
introduced above have been used. We discuss these action more extensively here
because they help to clarify how the interface with UT2004 works. Actions de-
fined in the actionspec section need to be made available by the environment,
in our case UT2004. They need to be specified in Goal because the name and
parameters of the action need to be specified to be able to use it in action rules,
and because preconditions and postconditions of actions may be specified (but
need not be; they can be left empty). The goto action in the actionspec sec-
tion allows the bot to move in the environment. The setTarget action sets the
enemy bots that will be targeted if visible. These actions are quite different.
The goto action takes more or less time to complete depending on the distance
to be traveled. The setTarget action in contrast is executed instantaneously
as it only changes a mode of operation (a parameter). This difference has im-
portant consequences related to specifying the pre- and postcondition of these
actions. Whereas it is quite easy to specify the pre- and postcondition of the
setTarget action, this is not the case for the goto action. As goto is a durative
action that may fail (if only because an enemy bot may kill the bot) it is not
possible to specify the postcondition uniquely. Moreover, some of the “details”
of going somewhere as, for example, the exact route taken may (but need not
be) delegated to the behavioral layer; this means that most of the time only

Unreal Goal Bots 13

through percepts the exact route can be traced. Therefore, it makes more sense
in a dynamic environment that an agent relies on percepts that are made avail-
able by the environment to inform it about its state than on the specification
of a postcondition. For this reason, when an action is selected, Goal does not
“block” on this action until it completes. Instead, upon selection of an action,
Goal sends the action command to the environment and then simply contin-
ues executing its reasoning cycle; this design explicitly allows for monitoring
the results of executing the action command while it is being performed by the
bot in the environment. For some actions, among which the goto action, the
interface has been designed such that specific monitoring percepts are provided
related to events that are relevant at the cognitive level. The moving state per-
cepts stuck, moving, and reached are examples that illustrate how an agent
may conclude the goto action has failed, is ongoing, or has been successful. The
setup of sending an action command to the environment while continuing the
agent’s reasoning cycle also allows for interrupting the action if somehow that
seems more opportune to the agent; it can simply select a goto action with
another target to do so.

This discussion also clarifies that providing an action specification in an agent
programming language like Goal in dynamic environments is more of a (prag-
matic) design issue than a task to provide a purely logical analysis and specifica-
tion of a domain. It would require unreasonably complex specifications to handle
all possible effects whereas perception allows for much more effective solutions.3
The action specification for goto has been setup in such a way in the example
program, however, that another goto action is only selected if the agent believes
a position has been successfully reached in order to make sure that the agent
does not change its mind continually (something which obviously will need to be
changed in a truly multi-agent setting where the bot can get killed; the example
program is mainly used here for illustrative purposes).

The previous discussion will have made clear the importance that perception
has for controlling bots in a real-time strategy game such as UT2004. Rules to
process percepts (as well as possibly messages sent by agents) are part of the
perceptrules section of a Goal agent. In our example, the first percept rule
stores all pickup positions in the belief base whereas the second one stores the
movement state.

Though this agent is simple it does show that it is relatively simple to write
an agent program using the interface that does something useful like collecting
pills. Information needed to control the bot at the knowledge level is provided at
start-up such as where pickup locations are on the map. The code also illustrates
that some of the “tasks" may be delegated to the behavioral layer. For example,
the agent does not compute a route itself but delegates determining a route to

3 To be sure, we do not want to suggest that these remarks provide a satisfactory or
definite solution for these issues; on the contrary, there remain many issues for future
work. It does make clear, however, that in simulated environments such as games
some of these issues can be resolved by the design of a specific perceptual interface,
as we have done.

14 K.V. Hindriks et al.

pickup navigation point. One last example to illustrate the coordination between
the agent and the bot routines at lower levels concerns the precondition of the
goto action. By defining the precondition as in Figure 2 (which is a design choice
not enforced by the interface), this action will only be selected if a previously
initiated goto behavior has been completed, indicated by the reached constant.

main: unrealCollector { % simple bot, collecting special items, and setting shooting mode
beliefs{

targets([]). % remember which targets bot is pursuing
moving(triple(0,0,0), triple(0,0,0), triple(0,0,0), stuck). % initial physical state

}
goals{

collect. targets([all]).
}
program{

% main activity: collect special items
if goal(collect), bel(pickup(UnrealLocID,special,Type)) then goto([UnrealLocID]).
% but make sure to shoot all enemy bots if possible.
if bel(targets([])) then setTarget([all]).

