
Chapter 9

Using the Maude Term Rewriting Language for
Agent Development with Formal Foundations

M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

Abstract We advocate the use of the Maude term rewriting language and its sup-
porting tools for prototyping, model-checking, and testing agent programming lan-
guages and agent programs. One of the main advantages of Maude is that it provides
a single framework in which the use of a wide range of formal methods is facilitated.
We use the agent programming language BUpL (Belief Update programming Lan-
guage) for illustration.
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9.1 Introduction

An important line of research in the agent systems field is research on agent pro-
gramming languages [64]. The guiding idea behind these languages is that program-
ming languages based on agent-specific concepts such as beliefs, goals, and plans
facilitate the programming of agents.

Several agent programming languages have been developed with an emphasis on
the use of formal methods. In particular, structural operational semantics [340] is
often used for formally defining the semantics of the languages. The semantics is
used as a basis for prototyping and implementing the languages, and for verification.
Several tools and techniques can be used for implementation and verification, such
as Java for writing an interpreter and IDE, and the Java PathFinder1 or SPIN [236]
model-checkers for verification [61].

In this chapter, we advocate the use of the Maude language [104] and its sup-
porting tools for prototyping, verifying, and testing agent programming languages
and agent programs. One of the main advantages of Maude is that it provides a sin-
gle framework in which the use of a wide range of formal methods is facilitated.
Maude is a high-performance reflective language and system supporting equational
and rewriting logic specification and programming. The language has been shown
to be suitable both as a logical framework in which many other logics can be repre-
sented, and as a semantic framework through which programming languages with
an operational semantics can be implemented in a rigorous way [301]. Maude comes
with an LTL model-checker [155], which allows for verification. Moreover, Maude
facilitates the specification of strategies for controlling the application of rewrite
rules [154].

We will demonstrate how these features of Maude can specifically be applied for
developing agent programming languages and programs based on solid formal foun-
dations. We use the agent programming language BUpL (Belief Update program-
ming Language) [19] for illustration. BUpL is a simple language that resembles the
first version of 3APL [223].

The outline of this chapter is as follows. We present BUpL in Section 9.2, and
then use BUpL to illustrate how Maude can be used for prototyping (Section 9.3),
model-checking (Section 9.4), and testing (Section 9.5). We conclude in Section 9.6.
The complete Maude source code of the implementations discussed in this chap-
ter can be downloaded from http://homepages.cwi.nl/˜astefano/agents/
bupl-strategies.php.

1 http://javapathfinder.sourceforge.net/

http://homepages.cwi.nl/~astefano/agents/bupl-strategies.php
http://homepages.cwi.nl/~astefano/agents/bupl-strategies.php
http://javapathfinder.sourceforge.net/
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9.2 The BUpL Language

In this section, we briefly present the syntax and semantics of BUpL for ease of
reference. We refer to Chapter [2] for more details and explanation. A BUpL agent
has an initial belief base and an initial plan. A belief base is a collection of ground
(first-order) atomic formulas which we refer to as beliefs. The agent is supposed to
execute its initial plan, which is a sequential composition and/or a non-deterministic
choice of actions or composed plans. The semantics of actions is defined using pre-
conditions and effects (postconditions). An action can be executed if the precondi-
tion of the action matches the belief base. The belief base is then updated by adding
or removing the elements specified in the effect. If the precondition does not match
the belief base, we say the execution of the action (or the plan of which it is a part)
fails. In this case repair rules can be applied, and this results in replacing the plan
that failed by another.

9.2.1 Syntax

BUpL is based on a simple logical language L with typical element ϕ, which is
defined as follows. F and Pred are infinite sets of function, respectively predi-
cate symbols, with typical element f , respectively P. Variables are denoted by the
symbol x. As usual, a term t is either a variable or a function symbol with terms
as parameters. Predicate symbols with terms as parameters form the atoms of L,
and atoms or negated atoms are called literals, denoted as l. Atoms are also called
positive literals and negated atoms are called negative literals. The negation of a
negative literal yields its positive variant. Nullary functions form the constants of
the language. L does not contain quantifiers to bind variables. A formula or term
without variables is called ground. Formulas from L are in disjunctive normal form
(DNF), i.e., they consist of disjunctions of conjunctions (denoted as c) of literals. A
belief base B is a set of ground atoms from L.

t ::= x | f (t, . . . , t)
l ::= P(t, . . . , t) | ¬P(t, . . . , t)
c ::= l | c∧ c
ϕ ::= c | c∨ c

Basic actions are defined as functions a(x1, . . . , xn) =def (ϕ,ξ), where ϕ ∈ L is a
formula which we call precondition, and ξ is a set of literals from L which we call
effect. The following inclusions are required:

Var(ξ) ⊆ Var(ϕ) = {x1, . . . , xn}.2

2 These inclusions thus specify that the variables occurring in the precondition and the effect also
have to be in the parameter of the action. This has to do with the way actions are implemented
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We use the symbol A for the set of basic actions. We use Act to refer to the set of
basic action names, with typical element a. We say that a function call a(t1, . . . , tn)
is a basic action term, and will sometimes denote it as α.

Plans, typically denoted as p, are defined as follows, where Π is a set of plan
names with typical element π and a(t, . . . , t) is a basic action term:

p ::= a(t, . . . , t) | π(t, . . . , t) | a(t, . . . , t); p | p+ p.

Here, ‘;’ is the sequential composition operator and ‘+’ is the choice operator, with
a lower priority than ‘;’. The construct π(t, . . . , t) is called abstract plan. Abstract
plans should be understood as procedure calls in imperative languages, with corre-
sponding procedures of the form π(x1, . . . , xn) = p. The set of procedures is denoted
as P.

Repair rules have the form ϕ← p, and can be applied if a plan has failed and ϕ
matches the belief base. Then the failed plan is substituted by p. The set of repair
rules is denoted as R.

A BUpL agent is a tuple (B0, p0, A, P, R), where B0 is the initial belief base,
p0 is the initial plan, A are the actions, P are the procedures, and R are the repair
rules. The initial belief base and plan form the initial mental state of the agent.

To illustrate the above syntax, we take as an example a BUpL agent that solves
the tower of blocks problem, i.e., the agent has to build towers of blocks. We repre-
sent blocks by natural numbers. Assume the following initial arrangement of three
blocks 1,2, and 3: blocks 1 and 2 are on the table (denoted as block 0), and 3 is
on top of 1. The agent has to rearrange them such that they form the tower 321 (1
is on 0, 2 on top of 1 and 3 on top of 2). The only action an agent can execute is
move(x,y,z) to move a block x from another block y onto z, if both x and z are clear
(i.e., have no blocks on top of them). Blocks can always be moved onto the table,
i.e., the table is always clear.

B0 = { on(3,1), on(1,0), on(2,0), clear(2), clear(3), clear(0) }

p0 = build

A = { move(x,y,z) = (on(x,y)∧ clear(x)∧ clear(z), {on(x,z), ¬on(x,y), ¬clear(z), clear(0)} ) }

P = {build = move(2,0,1);move(3,0,2)}

R = { on(x,y)← move(x,y,0);build }

Fig. 9.1 A BUpL Blocks World Agent

The BUpL agent from Figure 9.1 is modeled such that it illustrates the use of
repair rules: we explicitly mimic a failure by intentionally telling the agent to move

in Maude. It may be relaxed, but for simplicity, we do not do it here. In other languages such as
2APL [122], variables may occur in the precondition that are not in the parameters of the action.
These variables are instantiated when matching the precondition against the belief base.
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block 2 onto 1. This is not possible, since block 3 is already on top of 1. Similar
scenarios can easily arise in multi-agent systems: imagine that initially 3 is on the
table, and the agent decides to move 2 onto 1; imagine also that another agent comes
and moves 3 on top of 1, thus moving 2 onto 1 will fail. The failure is handled by
the repair rule on(x,y)←move(x,y,0); p. Choosing [x/3][y/1] as a substitution, this
enables the agent to move block 3 onto the table and then the initial plan can be
restarted.

9.2.2 Semantics

First, we define the satisfaction relation of formulas ϕ with respect to a belief base
B. For this, we consider the usual notion of substitution as a set that defines how to
replace variables with terms. A substitution is denoted by [x0/t0] . . . [xn/tn], which
expresses that xi is replaced by ti for 0 ≤ i ≤ n. A substitution θ can be applied
to a formula ϕ, written as ϕθ, which yields the formula ϕ in which variables are
simultaneously replaced by terms as specified by θ. If θ and θ′ are substitutions and
ϕ is a formula, we use ϕθθ′ to denote (ϕθ)θ′. A ground substitution is a substitution
in which all ti are ground terms. In the sequel, we will assume all substitutions to
be ground, unless indicated otherwise. For technical convenience, we assume any
conjunction c has the form l0 ∧ . . .∧ lm ∧ lm+1 ∧ . . .∧ ln where l0, . . . , lm are positive
literals and lm+1, . . . , ln are negative literals. We use Var(ϕ) to denote the variables
occurring in ϕ and dom(θ) to denote the set of variables forming the domain of
θ. The satisfaction relation of a formula ϕ with respect to a belief base is defined
relative to a substitution θ, denoted as |=θ, and is defined as follows, where |= is the
usual entailment relation for ground formulas:

B |=∅ P(t0, . . . , tn) iff P(t0, . . . , tn) is ground and B |= P(t0, . . . , tn)
B |=∅ c iff c is ground and B |= c
B |=θ P(t0, . . . , tn) iff B |=∅ P(t0, . . . , tn)θ and Var(P(t0, . . . , tn)) = dom(θ)
B |=θ c iff B |=∅ (l0∧ . . .∧ lm)θ and Var(l0∧ . . .∧ lm) = dom(θ) and

¬∃θ′ : (B |=θ′ ¬lm+1θ and Var(lm+1θ) = dom(θ′))
. . .
¬∃θ′ : (B |=θ′ ¬lnθ and Var(lnθ) = dom(θ′))

B |=θ c∨ c′ iff B |=θ c or B |=θ c′

We use S ols(B,ϕ) = {θ | B |=θ ϕ} to denote the set of all substitutions for which ϕ
follows from the belief base. Note that if S ols(B,ϕ) = ∅, ϕ does not follow from B.
If ϕ follows from B under the empty substitution, we have S ols(B,ϕ) = {∅}.

We now continue to define what it means to execute an action. Let
a(x1, . . . , xn) =def (ϕ,ξ) ∈ A be a basic action definition. A function call a(t1, . . . , tn)
yields the pair (ϕ,ξ)θ where θ = [x1/t1] . . . [xn/tn], which does not have to be ground.
Let a(t1, . . . , tn) = (ϕ′, ξ′) be the result of applying the function to the terms t1, . . . , tn,
and let θ′ ∈ S ols(B,ϕ′). Then the effect on B of executing a(t1, . . . , tn) is that B is
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updated by adding or removing (ground) atoms occurring in the set ξ′θ′:

B] lθ′ = B∪ lθ′ if l ∈ ξ and l a positive literal
B] lθ′ = B\¬lθ′ if l ∈ ξ and l a negative literal

We write B ] ξ′θ′ to represent the result of updating B with the instantiated effect
of an action ξ′θ′, which performs the update operation as specified above on B for
each literal in ξ′. This update is guaranteed to yield a consistent belief base since we
add only positive literals.

The operational semantics of a language is usually defined in terms of labeled
transition systems [340]. A labeled transition system (LTS) is a tuple (Σ, s0, L,
→), where Σ is a set of states, s0 is an initial state, L is a set of labels, and →⊆
Σ × L×Σ describes all possible transitions between states, and associates a label to
the transition. The notation s

α
→ s′ expresses that (s,α, s′) ∈ →, and it intuitively

means that “s becomes s′ by performing action α”. Invisible transitions are denoted
by the label τ.

The operational semantics for a BUpL agent is defined as follows. Let (B0, p0,
A, P, R) be a BUpL agent. Then the associated LTS is (Σ, (B0, p0), L,→), where:

• Σ is the set of states, which are BUpL mental states

• (B0, p0) is the initial state

• L is a set of labels, which are either ground basic action terms or τ

• → is the transition relation induced by the transition rules given in Table 9.1.

a(x1, . . . , xn) =def (ϕ,ξ) ∈ A a(t1, . . . , tn) = (ϕ′, ξ′) θ ∈ S ols(B,ϕ′)

(B,a(t1, . . . , tn); p′)
a(t1 ,...,tn)θ
−−−−−−→ (B] ξ′θ, p′θ)

(act)

(B, pi)
µ
→ (B′, p′)

(B, (p1 + p2))
µ
→ (B′, p′)

(sumi)

(B,α; p) 6 αθ′→ ϕ← p′ ∈ R θ ∈ S ols(B,ϕ)

(B, p)
τ
→ (B, p′θ)

( f ail)

π(x1, . . . , xn) = p ∈ P

(B,π(t1, . . . , tn))
τ
→ (B, p(t1, . . . , tn))

(π)

Table 9.1 BUpL transition rules

In rule (sumi), pi is either p1 or p2, and µ can be either a ground basic action term or
a silent transition τ, in which case B′ = B, and p′ is a valid repair plan. In rule (π),
p(t1, . . . , tn) stands for p[x1/t1] . . . [xn/tn].
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9.3 Prototyping

In this section, we describe how the operational semantics of agent programming
languages can be implemented in Maude. The main advantage of using Maude for
this is that the translation of operational semantics into Maude is direct [390], ensur-
ing a faithful implementation. Because of this, it is relatively easy to experiment with
different kinds of semantics, making Maude suitable for rapid prototyping of agent
programming languages. This is also facilitated by the fact that Maude supports
user-definable syntax, offering prototype parsers for free. Another advantage of us-
ing Maude for prototyping specifically logic-based agent programming languages
is that Maude has been shown to be suitable not only as a semantic framework, but
also as a logical framework in which many other logics can be represented.

We use BUpL to illustrate the implementation of agent programming languages
in Maude. BUpL has beliefs and plan revision features, but no goals. We refer
to [370] for a description of the Maude implementation of a similar agent program-
ming language that does have goals. While the language of [370] is based on propo-
sitional logic, BUpL allows the use of variables, facilitating experimentation with
more realistic programming examples. An implementation of the agent program-
ming language AgentSpeak in Maude is briefly described in [170].

9.3.1 Introduction to Maude

A rewriting logic specification or rewrite theory is a tuple 〈Σ,E,R〉, where Σ is a
signature consisting of types and function symbols, E is a set of equations and R is a
set of rewrite rules. The signature describes the terms that form the state of the sys-
tem. These terms can be rewritten using equations and rewrite rules. Rewrite rules
are used to model the dynamics of the system, i.e., they describe transitions between
states. Equations form the functional part of a rewrite theory, and are used to reduce
terms to their “normal form” before they are rewritten using rewrite rules. The ap-
plication of rewrite rules is intrinsically non-deterministic, which makes rewriting
logic a good candidate for modeling concurrency.

In what follows, we briefly present the basic syntax of Maude, as needed for
understanding the remainder of this section. Please refer to [104] for complete in-
formation. Maude programs are built from modules. A module consists of a syntax
declaration and statements. The syntax declaration forms the signature and consists
of declarations for sorts, which give names for the types of data, subsorts, which
impose orderings on data types, and operators, which provide names for the opera-
tions acting upon the data. Statements are either equations or rewrite rules. Modules
containing no rewrite rules but only equations are called functional modules, and
they define equational theories 〈Σ,E〉. Modules that contain also rules are called
system modules and they define rewrite theories 〈Σ,E,R〉. Functional modules (sys-
tem modules) are declared as follows:
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fmod (mod) <ModuleName> is

<DeclarationsAndStatements>

endfm (endm)

Modules can import other modules, which helps in building up modular applications
from short modules, making it easy to debug, maintain or extend.

One or multiple sorts are declared using the keywords sort and sorts, respec-
tively, and subsorts are similarly declared using subsort and subsorts. The fol-
lowing defines the sorts Action and Plan and their subsort relation, which is used
for specifying the BUpL syntax.

sorts Action Plan . subsort Action < Plan .

We can further declare operators (functions) defined on sorts (types) as follows:

op <OpName> : <Sort-1> ... <Sort-k> -> <Sort>

[<OperatorAttributes>] .

where k is the arity of the operator. For example, the operator declaration below is
used to define the BUpL construct plan repair rule. The operator ((_<-_)) takes a
query of sort Query that should be tested on the belief base, and a plan, and yields a
term of sort PRrule. The operator is in mixfix form, where the underscores indicate
the positions of its parameters. This also illustrates how Maude can be used to define
the syntax of a BUpL language construct.

op ((_<-_)) : Query Plan -> PRrule .

Equations and rewrite rules specify how to transform terms. Terms are vari-
ables, constants, or the result of the application of an operator to a list of argu-
ment terms. Variables are declared using the keywords var and vars. For example,
var R : PRrule declares a variable R of sort PRrule. Equations can be uncondi-
tional or conditional and are declared as follows, respectively:

eq [<Label>] : <Term-1> = <Term-2> .

ceq [<Label>] : <Term-1> = <Term-2>

if <Cond-1> /\ ... /\ <Cond-k> .

where Cond-i is a condition which can be an ordinary equation t = t’, a matching
equation t := t’ (which is true only if the two terms match), a Boolean equation
(which contains, e.g., the built-in (in)equality =/=, ==, and/or logical combinators
such as not, and, or), or a membership equation t : S (which means that t is a
member of sort S).