}
actionspec{

goto(Args) {
% The goto action moves to given location and is enabled only if
% a previous instruction to go somewhere has been achieved.
pre { moving(Pos, Rot, Vel, reached) }
post { not(moving(Pos, Rot, Vel, reached)) }

}
setTarget(Targets) {

pre { targets(OldTargets) }
post { not(targets(OldTargets)), targets(Targets) }

}
}
perceptrules{

% initialize beliefs with pickup locations when these are received from environment.
if bel(percept(pickup(X,Y,Z))) then insert(pickup(X,Y,Z)).
% update the state of movement.
if bel(percept(moving(Pos, Rot, Vel, State)), moving(P, R, V, S))

then insert(moving(Pos, Rot, Vel, State)) + delete(moving(P, R, V, S)).
}

}

Fig. 2. A very simple Unreal-Goal-agent collecting pills and setting targets

4.5 Implementation Issues

It is realized more and more that one of the tests we need to put agent pro-
gramming languages to concerns performance. With the current state of the
art it is not possible to control hundreds or even tens of bots in a game such
as UT2004.4 The challenge is to make agent programs run in real-time and to
reduce the CPU load they induce. The issue is not particular for agent program-
ming, [2] reports, for example, that Soar executes its cycle 30-50 times per second
(on a 400MHz machine), which provides some indication of the responsiveness
that can be maximally achieved at the cognitive level. Although we recognize
4 Part of the reason is UT2004: increasing the number of bots also increases the CPU

load induced by UT2004 itself.

Unreal Goal Bots 15

this is a real issue, our experience has been that using the Goal platform it is
possible to run teams that consist of less than 10 agents including UT2004 on a
single laptop. Of course, a question is how to support a larger number of bots in
the game without sacrificing performance. Part of our efforts therefore have been
directed at gaining insight in which parts of a BDI agent induce the CPU load.
The issues we identified range from the very practical to more interesting issues
that require additional research; we thus identify some topics we believe should
be given higher priority on the research agenda. Some of the more mundane
issues concern the fact that even GUI design for an integrated development en-
vironment for an agent programming language may already consume quite some
CPU. The reason is quite simple: most APLs continuously print huge amounts of
information to output windows for the user to inspect, ranging from updates on
the mental states to actions performed by an agent. More interesting issues con-
cern the use and integration of third-party software. For example, various APLs
have been built on top of JADE [27]. In various initial experiments, confirmed by
some of our colleagues, it turned out that performance may be impacted by the
JADE infrastructure and performance improves when agents are run without
JADE (although this comes at the price of running a MAS on a single machine
the performance seems to justify such choices). Moreover, as is to be expected,
CPU is consumed by the internal reasoning performed by BDI agents. Again,
careful selection of third-party software makes a difference. Generally speaking,
when Prolog is used as reasoning engine, the choice of implementation may have
significant impact. Finally, we have built on top of Pogamut to create a behav-
ioral controller for UT bots. Measuring the performance impact of this layer
in the architecture illustrated in Figure 1 that connects Goal through various
layers to UT2004 is complicated, however; to obtain reasonable results for this
layer using e.g. profilers therefore remains for future work.

In retrospective, we have faced several implementation challenges when con-
necting to UT2004 using EIS. EIS though facilitated design of a clean and
well-defined separation of the agent (programmed in Goal) and the behavioral
layer (the UnrealGOALBot) to the Unreal-AI-engine. The strict separation of
EIS between agents as percept-processors and action-generators and entities as
sensor- and effector-providers facilitated the design. We also had in mind right
from the beginning that we wanted to use the UT2004-interface in order to pro-
vide the means for comparing APL platforms in general. Since support for EIS
is easily established on other platforms we have solved this problem as well, by
making the interface EIS-compliant.

4.6 Applications

The developed framework will be used in a student project for first year BSc.
students in computer science. Before the start of the project, students will have
had a course in agent technology where Prolog and Goal programming skills
are taught. The students are divided into groups of five students each. Every
group will have to develop a team of Goal agents that control UT bots in
a CTF scenario where two teams attempt to steal each other’s flag. In this

16 K.V. Hindriks et al.

scenario, students have to think about how to implement basic agent skills re-
garding walking around in the environment and collecting weapons and other
relevant materials, communication between agents, fighting against bots of the
other team, and the strategy and team work for capturing the flag. The time
available for developing the agent team is approximately two months, in which
each student has to spend about 1 to 1,5 days a week working on the project.
At the end of the project, there will be a tournament in which the developed
agent teams compete against one another. The grade is determined based on
the students’ report and their final presentation. The purpose of the project is
to familiarize students with basic aspects of agent technology in general and
cognitive agent programming in particular, from a practical perspective.