For example, the following conditional equation is part of a module for speci-
fying when a formula logically follows from the belief base. The belief base is de-
fined as a commutative sequence of ground belief atoms of sort Belief, separated
by #. The conditional equation specifies that matching term T against a belief base
containing belief B yields substitution S, if match(T, B) yields a substitution S that
is different from noMatch, the built-in Maude constant to indicate that no substitu-
tion has been found.
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var B : Belief .

var BB : BeliefBase .

var T : Term .

var S : Substitution .

ceq match(T, B # BB) = S if S := match(T, B) /\ S =/= noMatch .

Operationally, equations can be applied to a term from left to right. Equations
in Maude are assumed to be terminating and confluent,3 i.e., there is no infinite
derivation from a term t using the equations, and if t can be reduced to different
terms t1 and t2, there is always a term u to which both t1 and t2 can be reduced.
This means that any term has a unique normal form, to which it can be reduced
using equations in a finite number of steps.

Finally, we introduce rewrite rules. Like equations, rewrite rules can also be un-
conditional or conditional, and are declared as follows:

rl [<Label>] : <Term-1> => <Term-2> .

crl [<Label>] : <Term-1> => <Term-2>

if <Cond-1> /\ ... /\ <Cond-k> .

where Cond-i can involve equations, memberships (which specify terms as having
a given sort) and other rewrites. We will present several examples in the next section.

9.3.2 Implementing BUpL: Syntax

In this section, we use BUpL to illustrate how the syntax of agent programming
languages can be implemented in Maude. We make a distinction between the logical
parts of the language and the non-logical parts.

9.3.2.1 Logical Part

First, we have to define the logical language on which BUpL is based. Logical for-
mulas occur in the belief base (ground atoms), in actions specifications (a formula
as precondition, and a set of literals as effects), and in repair rules (a formula as
the application condition). For the representation of atoms, the Maude built-in sorts
GroundTerm and Term are used. That is, any Maude (ground) term can be used as
an atom of our logical base language. In addition, we define the following sorts to
represent also negated (ground) terms and (ground) sets of literals.

sorts NegGroundTerm NegTerm GroundLitSet LitSet .

3 If this is not the case, the operational semantics of Maude does not correspond with its mathe-
matical semantics.
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The following subsort relations are defined on these sorts. Note that GroundTerm
< GroundLitSet specifies that any Maude ground term can be a (set of) ground

literals, and similarly for Term < LitSet.

subsorts GroundTerm GroundTermList < GroundLitSet .

subsorts Term NegTerm GroundLitSet < LitSet .

subsort NegGroundTerm < NegTerm .

GroundLitSet is defined as a supersort of the Maude built-in sort
GroundTermList, since we use its constant empty to represent an empty set of
ground literals. The sorts Belief and BeliefBase are introduced with the subsort
relations

subsorts Belief < GroundTerm GroundTermList < BeliefBase

< GroundLitSet .

to represent beliefs. The following operators are introduced to syntactically repre-
sented (ground) literal sets, belief bases, and negated (ground) terms. The attributes
assoc comm id: empty declare that the operator is associative and commutative
with identity the empty set. The attribute ctor declares that the operator is a con-
structor, which means that it is used to construct terms rather than to apply it as a
function and calculate the result. We overload the operator #, using it for represent-
ing both (ground) literal sets and belief bases. The attribute ditto specifies that an
overloaded operator has the same attributes as the first declaration of the operator
(excluding ctor).

op _#_ : LitSet LitSet -> LitSet [ctor assoc comm id: empty] .

op _#_ : GroundLitSet GroundLitSet -> GroundLitSet [ctor ditto] .

op _#_ : BeliefBase BeliefBase -> BeliefBase [ctor ditto] .

op neg_ : Term -> NegTerm [ctor] .

op neg_ : GroundTerm -> NegGroundTerm [ctor] .

We call formulas that are evaluated on the belief base queries. The query language
is defined over terms as follows. The definition is more general than the DNF of
Section 9.2.1. However, when defining the semantics, formulas are first transformed
into DNF.

sort Query .

subsort Term < Query .

ops top bot : -> GroundTerm .

op ˜_ : Query -> Query [ctor] .

op _/\_ : Query Query -> Query [assoc] .

op _\/_ : Query Query -> Query [assoc] .

This completes the specification of the syntax of the logical part of BUpL.
It is important to note that Maude is suitable as a framework in which many

logics can be represented, using equations to axiomatize the logic and using rewrite
rules as inference rules. This facilitates experimentation with different logics for
representing agent beliefs, making the framework flexible.
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9.3.2.2 Non-Logical Part

The non-logical part consists of the specification of actions, plans, procedures, and
repair rules. We distinguish between internal and observable actions. This is useful
for testing. Actions are specified as functions using equations. The action name is
the function name specified as an operator, and applying the equation yields the
precondition and effect of the action. Preconditions and effects are defined using
the operators o[_,_] and i[_,_] for observable and internal actions, respectively.
nilA is the “empty” action, used to define an empty plan. The code below shows
an example specification of the move action from the tower of blocks example of
Figure 9.1.4 The sort Nat represents natural numbers.

sorts Action I-Action O-Action .

subsorts I-Action O-Action < Action .

ops nilA : -> Action .

op o[_,_] : Query LitSet -> O-Action .

op i[_,_] : Query LitSet -> I-Action .

op on : Nat Nat -> Belief .

op clear : Nat -> Belief .

op move : Nat Nat Nat -> O-Action .

ceq [act] : move(X, Y, Z) = o[on(X, Y) /\ clear(X) /\ clear(Z),

neg on(X, Y) # on(X, Z) # clear(Y)

# neg clear(Z) # clear(0)]

if X =/= Z .

Plans are built from actions, procedure calls (at the end of a plan), sequential com-
position (pre), and non-deterministic choice (sum). The operators pre and sum are
declared to be constructors, reflecting the fact that they are used to construct plans.
Procedure names are introduced as operators, and a procedure is defined as an equa-
tion that yields the plan forming the body of the procedure. For example, the proce-
dure build as declared below is used for building a tower of three blocks (321).

sort Plan .

subsort Action < Plan .

op pre : Action Plan -> Plan [ctor id: nilA strat (1 0)] .

op sum : Plan Plan -> Plan [ctor comm] .

op build : -> Plan .

eq build = pre(move(2, 0, 1), move(3, 0, 2)) .

Note that the operator pre has the attribute strat (1 0). This specifies that only
its first argument (an action) can be normalized using equations (expressed by the

4 Note that in the specification of the move action in Maude, we have added the condition X =/= Z,
which is easily done using conditional equations.
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1), before any equations are applied on the operator pre itself (expressed by placing
1 before 0).5 The second argument (a plan) is not normalized using equations. Using
this attribute thus changes what a normal form is for the operator pre: the normal
form is obtained by normalizing the operator’s first argument and then normalizing
the operator itself at top level, while leaving the second argument intact. This pre-
vents the continuous application of equations, which would lead to a stack overflow
in case a non-terminating procedure is specified. For example, if we would specify
a recursive procedure build using the equation

eq build = pre(move(2, 0, 1), pre(move(2, 1, 0), build)) .

without using strat in the declaration of pre, the continuous application of the
equation to normalize build as occurring in the right-hand side of the equation
would lead to a stack overflow.

Repair rules are defined similarly to procedures, using equations. An operator is
introduced to define the name and parameters of the repair rule, and the equation
yields the repair rule itself. On the basis of the equations, repair rules can be col-
lected into a repair rule base (of sort PRbase). The example repair rule pr shown
below can be used to deal with a failing move(X,Y,Z) action. The action fails if
Y or Z are not clear. In this case the repair rule can be applied to move a block to
the table (clearing the block on which it was placed), after which it is tried again to
build the tower.

sorts PRrule PRbase .

subsort PRrule < PRbase .

op ((_<-_)) : Query Plan -> PRrule .

op empty-prb : -> PRbase .

op __ : PRbase PRbase -> PRbase [assoc comm id: empty-prb] .

ops pr : Nat Nat -> PRrule .

eq [pr] : pr(X, Y) = ((on(X, Y) /\ Y > 0 <-

pre(move(X, Y, 0), build))) .

Finally, we define an operator for representing BUpL mental states. The operator
takes a label, belief base and plan, and yields a term of sort LBpMentalState. The
label represents the label of the transitions in the transition system, i.e., it represents
which actions have been executed.

op <<_,_,_>> : Label BeliefBase Plan -> LBpMentalState .

9.3.3 Example BUpL Program

Using the implementation of the BUpL syntax in Maude, one can easily specify
BUpL programs in Maude. An example is the following tower building agent, which

5 In our implementation, no equations are specified for normalizing pre itself.
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represents the example agent from Figure 9.1 in Maude. The move action and the
procedure and plan repair rule have already been introduced above. In addition,
the program specifies the initial belief base bb, which expresses where blocks are
positioned initially and which blocks are clear. Moreover, the initial mental state of
the builder agent is specified using the operator builder. The initial plan is build.
Since no actions have been executed yet in the initial mental state, its label is empty.
The equation module-name is specified to obtain a reference to the module in which
the BUpL program is written. This will be used when implementing the semantics.

mod AGENT-DATA

protecting BUPL-SYNTAX .

protecting NAT .

eq module-name = ’AGENT-DATA .

op on : Nat Nat -> Belief .

op clear : Nat -> Belief .

op bb : -> BeliefBase .

eq bb = on(3, 1) # on(1, 0) # on(2, 0) # clear(0) #

clear(3) # clear(2) .

op move : Nat Nat Nat -> O-Action .

vars X Y Z : Nat .

ceq [act] : move(X, Y, Z) =

o[on(X, Y) /\ clear(X) /\ clear(Z),

neg on(X, Y) # on(X, Z) # clear(Y)

# neg clear(Z) # clear(0)]

if X =/= Z .

op build : -> Plan .

eq build = pre(move(2, 0, 1), move(3, 0, 2)) .

ops pr : Nat Nat -> PRrule .

eq [pr] : pr(X, Y) = ((on(X, Y) /\ Y > 0 <-

pre(move(X, Y, 0), build))) .

op builder : -> LBpMentalState .

eq builder = << bLabel(empty), bb, build >> .

endm

9.3.4 Implementing BUpL: Semantics

The implementation of the semantics of BUpL in Maude can again be divided into
the implementation of the logical part and of the non-logical part.
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9.3.4.1 Logical Part

Implementing the semantics of the logical part means implementing matching a
query against a belief base. Matching takes place both to determine whether an
action can be executed, as well as to determine whether a repair rule can be applied.
It is defined using the operator match : Query BeliefBase -> Substitution,
which takes a query and a belief base, and yields a substitution in case the query
matches the belief base, and the special substitution noMatch otherwise.

This operator is defined by making use of Maude’s reflective capabilities [103].
Maude is a reflective logic since important aspects of its meta-theory can be rep-
resented at the object level, so that the object level correctly simulates the meta-
theoretic aspects. The meta-theoretic aspect that we use here, is matching two terms.
Maude continually matches terms when using equations and rewrite rules. This
meta-level functionality can be conveniently used to match a term against a belief.

The meta-level operator that can be used for implementing this, is metaMatch.
This operator takes the meta-representation of a module and two terms, and tries
to match these terms in the module. If the matching attempt is successful, the
result is the corresponding substitution. Otherwise, noMatch is returned. Obtain-
ing the meta-representation of modules and terms can be done using the operators
upModule and upTerm, respectively. The module that we use for this is the module
containing the BUpL program, since the belief base is defined there. The name of
the module is obtained by defining an equation for the operator module-name, as
shown in the example program of Section 9.3.3. The sort Qid is a predefined Maude
sort for identifiers. The base case for the operator match, where a term is matched
against a belief, is defined using metaMatch as follows.

var T : Term .

var B : Belief .

op module-name : -> Qid .

eq match(T, B) =

metaMatch(upModule(module-name), upTerm(T), upTerm(B)) .

Matching a term against a belief base is then defined by making use of the former
equation.

var S : Substitution .

var BB : BeliefBase .

ceq match(T, B # BB) = S if S := match(T, B) /\ S =/= noMatch .

eq match(T, B # BB) = noMatch [owise] .

For reasons of space, we omit the additional equations for matching composite for-
mulas against a belief base.
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9.3.4.2 Non-Logical Part

As proposed in [424], the general idea of implementing transition rules of an opera-
tional semantics in Maude, is to implement them as (conditional) rewrite rules. The
premises of a transition rule then form the conditions of the corresponding rewrite
rule, and the conclusion forms the rewrite itself.

We illustrate the implementation of transition rules using those for action execu-
tion and repair rule application. The transition rule for action execution

a(x1, . . . , xn) =def (ϕ,ξ) ∈ A a(t1, . . . , tn) = (ϕ′, ξ′) θ ∈ S ols(B,ϕ′)

(B,a(t1, . . . , tn); p′)
a(t1,...,tn)θ
−−−−−→ (B] ξ′θ, p′θ)

(act)

is implemented in Maude as two rewrite rules: one for internal actions and one for
observable actions. Here, we present only the rule for observable actions.

ops eqSC : -> EquationSet .

eq eqSC = upEqs(module-name, false) .

var OA : O-Action .

crl [exec-OA] : << L:Label, BB, pre(OA, P) >> =>

<< oLabel(getName(OA, eqSC)),

update(BB, downTerm(substitute(upTerm(effect(OA)), S), ’err)),

downTerm(substitute(upTerm(P), S), ’err) >>

if S := match(prec(OA), BB) /\ S =/= noMatch .

Recall that equations are used to map actions to their specification in terms of pre-
conditions and effects (expressed using the operator o[_,_] in case of observable
actions). Before Maude applies rewrite rules to a term, it first reduces the term to
its normal form using equations. This means that all actions in a plan of a men-
tal state that is rewritten, are first replaced by their preconditions and effects. Any
substitutions that are calculated while executing the plan, are therefore applied to
these preconditions and effects. This implements the first two conditions of the cor-
responding transition rule.

In order to implement the third condition, an auxiliary operator prec is used,
which yields the precondition of an action. The precondition is then matched against
the belief base to yield a substitution. The rule can only be applied if a substitution
is indeed found, i.e., if the precondition matches the belief base.

Updating the belief base according to the effect of the action is done using the
operator update : BeliefBase GroundLitSet -> BeliefBase. The ground
set of literals, which forms a parameter of this operator, is obtained from ap-
plying the calculated substitution S to the effect of the action using the operator
substitute : Term Substitution -> Term. This operator is general in that it
applies a substitution to any term of sort Term. In this case, we want to apply the
substitution to the effect of an action. This can be done using the operator upTerm
to obtain the meta-representation of the effect of the action, which is of sort Term,
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and after applying the substitution transforming the term again into its object-level
variant using downTerm. In a similar way, the calculated substitution is applied to
the rest of the plan, according to the transition rule. The operator getName, which
is used for obtaining the label of the new mental state, retrieves the name of the
action (including instantiated parameters) from its precondition/effect specification
and the action equations of the BUpL program (obtained using the meta-level built-
in Maude function upEqs).

The transition rule for applying a plan repair rule

(B,α; p) 6 αθ′→ ϕ← p′ ∈ R θ ∈ S ols(B,ϕ)

(B, p)
τ
→ (B, p′θ)

( f ail)

is implemented in Maude as the following rewrite rule:

crl [exec-fail] : << L:Label, BB, pre(A, P) >> =>

<< tLabel, BB, downTerm(substitute(upTerm(P), S), ’err) >>

if match(prec(A), BB) == noMatch /\

(((Q <- P)) PRB) := getPR(eqSC) /\

S := match(Q,BB) /\ S =/= noMatch .

The first condition of the rewrite rule checks that the action that is to be executed,
cannot be executed (which is the case if no substitution can be found when the
precondition of the action is matched against the belief base). This implements the
first condition of the transition rule.

The second condition of the rewrite rule implements the second condition of
the transition rule as follows. Since repair rules are implemented as equations that
yield a repair rule (see Section 9.3.2.2), we need an operator to collect the rules
into a repair rule base. This is done by getPR : EquationSet -> PRbase, which
takes the equations corresponding to the repair rules and yields a repair rule base
consisting of the rules as defined by the equations.

The third and fourth conditions of the rewrite rule implement matching the con-
dition of the repair rule to the belief base, corresponding to the third condition of
the transition rule. The resulting substitution is applied to the plan of the repair rule,
which becomes the plan of the next mental state.

9.3.5 Executing an Agent Program

The BUpL example agent from Section 9.3.3 can be executed in Maude using
the command rew builder. Maude then uses the implemented BUpL semantics
to rewrite the term builder, which is first reduced to the initial mental state of
the builder agent using the equation eq builder = << bLabel(empty), bb,
build >>, after which other equations and rewrite rules are applied that specify
the semantics of BUpl. The Maude output looks as follows.
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Maude> rew builder .

rewrite in AGENT-DATA : builder .

rewrites: 4722 in 202ms cpu (252ms real) (23264 rewrites/second)

result LBpMentalState:

<< oLabel(’move[’s_ˆ3[’0.Zero],’0.Zero,’s_ˆ2[’0.Zero]]),

clear(0) # clear(3) # on(1, 0) # on(2, 1) # on(3, 2), nilA >>

This says that the builder finished its execution after moving block 3 onto 2 (the cur-
rent plan is empty), and that the belief base reflects the current configuration of the
blocks, namely the tower 321. The output ’move[...] is the meta-representation
of move(3, 0, 2). For example, ’s_ˆ3[’0.Zero] represents the third successor
of zero, i.e., 3.

One can also rewrite the builder step by step. For example, the following shows
the resulting mental state after one step of rewriting, namely, a τ transition corre-
sponding to handling the failure of action move(2, 0, 1) which cannot be ex-
ecuted since block 3 is on top of 1. We can see that the belief base remains un-
changed, and the only change is in the current plan. The application of the repair
rule pr replaces the failing plan by a plan which consists of first executing the ac-
tion of moving a block (in our case block 3) onto the floor and then trying build
again. Note that the action is represented by its precondition and effect in the form
o[precondition,effect].