Designing the interface at the appropriate level of abstraction as discussed
above, is critical for making the platform suitable for teaching students agent
programming. If the abstraction level is too low, students have to spend most
of their time figuring out how to deal with low-level details of controlling UT
bots. On the other hand, if the abstraction level is too high (offering actions
such as win the game), students hardly have to put any effort into programming
the Goal agents. In both cases they will not learn about the aspects of agent
technology that were discussed above.

5 Conclusion and Future Work

As is well-known, the Unreal engine is used in many games and various well-
known research platforms such as the USARSIM environment for crisis man-
agement that is used in a yearly competition [9]. We believe that the high-level
Environment Interface that we have made available to connect agent platforms
with UT2004 will facilitate the connection to other environments such as US-
ARSIM as well. We believe the availability of this interface makes it possible to
connect arbitrary agent platforms with relatively little effort to such environ-
ments which opens up many possibilities for agent-based simulated or gaming
research. This is beneficial to put agent technology to the test. It will also make
it possible to research human-agent mixed systems that control bots in UT2004.

The interface and architecture for connecting Goal to UT2004 have been
used successfully in a large student project at Delft University of Technology
with 65 first-year BSc students that were trained to program Goal agents first
in a course on multi-agent systems. The multi-agent systems that were developed
by the students competed against each other in a competition at the end of the
project. Some lessons learned and an analysis of the agent programs that were
written are reported in [28]. The project has resulted in many insights on how
to design the agents controlling bots themselves, as well as on how to improve
some of the associated tools and methodologies for authoring agent behavior.
At the moment of writing, we are in the process of migrating the code of the
behavioral layer based on Pogamut 2 to the new, redesigned Pogamut 3 [29].

The connection of an agent programming language for rational or BDI agents
to UT2004 poses quite a few challenging research questions. A very interesting

Unreal Goal Bots 17

research question is whether we can develop agent-controlled bots that are able to
compete with experienced human players using the same information the human
players possess. The work reported here provides a starting point for this goal.
Even more challenging is the question whether we can develop agent-controlled
bots that cannot be distinguished by experienced human players from human
game players. At this stage, we have only developed relatively simple bots but
we believe that the interface design enables the development of more cognitively
plausible bots.

As noted in [30] and discussed in this paper, efficient execution is an issue for
BDI agents. By increasing the number of bots and the number of agents needed
to control these bots performance degrades. A similar observation is reported in
[31]. Although it is possible to run teams of Goal agents to control multiple
bots, our findings at this moment confirm those of [30]. We believe that efficiency
and scalability are issues that need to be put higher on the research agenda.

References

1. Brom, C., Gemrot, J., Bida, M., Burkert, O., Partington, S.J., Bryson, J.: POSH
Tools for Game Agent Development by Students and Non-Programmers. In: Proc.
of the 9th Computer Games Conference (CGAMES 2006), pp. 126–133 (2006)

2. Laird, J.E.: Using a computer game to develop advanced ai. Computer 34(7), 70–75
(2001)

3. Patel, P., Hexmoor, H.: Designing Bots with BDI Agents. In: Proc. of the Sympo-
sium on Collaborative Technologies and Systems (CTS 2009), pp. 180–186 (2009)

4. Norling, E., Sonenberg, L.: Creating Interactive Characters with BDI Agents. In:
Proc. of the Australian Workshop on Interactive Entertainment (IE 2004) (2004)

5. Botprize competition, http://www.botprize.org/ (Accessed 30, January 2010)
6. Davies, N., Mehdi, Q.H., Gough, N.E.: Towards Interfacing BDI With 3D Graph-

ics Engines. In: Proceedings of CGAIMS 2005. Sixth International Conference on
Computer Games: Artificial Intelligence and Mobile Systems (2005)

7. Wang, D., Subagdja, B., Tan, A.H., Ng, G.W.: Creating Human-like Autonomous
Players in Real-time First Person Shooter Computer Games. In: Proc. of the 21st
Conference on Innovative Applications of Artificial Intelligence (IAAI 2009) (2009)

8. Kaminka, G., Veloso, M., Schaffer, S., Sollitto, C., Adobbati, R., Marshall, A.,
Scholer, A., Tejada, S.: Gamebots: A flexible test bed for multiagent team research.
Communications of the ACM 45(1), 43–45 (2002)

9. RobocupRescue, http://www.robocuprescue.org (Accessed 30, January 2010)
10. Burkert, O., Kadlec, R., Gemrot, J., Bída, M., Havlíček, J., Dörfler, M., Brom,

C.: Towards fast prototyping of iVAs behavior: Pogamut 2. In: Pelachaud, C.,
Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007.
LNCS (LNAI), vol. 4722, pp. 362–363. Springer, Heidelberg (2007)