Maude> rew [1] builder .

rewrite [1] in AGENT-DATA : builder .

rewrites: 4141 in 181ms cpu (228ms real) (22756 rewrites/second)

result LBpMentalState:

<< tLabel,

clear(0) # clear(2) # clear(3) # on(1, 0) # on(2, 0) # on(3, 1),

pre(o[clear(0) /\ (clear(3) /\ on(3, 1)),

neg clear(0) # neg on(3, 1) # clear(0) # clear(1) # on(3, 0)],

build) >>

9.4 Model-Checking

In Section 9.3, we have shown how the syntax and semantics of BUpL can be imple-
mented in Maude, and how an example BUpL program can be defined and executed.
One of the main advantages of using Maude for agent development is that it sup-
ports software development using formal methods. In this section, we show how
the Maude LTL model-checker [156] can be used for verifying agent programs.
Verification is important in order to ensure that the final agent program is correct
with respect to a given specification or that it satisfies certain properties. Properties
are specified in linear temporal logic (LTL) [296] and are verified using a model-
checking algorithm. Model-checking only works for finite state systems.

We briefly recall some of the LTL concepts which we will refer to in the fol-
lowing sections. The basic LTL formulas are the booleans true (>) and false (⊥)



272 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

and atomic propositions. Inductively, LTL formulas are built on top of the usual
boolean connectives like negation and conjunction. Typical LTL operators are next
(©) and until (U). The operatorU can be used to define the connective eventually,
♦φ = >Uφ. The connective ♦ can be used to further define the connective always,
�φ = ¬♦¬φ.

The semantics of LTL formulas is defined in the usual way. The satisfaction of
an LTL formula φ in a finite transition system S with an initial state s is defined as
follows:

S , s |= φ iff (∀π ∈ Paths(s))(S ,π |= φ)

which means that the LTL formula φ holds in the state s if and only if φ holds for any
path in Paths(s), the set of paths in S starting at s. Given a path π, the satisfaction
relation for a formula φ is defined inductively on the structure of φ. We present, as
an example, the semantics of the operator “next” and of the connective “until”:

S ,π |=LT L ©φ iff S ,π(1) |=LT L φ
S ,π |=LT L φUψ iff (∃n)(S ,π(n) |=LT L ψ)∧ (∀m < n)(S ,π(m) |=LT L φ)

where n, m are natural numbers and π(n) denotes the subpath of π starting in the
“n”-th state on π. Basically, ©φ is satisfied in a state if and only if φ is satisfied in
the successor state. The formula φUψ holds on a path π if and only if there is a state
which makes ψ true and in all the previous states φ was true.

Intuitively, a given path π satisfies the temporal formula ♦φ if there exists a state
on π which satisfies φ. Similarly, π satisfies the temporal formula �φ if there does
not exist a state on π which does not satisfy φ. By means of these operators, LTL
allows specification of properties such as safety properties (something “bad” never
happens) or liveness properties (something “good” eventually happens). These prop-
erties relate to the infinite behavior of a system. We will provide concrete examples
in the next sections.

9.4.1 Connecting BUpL Agents and Model-Checker

Maude system modules can be seen as specifications at different levels. On the one
hand they can specify systems (in our case, BUpL agents), on the other hand they
can specify properties that we want to prove about a given system. The syntax of
LTL is defined in the functional module LTL (in the file model-checker.maude).
The following code, which is a part of the module LTL, shows the declaration of the
temporal operators “until” (U), “release” (R), “eventually” (<>) and “always” ([]).
It further shows the definitions of <> f (resp. [] f).
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fmod LTL is

protecting Bool .

sort Formula .

*** primitive LTL operators

ops True False : -> Formula [ctor ...] .

op _U_ : Formula Formula -> Formula [ctor ...] .

op _R_ : Formula Formula -> Formula [ctor ...] .

...

*** defined LTL operators

op <>_ : Formula -> Formula [...] .

op []_ : Formula -> Formula [...] .

...

var f : Formula .

eq <> f = True U f .

eq [] f = False R f .

...

endfm

In order to use the Maude model checker, one needs to do two main things: (i)
define which sort represents the states of the system that is to be model-checked, and
(ii) define the atomic predicates that can be checked on these states. LTL formulas
defined over these atomic predicates are then used to specify the property that is to
be model-checked.

In our case, the states are the BUpL mental states of sort LBpMentalState. In
order to express that these are the states of our system, we need the Maude model-
checker module SATISFACTION, which is defined as follows.

fmod SATISFACTION is

protecting BOOL .

sorts State Prop .

op _|=_ : State Prop -> Bool [frozen] .

endfm

We import this module into our own module BUPL-PREDS for defining the BUpL
atomic predicates, and declare subsort LBpMentalState < State to express
that BUpL mental states are to be considered the states of the system that is to
be model-checked. Moreover, we use the operator _|=_ for defining the semantics
of the atomic state predicates, which are declared as predicates of sort Prop. We
define the state predicate fact(B) to express that ground atom B is believed by the
BUpL agent.

mod BUPL-PREDS is

including BUPL-SEMANTICS .

including SATISFACTION .

including MODEL-CHECKER .

including LTL-SIMPLIFIER .

subsort LBpMentalState < State .

op fact : Belief -> Prop .
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var B : Belief .

eq << L:Label, B # BB:BeliefBase, P:Plan >> |= fact(B) = true .

endm

In the sequel, we will introduce additional state predicates to specify properties of
BUpL agents.

9.4.2 Examples

To run the model-checking procedure we need, after loading in the system the file
model-checker.maude, to call the operator modelCheck with an initial state and
a formula, specifying the property that is to be checked, as arguments. The result of
the algorithm is either the boolean true (if the property holds) or a counterexample.
The operator modelCheck is declared in the system module MODEL-CHECKERwhich
is defined in the file model-checker.maude.

fmod MODEL-CHECKER is

including SATISFACTION .

including LTL .

subsort Prop < Formula .

...

subsort Bool < ModelCheckResult .

op modelCheck : State Formula ˜> ModelCheckResult [...] .

endfm

Recall that State and Formula are sorts we have already seen declared in the mod-
ules Statisfaction and LTL, respectively (Section 9.4.1).

We can use the predicate fact (defined in Section 9.4.1) in order to define safety
properties. As an example, we model-check that it is never the case that the agent
believes the table is on block 3. The following Maude output shows that the result
is the boolean true.

Maude> red modelCheck(builder, []˜ fact(on(0, 3))) .

reduce in AGENT-DATA : modelCheck(builder, []˜ fact(on(0, 3))) .

rewrites: 4811 in 196ms cpu (241ms real) (24425 rewrites/second)

result Bool: true

The predicate fact enables us to express properties of the beliefs of a BUpL agent.
In order to express properties of actions, we define another state predicate taken
using the label of a BUpL state. Recall that the label specifies which action has been
executed.

mod BUPL-PREDS is

...

op taken : Action -> Prop .

ceq << oLabel(T), BB:BeliefBase, P:Plan >> |= taken(A) = true

if T := getName(A, eqSC) .
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The predicate taken(A) is true in a state if the label Tmatches A. Note that we can-
not match A and T directly, since T is an action name with instantiated parameters,
while A is an action specified by means of a precondition and effect (of the form
o[precondition,effect]). The operator getName is used to obtain the name
and instantiated parameters of A (see Section 9.3.4.2).

We can use the predicate taken to verify that a certain sequence of actions has
been executed. For instance, the following Maude output shows that eventually, if
block 2 is moved onto block 1 then moving block 3 onto block 2 takes place after
this. This is an example of a liveness property.

Maude> red modelCheck(builder,

<> (taken(move(2, 0, 1)) -> O taken(move(3, 0, 2)))) .

reduce in AGENT-DATA : modelCheck(builder,

<> (taken(move(2, 0, 1)) -> O taken(move(3, 0, 2)))) .

rewrites: 30 in 1ms cpu (0ms real) (30000 rewrites/second)

result Bool: true

We can define more meaningful liveness properties such as goals that should
be reached from an initial configuration. The equation g1 defines the predicate
goal321 as being true if the agent believes that block 3 is on block 2 and block
2 is on block 1, expressing that the agent built the tower 321.

mod AGENT-DATA-PREDS is

including BUPL-PREDS .

including AGENT-DATA .

op goal321 : -> Prop .

eq [g1] : goal321 = fact(on(3,2)) /\ fact(on(2,1)) .

endm

While the generic BUpL predicates fact and taken were specified in the module
BUPL-PREDS, the predicate goal321 is specific to the tower building agent and is
consequently specified in the module AGENT-DATA-PREDS.

The following Maude output shows that the result of model-checking
[]<>goal321 is true, meaning that the BUpL agent will always eventually build
the tower 321 from the initial configuration.

Maude> red modelCheck(builder, []<> goal321) .

reduce in AGENT-DATA-PREDS : modelCheck(builder, []<> goal321) .

rewrites: 4816 in 245ms cpu (292ms real) (19580 rewrites/second)

result Bool: true

We might be interested in knowing not only that goal321 is reachable from the
initial state, but also in the corresponding trace. For this, it suffices to model-check
the negation of goal321. This returns a counterexample representing the trace that
we want.
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Maude> red modelCheck(builder, []˜ goal321) .

reduce in AGENT-DATA-PREDS : modelCheck(builder, []˜ goal321) .

rewrites: 4568 in 188ms cpu (249ms real) (24173 rewrites/second)

result ModelCheckResult: counterexample(

{<< empty-l,..., ... >>,’exec-fail}

{<< tLabel,..., ... >>,’exec-OA}

{<< oLabel(’move[’s_ˆ3[’0.Zero],’s_[’0.Zero],’0.Zero]),

..., ... >>,’exec-OA}

{<< oLabel(’move[’s_ˆ2[’0.Zero],’0.Zero,’s_[’0.Zero]]),

..., ... >>,’exec-OA},

{<< oLabel(’move[’s_ˆ3[’0.Zero],’0.Zero,’s_ˆ2[’0.Zero]]),

clear(0) # clear(3) # on(1, 0) # on(2, 1) # on(3, 2),

nilA >>, deadlock}

)

This counterexample should be read as follows. The declaration of the operator
counterexample is in the predefined module MODEL-CHECKER. It is formed by a
pair of transition lists:

op counterexample : TransitionList TransitionList ->

ModelCheckResult [ctor] .

A transition list is composed of transitions, and a transition records a state and the
name of the rule which has been applied from that state.

subsort Transition < TransitionList .

op {_,_} : State RuleName -> Transition [ctor] .

op __ : TransitionList TransitionList ->

TransitionList [ctor assoc id: nil] .

The first list of counterexample represents the shortest sequence of transitions
(which record the states being visited) that leads to the first state of a loop. This
loop is represented by the second list from counterexample. In our example, the
first list consists of four transitions. It shows that first the rewrite rule exec-fail
has been applied from the initial state (for readability, the belief base and plan are
omitted), and consequently the label of the next state denotes a τ step. Then, the
rule exec-OA is applied, which changes the label of the next state into the meta-
representation of the action move(3,1,0). A similar reasoning applies for the next
transition.

The second list of the counterexample (after the white line) consists of only one
transition. The initial plan has terminated (the action nilA is reached) and the be-
lief base reflects that tower 321 is built. The rule name from this last transition is
deadlock, a predefined constant which is declared in MODEL-CHECKER. It means
that from the state that the agent reached, no further rewrite rule is applicable. Thus,
the system “cycles” in a deadlock state and this is the loop represented by the sec-
ond transition list. We note that a Maude deadlock state is, in our case, a termination
BUpL state.
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9.4.3 Fairness

The BUpL agent we have described always terminates, i.e., all execution paths are
finite. Infinite behavior can occur due to recursive abstract plans, and because of
the non-determinism of the operator sum. The reason in the latter case is that it is
possible that the choice between a failing and a terminating action goes always in
favor of the failing one. We call such behavior unfair.

In practice, unfair traces are generally prevented from occurring through schedul-
ing algorithms such as round-robin. However, at the level of prototyping BUpL in
Maude we would like to abstract from controlling the non-deterministic choices.
Rather, non-determinism is reduced at a later phase of design, at a more concrete
implementation level. We stress that it is important to abstract from control issues
at the prototype level, since the main concern is to experiment with language defi-
nitions rather than scheduling algorithms.

Nevertheless, when model-checking BUpL agents one may want to ignore unfair
traces and show that the agent satisfies certain properties assuming fairness. Since
we work in a declarative framework, our solution is to model-check only the traces
that satisfy certain fairness constraints and to define fairness using LTL. To illustrate
this, we first introduce the predicate enabled. The proposition enabled(A) holds
in a state if the action A can be executed in that state, i.e., if the action’s precondition
holds.

op enabled : Action -> Prop .

ceq << L:Label, BB, P >> |= enabled(A) = true

if match(prec(A), BB) =/= noMatch .

Following [296], we then define fairness with respect to an action as follows.

op fair : Action -> Prop .

eq fair(A) = <>[] enabled(A) -> []<> taken(A) .

This says that if an action is continuously enabled it should be infinitely often taken.
This requirement casts aside traces where the failing action is always chosen in spite
of a terminating action a since such traces are unfair with respect to a.

For a concrete example where fairness is useful, we modify the BUpL example
from Section 9.3.3 such that the initial plan of the agent is p1, which is defined
as a non-deterministic choice (sum) between an always failing action and the plan
build. We further add an always enabled repair rule pr1 to handle the case where
the failing action has been chosen in p1.

eq p1 = sum(i[bot, empty], build) .

ops pr1 : -> PRrule .

eq [pr1] : pr1 = (( top <- p1 )) .

...

eq builder = << bLabel(empty), bb, p1 >> .
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It is now the case that achieving goal321 is no longer always possible, demon-
strated by the following counterexample, which is generated when model-checking
the property []<> goal321.

Maude> red modelCheck(builder, []<> goal321) .

reduce in AGENT-DATA-PREDS : modelCheck(builder, []<> goal321) .

rewrites: 4875 in 209ms cpu (254ms real) (23217 rewrites/second)

result ModelCheckResult: counterexample(

{<< empty-l, ..., ... >>,’sum}

{<< tLabel, ..., ... >>,’exec-fail},

{<< tLabel, ..., ... >>,’sum}

{<< tLabel, ..., ... >>,’exec-fail})

The counterexample shows that first the failing action was chosen to be executed,
which is then handled by the repair rule pr1. In this counterexample, this leads to
a loop in which over and over the failing action is chosen and then the repair rule
is applied. This loop is represented in the second parameter of counterexample
(below the white line).

However, if we consider the paths which are fair with respect to move(3,1,0)
then we have that goal321 is always achieved.

Maude > reduce in AGENT-DATA-PREDS :

modelCheck(builder, fair(move(3, 1, 0)) -> []<> goal321) .

rewrites: 9097 in 196ms cpu (231ms real) (46184 rewrites/second)

result Bool: true

9.5 Testing

In the previous section, we have illustrated how Maude can be used for model-
checking BUpL agents, using the tower builder of Section 9.3.3 as an example.
Since the tower builder has a finite number of mental states, verification by model-
checking is in principle feasible. However, the state space of agents can also be infi-
nite, making direct model-checking impossible. This issue may be addressed within
the context of model-checking, e.g., by investigating abstractions techniques for re-
ducing the state space. In this section, however, we are concerned with a different
technique than model-checking, namely testing. Testing can be used for identifying
failures in infinite state systems or in finite state systems where the state space be-
comes too large for model-checking. The basic idea behind testing is that it aims
at finding failures by showing that the intended and the actual behavior of a system
differ through generating and checking individual executions.

In this section, we present two kinds of testing that fit Maude very well. The first
is testing for satisfaction of invariants by means of search (Section 9.5.1), and the
second is testing through the specification of test cases that express properties of an
execution trace of an agent (Sections 9.5.2 to 9.5.4). The latter is implemented by
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means of Maude strategies, which are used to control the application of rewrite rules
on a meta-level. We refer to Chapter [126] for a related approach to testing agent
programs. It is similar in that it also uses a formal specification of test cases. The
main differences concern the language used for specifying test cases, and we show
how our approach fits into the rewriting framework of this chapter.

The running example that we use in this section is a variant of the tower builder
introduced previously. Here we consider a tower builder that should respect the spec-
ification “the agent should continually construct towers, the order of the blocks is
not relevant, however each tower should use more blocks than the previous, and ad-
ditionally, the length of the towers must be an even number”. Since the agent keeps
on building higher towers, its state space is infinite. We assume that the programmer
decides to refine the specification and tries to implement a BUpL agent that builds
towers where the constituting blocks are assigned consecutive numbers, thus 21 and
4321 are examples of “well-formed” towers.

Initially, there is one block and it is on the table. In order to indicate that the
agent has finished building a tower of length X, it inserts a predicate done(X) in the
belief base by means of the action finish(X,Y) (where Y is added for technical
reasons that we do not further explain). For indicating that the next tower that is to
be built has length X, the agent uses a predicate max(X). The predicate length(X)
is used to represent the current length X of the tower. The builder agent is executed
by rewriting a term of the form builder(X,Y), where X is the length of the tower
that is to be built as the first one, and Y is added for technical reasons that we do
not further explain. For illustration purposes, we consider two variants of this tower
builder: a correct one and a faulty one that builds odd length towers. Since it is not
needed for explaining the techniques presented in this section, we do not provide
the code for these tower builders.6

9.5.1 Searching

Maude provides a search command that can be used, among other things, to test for
the satisfaction of invariants. Invariants are defined as properties of states. Search is
breadth-first, which means that if there is a state where the invariant does not hold,
then the search terminates.