11. Behrens, T.M., Dix, J., Hindriks, K.V.: Towards an Environment Interface Stan-
dard for Agent-Oriented Programming. Technical report, Clausthal University of
Technology, IfI-09-09 (September 2009)

12. Behrens, T., Hindriks, K., Dix, J., Dastani, M., Bordini, R., Hübner, J., Braubach,
L., Pokahr, A.: An interface for agent-environment interaction. In: Proceedings
of the The Eighth International Workshop on Programming Multi-Agent Systems
(2010)

http://www.botprize.org/
http://www.robocuprescue.org

18 K.V. Hindriks et al.

13. Kim, I.C.: UTBot: A Virtual Agent Platform for Teaching Agent System Design.
Journal of Multimedia 2(1), 48–53 (2007)

14. Partington, S.J., Bryson, J.J.: The behavior oriented design of an unreal tour-
nament character. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D.,
Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 466–477.
Springer, Heidelberg (2005)

15. Jacobs, S., Ferrein, A., Ferrein Lakemeyer, G.: Unreal GOLOG Bots. In: Proceed-
ings of the 2005 IJCAI Workshop on Reasoning, Representation, and Learning in
Computer Games, pp. 31–36 (2005)

16. Tweedale, J., Ichalkaranje, N., Sioutis, C., Jarvis, B., Consoli, A., Phillips-Wren,
G.: Innovations in multi-agent systems. Journal of Network and Computer Appli-
cations 30(3), 1089–1115 (2007)

17. JACK: Agent Oriented Software Group, http://www.aosgrp.com/products/jack
(Accessed 30, January 2010)

18. Laird, J.E., Newell, A., Rosenbloom, P.: Soar: An architecture for general intelli-
gence. Artificial Intelligence 33(1), 1–64 (1987)

19. Laird, J.E., Assanie, M., Bachelor, B., Benninghoff, N., Enam, S., Jones, B., Ker-
foot, A., Lauver, C., Magerko, B., Sheiman, J., Stokes, D., Wallace, S.: A test bed
for developing intelligent synthetic characters. In: Spring Symposium on Artificial
Intelligence and Interactive Entertainment (AAAI 2002) (2002)

20. Best, B.J., Lebiere, C.: Teamwork, Communication, and Planning in ACT-R. In:
Proceedings of the 2003 IJCAI Workshop on Cognitive Modeling of Agents and
Multi-Agent Interactions, pp. 64–72 (2003)

21. SWI Prolog, http://www.swi-prolog.org/ (Accessed 30, January 2010)
22. Hindriks, K.V.: Programming Rational Agents in Goal. In: Multi-Agent Program-

ming Languages, Tools and Applications, pp. 119–157. Springer, Heidelberg (2009)
23. Hindriks, K.V.: Goal Programming Guide (2010), Can be downloaded from

http://mmi.tudelft.nl/~koen/goal
24. Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Programming

Languages, Platforms and Applications. Springer, Heidelberg (2005)
25. Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Programming

Languages, Tools and Applications. Springer, Heidelberg (2009)
26. Newell, A.: The Knowledge Level. Artificial Intelligence 18(1), 87–127 (1982)
27. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with

JADE. Wiley, Chichester (2007)
28. Hindriks, K.V., van Riemsdijk, M.B., Jonker, C.M.: An empirical study of patterns

in agent programs: An Unreal Tournament case study in Goal. In: Proceedings
of the 13th International Conference on Principles and Practice of Multi-Agent
Systems (PRIMA 2010) (2010)

29. Gemrot, J., Brom, C., Plch, T.: A periphery of pogamut: from bots to agents and
back again. In: Dignum, F. (ed.) Agents for Games and Simulations II. LNCS
(LNAI), vol. 6525, pp. 19–37. Springer, Heidelberg (2011)

30. Bartish, A., Thevathayan, C.: BDI Agents for Game Development. In: Proceedings
of the First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2002), pp. 668–669 (2002)

31. Hirsch, B., Fricke, S., Kroll-Peters, O., Konnerth, T.: Agent programming in prac-
tise - experiences with the jiac iv agent framework. In: Sixth International Work-
shop AT2AI-6: From Agent Theory to Agent Implementation, pp. 93–99 (2008)

http://www.aosgrp.com/products/jack
http://www.swi-prolog.org/
http://mmi.tudelft.nl/~koen/goal

	Unreal Goal Bots
	Introduction
	Related Work
	Agent Programming in Goal
	Agent Interface for Controlling Unreal Bots
	Unreal Tournament
	Requirements
	Interface Design
	An Example: The Unreal-Pill-Collector
	Implementation Issues
	Applications

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