Searching in Maude for invariants can be done using the Maude search command
with parameters of the following form.

search init =>* x:k such that I(x:k) =/= true .

Here, init is the initial state from which the search starts. It searches for states x
of sort k that are reachable from this initial state through zero or more rewrite steps

6 It can be downloaded from http://homepages.cwi.nl/˜astefano/agents/

bupl-strategies.php.

http://homepages.cwi.nl/~astefano/agents/bupl-strategies.php
http://homepages.cwi.nl/~astefano/agents/bupl-strategies.php
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(represented by =>*) and for which the invariant I does not hold. This is helpful
when verifying safety properties. For example, an invariant for the BUpL builder
is the length of the towers, which should always be even. This invariant can be
specified by means of a predicate doneEven as follows.

mod BUPL-BUILDER-INVARIANTS is

including AGENT-DATA .

op doneEven : LBpMentalState -> Bool .

ceq doneEven(<< L:Label, done(X) # BB, P:Plan >>) = true

if (2 divides X) .

eq doneEven(<< L:Label, done(X) # BB, P:Plan >>) = false

[owise] .

var MS : LBpMentalState .

endm

When we take the faulty implementation and search for
doneEven(MS) =/= true with MS being a variable of sort LBpMentalState, we
obtain a solution, i.e., a state where the invariant does not hold (done(3) appears in
the belief base):

search in BUPL-BUILDER-INVARIANTS :

builder(3, 0) =>* MS such that doneEven(MS) =/= true .

Solution 1 (state 11)

states: 12 rewrites: 21030 in 1220ms cpu (1301ms real)

(17226 rewrites/second)

MS --> << ..., clear(0) # clear(3) # length(3) # max(3) #

done(3) # on(1, 0) # on(2, 1) # on(3, 2),

... >>

However, this procedure terminates only when the implementation is faulty, since
in the correct implementation no state would be found where the invariant does not
hold. A possible solution is to bound the search. This can be done by explicitly giv-
ing a depth bound, for example 100, as in the following example where the correct
implementation is searched.

search [1, 100] in BUPL-BUILDER-INVARIANTS :

builder(3, 0) =>* MS such that doneEven(MS) =/= true .

No solution.

states: 10 rewrites: 15266 in 779ms cpu (821ms real)

(19574 rewrites/second)

9.5.2 Formalizing Test Cases

Searching as treated in the previous section can be viewed as an ad hoc way of test-
ing. While it may work for certain cases, it has several drawbacks. As for model-
checking, state space explosion may be a problem since the whole state space is
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considered (if no bound is used on the search). Moreover, it works with invariants
expressed over the states of the system, while one may also want to test other proper-
ties such as the execution of certain sequences of actions. In this section, we present
a formal language for the specification of test cases that does allow to specify this.
We use so-called rewriting strategies [154] for implementing these tests in Maude.
In Section 9.5.3, we introduce rewriting strategies and in Section 9.5.4 we show how
these are used to implement a mechanism in Maude for checking whether a BUpL
agent passes the tests.

Our test case format is based on one of the main BUpL concepts, namely actions.
Our test case format is a kind of black box testing, aimed at testing the observable
behavior of agents. For this reason, we have made a distinction between internal and
observable actions. The idea is that the execution of observable actions is visible
from outside the agent. Observable actions can be actions the agent executes in
the environment in which it operates. In the sequel, we will sometimes omit the
adjective “observable” if it is clear from the context. Black box testing as we do
in this section can be contrasted with searching (Section 9.5.1), which focuses on
testing properties of the belief base of agents and consequently can be viewed as a
kind of white box testing.

We introduce a general test case format that allows to test whether certain se-
quences of observable actions can be executed. Sequences of actions are defined as
regular expressions. The idea is that the action expression of a test is used to gen-
erate execution traces satisfying the action expression.7 The action expression thus
controls the execution of the agent in the sense that only those actions are executed
that are in conformance with the action expression. This is crucial for reducing the
state space, and makes this approach essentially different from searching.

In order to distinguish between internal and observable actions, we adapt the
BUpL syntax slightly and distinguish internal and observable actions names Actint
and Actobs, respectively, where Act = Actint ∪ Actobs and Actint ∩ Actobs = ∅. The
following BNF grammar defines the language T of test cases, where a ∈ Actobs
denotes a ground observable action. T defines regular expressions over actions.

T ::= a | T ;T | T +T | T ∗

We now define formally what it means to apply a test to a BUpL agent. For
this, we adapt the operational semantics of Section 9.2.2 slightly to account for the
distinction we make between internal and observable actions. In particular, instead
of one transition rule for actions (act) we need two: one for internal actions and one
for observable actions. The transition rule for internal actions is as the rule (act) of
Section 9.2.2, except that it becomes a τ transition. This accounts for the fact that

7 The formalism can be extended to include tests on the belief base of the agent that can be ex-
pressed using temporal logic (see [20]). These can be checked on the traces generated by testing
for the execution of sequences of observable actions. However, for reasons of simplicity, we do not
elaborate on this here. We refer to Chapter [126] for an approach that also uses temporal logic for
expressing tests on agent behavior.
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these actions are not observable. The transition rule for observable actions is as the
rule (act) of Section 9.2.2, except that the action is an observable action.

We denote the application of a test T to an initial BUpL mental state ms0 as
T@ms0. The semantics is defined such that it yields the set of final states reachable
through executing the agent restricted by the test, i.e., only those actions are exe-
cuted that comply with the test. This means that an agent with initial mental state
ms0 satisfies a test T if T@ms , ∅, in which case we say that a test T is successful.
Since one usually tests for the absence of “bad” execution paths, we say that a BUpL
agent with initial mental state ms0 is safe with respect to a test T if the application
of the test fails, i.e., T@ms0 = ∅. The operator @ (which applies a test to a single
mental state) is lifted to its application to a set of mental states in the usual way,
by taking the union of its application to each mental state in the set. Note that this
means that T@∅ = ∅. We define the semantics of tests as follows.

T@ms0 =


{ms | ms0

a
⇒ ms}, T = a

T 1@ms0∪T
2@ms0, T = T 1+T 2

T 2@(T 1@ms0), T = T 1;T 2

{ms0}∪
⋃

i≥1(T ′)i@ms0, T = (T ′)∗

The arrow
a
⇒ stands for⇒

a
→, where⇒ denotes the reflexive and transitive closure

of
τ
→.

We explain the semantics of a@ms0 in some more detail. The idea is that the
test should be successful for ms0 if action a can be executed in ms0. The result
is then the set of mental states resulting from the execution of a, as defined by
{ms | ms0

a
⇒ ms}. We need to keep those mental states to allow a compositional

definition of the semantics. In particular, when defining the semantics of T 1;T 2

we need the mental states resulting from applying the test T 1, since those are the
mental states in which we then apply the test T 2, as defined by T 2@(T 1@ms0).

9.5.3 Introduction to Maude Strategies

We choose to implement tests in Maude using rewriting strategies [154]. In this sec-
tion we motivate this choice and introduce Maude rewriting strategies. Rewriting
strategies are understood as a way to reduce the non-determinism of rewrite theo-
ries. Non-determinism is reduced since a strategy controls the application of rewrite
rules. Strategies are related to tests as defined in the previous section, by viewing
tests as a kind of strategies. Executing a BUpL agent under a test should restrict its
execution such that only those actions are executed that are in conformance with
the test. Take, for example, the test a. As we have previously defined it, the appli-
cation of this test to a mental state ms is the set of all mental states which can be
reached from ms by executing the observable action a (after possibly executing τ
steps corresponding to internal actions, applying repair rules or making choices).
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We are only interested in those rewritings that finally make it possible to execute
a. Using strategies has the advantage of a clear separation between execution (by
rewriting) at the object level and control (of rewriting) at the meta-level. In our case,
we can add strategies to control the execution of the agent without making changes
to the operational semantics of BUpL.

A strategy can be specified in a strategy language. Maude comes with such a
strategy language, which we briefly describe now. For further details, please see
[154] which introduces strategies as a language in Maude. A strategy language S
can be viewed as a transformation of a rewrite theory R into S(R) such that the latter
represents the execution of R in a controlled way. Given a term t in a rewrite theory
R and a strategy s in the theory S(R), the application of s to t is denoted by s@t.
The semantics of s@t is the set of successors which result by rewriting t in S(R).

The simplest strategies are the constants idle and fail: idle @ t = {t}, fail
@ t = ∅. Basic strategies consist of applying to a term t a rule (identified by a label)
possibly with instantiating some variables appearing in the rule. The semantics of
l@t, where l is a rule label, is the set of all terms to which t rewrites in one step
using the rule labeled l anywhere it matches and satisfies the rule’s condition.

Strategies can be combined under typical regular expression constructions: con-
catenation (;), union (|), and iteration of zero or more, or one or more steps (* or +).
If E,E′ are strategies, then (E; E′)@t = E′@(E@t), (E | E′)@t = (E@t)∪ (E′@t),
E+@t =

⋃
i≥1

(Ei@t) with E1 = E and En = En−1 ; E, and E * = idle | E+.

It is also possible to define if-then-else strategies of the form E ? E′ : E′′, which
means that if the strategy E is successful when evaluated in a given state term, then
the strategy E′ is evaluated in the resulting states, otherwise E′′ is evaluated in the
initial state:

(E ? E′ : E′′ ) @ t = if (E@t) , ∅ then E′@(E@t) else E′′@t fi.

The if-then-else combinator is used to define strategies like not(E), which is defined
as E ? fail : idle , meaning that it reverses the result of applying E. A useful
strategy is E!, which means “repeat until the end” and is defined as E* ; not(E).

In our case, state terms t are BUpL mental states. In order to rewrite builder(3,
0) using a strategy E, we only need to input the command srew builder(3,0)
using E after loading the Maude file where the strategy language is defined (usu-
ally this is maude-strat.maude). If E is a rule name, for example, exec-IA, then
the result is the mental state after performing an internal action, in this case setting
max(3) which corresponds to the first parameter of builder(3, 0).

Maude> (srew builder(3, 0) using exec-IA .)

rewrites: 1384 in 30ms cpu (55ms real) (44652 rewrites/second)

rewrite with strategy :

result LBpMentalState :

<< iLabel(’set-max[’s_ˆ3[’0.Zero],’0.Zero]),

clear(0) # done(0) # length(1) # max(3) # on(1,0),

... >>



284 M.B. van Riemsdijk, L. Aştefănoaei, and F.S. de Boer

Strategies are declared and defined only in strategy modules. Strategy modules have
the following syntax:

smod <STRAT-MODULE-NAME> is

protecting <M> .

including <STRAT-MODULE-NAME1> . ...

including <STRAT-MODULE-NAMEk> .

<DeclarationsAndDefinitionOfStrategies>

endsm

where M is the module containing the terms we want to rewrite using strategies and
STRAT-MODULE-NAME1, . . . , STRAT-MODULE-NAMEk are imported strategy mod-
ules.

Similarly to the declaration of operators, strategies are declared using the follow-
ing format:

strat <STRAT-NAME> : <Sort-1> ... <Sort-m> @ <Sort> .

where Sort is the sort of the term which will be rewritten using the strategy
STRAT-NAME. Like equations, strategies can be unconditional or conditional and
are defined using the following syntax:

sd <STRAT-NAME>(<P1>, ..., <Pm>) := <Exp> .

csd <STRAT-NAME>(<P1>, ..., <Pm>) := <Exp> if <Cond> .

with Pi being the parameters of the strategy STRAT-NAME and Exp being a strategy
expression.

9.5.4 Using Maude Strategies for Implementing Test Cases

We now illustrate how the test definitions of Section 9.5.2 can be implemented by
means of Maude strategies. First, we show how the syntax of tests can be specified as
a Maude functional module. We then describe a generic strategy test2Stratwhich
associates to each test a corresponding strategy that implements the test. Finally, we
focus on the implementation of the basic test a.

The following module defines the syntax of tests, in correspondence with the
BNF grammar for tests of Section 9.5.2.

fmod TEST-SYNTAX is

protecting SYNTACTICAL-DEFS .

sort TestA .

subsort O-Action < TestA .

op _;a_ : TestA TestA -> TestA .

op _+a_ : TestA TestA -> TestA .

op _*a : TestA -> TestA .

endfm
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The code shows that we first declare a sort TestA for denoting tests. In order to
express that any observable action is a test we use the subsort relation subsort
O-Action < TestA. Further, we declare regular expression operators to construct
new tests. We use the index a in their declaration in order to distinguish them from
the regular expression operators defined for Maude strategies.

Now that we have defined the syntax of tests as above, we can define the strategy
test2Strat inductively on the structure of tests:

strat test2Strat : Test @ LBpMentalState .

var Oa : O-Action . vars Ta1 Ta2 : TestA .

sd test2Strat(Oa) := do(Oa) .

sd test2Strat(Ta1 ;a Ta2) := test2Strat(Ta1) ; test2Strat(Ta2) .

sd test2Strat(Ta1 +a Ta2) := test2Strat(Ta1) | test2Strat(Ta2) .

sd test2Strat(Ta1 *a) := test2Strat(Ta1) * .

The strategy do is meant to implement the basic test a. Note the natural mapping
from tests to the corresponding strategy.

We now focus on describing how to implement the basic test a, i.e., the strategy
do. We recall that, when applied to a mental state ms, this test succeeds only if after
performing some internal steps (corresponding to internal actions, repair rules, and
choices among plans) the agent reaches a state where a is enabled. This means that
we need to implement a strategy, tauClosure, for computing the transitive closure
of τ steps. A simple8 way to do this is as follows:

strat tauClosure : @ LBpMentalState .

sd tauClosure := (sum | exec-fail | exec-IA)! .

that is, by non-deterministically applying one of the rules which correspond to τ
steps until no longer possible. Given that we have the strategy tauClosure, the
implementation of the test a is straightforward:

strat do : O-Action @ LBpMentalState .

sd do(Oa) := tauClosure ; exec-OA[OA <- Oa] .

where exec-OA[OA <- Oa] applies exec-OA with the variable OA from the defini-
tion of the rewrite rule being instantiated by the argument Oa of the strategy. Note
that the strategy tauClosure returns precisely those states from which no τ steps
are possible, that is, the states where the head of the current plan is an observable
action. If this observable action is the one given as argument to the strategy do then
it succeeds and computes again the transitive closure. Otherwise, it fails. To see how
this strategy works in practice, we strategically execute builder(3, X:Nat) using
do(move(2, 0, 1)). This means that we test whether the agent executes move(2,
0, 1) as the first observable action.

8 The strategy described here does not always terminate. One immediate solution is to bind the
number of iterations. For a more detailed discussion, we refer to [20].
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Maude> (srew builder(3,X:Nat) using do(move(2,0,1)) . )

rewrites: 18463 in 1415ms cpu (1417ms real) (13040 rewrites/second)

rewrite with strategy :

result LBpMentalState :

<< oLabel(’move[’s_ˆ2[’0.Zero],’0.Zero,’s_[’0.Zero]]),

clear(0)# clear(2)# clear(3)# done(0)# length(1)# max(3)#

on(1,0)# on(2,1)# on(3,0), ...>>

Maude> (next .)

rewrites: 1210 in 10ms cpu (11ms real) (110020 rewrites/second)

next solution rewriting with strategy :

No more solutions .

What we obtain is a state reflecting that the agent moved block 2 onto block 1. This
can be seen either from the label of the resulting mental state, or from the fact that
on(2,1) is in the current belief base. Furthermore, we can also notice that this is
the only possible resulting mental state since the command (next .) for obtaining
other solutions returns No more solutions.

We recall that our purpose is to test whether “bad” states are reachable from the
initial configuration of builder and that “bad” means odd length towers in our
case. Thus, a suitable test is move(2,0,1);move(3,0,2); f inish(3,0), meaning that
we test whether the agent (in its faulty variant) executes the action finish(3,0)
after moving block 2 onto 1 and block 3 onto 2:

Maude> (srew builder(3,X:Nat) using

test2Strat(move(2,0,1) ;a move(3,0,2) ;a finish(3, 0)) .)

rewrites: 50421 in 2069ms cpu (2082ms real) (24361 rewrites/second)

rewrite with strategy :

result LBpMentalState :

<< oLabel(’finish[’s_ˆ3[’0.Zero],’0.Zero]),

clear(0)# clear(3)# done(3)# length(3)# max(3)#

on(1,0)# on(2,1)# on(3,2), ...>>

The output shows that this is indeed the case, meaning that the agent is not safe to
this test. Performing the same test on the correct builder yields no possible rewriting,
and from this we can conclude that the correct builder agent is safe with respect to
the test.

9.6 Conclusion

In this chapter, we have shown how the Maude term rewriting language can be used
for agent development with formal foundations. We have shown how agent pro-
gramming languages can be prototyped, and how agent programs can be executed,
model-checked and tested using Maude and its accompanying tools. We maintain
that one of the main advantages of Maude is that it provides a single framework in
which the use of a wide range of formal methods is facilitated. This means that the
implementation of the semantics of an agent programming language in Maude can
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be used for executing agent programs, as well as for model-checking and testing
them.

We see several main areas for future research. First, model-checking as described
in this chapter applies the model-checker that comes with Maude. This means that
it does not include state space abstraction techniques that are specific to agent pro-
gramming languages. We see the investigation of such techniques and how they can
be used in Maude as an important area for future research. Moreover, with respect
to testing, the definition of the language to express test cases needs to be further
investigated and experimented with to identify exactly which features are useful in
practice. Another aspect related to the use of our testing framework in practice is
the issue of how to come up with suitable test cases. It will need to be investigated,
for example, whether it would be possible to do automatic test case generation.
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