
Comparing Goal-Oriented and Procedural
Service Orchestration?

M. Birna van Riemsdijk1 Martin Wirsing2

1 Technische Universiteit Delft, The Netherlands
m.b.vanriemsdijk@tudelft.nl

2 Ludwig-Maximilians-Universität München, Germany
wirsing@pst.ifi.lmu.de

Abstract. Goals form a declarative description of the desired end result
of (part of) an orchestration. A goal-oriented orchestration language is an
orchestration language in which these goals are part of the language. The
advantage of using goals explicitly in the language is added flexibility in
handling failures. In this paper, we investigate how goal-oriented mecha-
nisms for handling failures compare to more standard exception handling
mechanisms, by providing a formally defined translation of programs in
the goal-oriented orchestration language into programs in the procedu-
ral orchestration language, and proving that the procedural orchestration
has the same behavior as the goal-oriented orchestration.

? This work has been partially sponsored by the project SENSORIA, IST-2005-016004.

1 Introduction

Service-oriented computing is emerging as a new paradigm based on autonomous,
platform-independent computational entities, called services, that can be de-
scribed, published, and dynamically discovered and assembled. An important
context in which services are used, is in service-oriented architectures (SOAs)
[10]. In a SOA, services are used for facilitating the implementation of business
processes on a business’ IT infrastructure. Due to the abstraction layer intro-
duced through the adoption of a SOA, and due to the loose coupling of services,
SOA offers the potential to increase organizational agility.

This is important, since business processes and a business’ IT infrastructure
inherently evolve over time. Moreover, business processes are executed in dy-
namic, uncertain and error-prone environments [19]. It is thus important that
automation environments are adaptive, both with respect to accommodating
changes in business processes, as well as with respect to the execution of busi-
ness processes.

In a SOA, one way to compose services to implement a business process,
is by means of an orchestration language suitable for the execution of business
processes, such as WS-BPEL3 [18]. In order to realize the potential for agility of
a SOA, such orchestration languages should facilitate adaptivity.

In this paper, we investigate the use of goal-orientation in orchestration lan-
guages for facilitating adaptivity. Goals form a declarative description of the
desired end result of the execution of (part of) an orchestration. That is, goals
describe what is to be achieved, as opposed to describing how a desired result is
to be achieved. A goal-oriented orchestration language has language constructs
which express the goal that is to be reached by some part of the orchestration.

Goal-oriented techniques have emerged in research on agent-oriented pro-
gramming (see, e.g., [34, 16, 31, 26, 3, 17, 29]). It is generally argued that one of
the advantages of the explicit use of goals in a programming language is added
flexibility in handling failures [34, 28, Chapter 5]. The idea is essentially that
goals are used to monitor the execution of statements, or plans in agent ter-
minology. If the execution does not have the desired result, goals are used to
select a different plan. This mechanism is used recursively, as plans can contain
subgoals. The fact that a program and its parts contain explicit representations
of the desired result of their execution thus facilitates monitoring their execution
and taking appropriate measures by trying alternative courses of action if the
execution fails to achieve these results.

The increased flexibility provided through the use of goal-oriented techniques
is also confirmed by recent developments initiated by Whitestein Technologies
AG4, who are developing software supporting goal-oriented business process
modeling and execution [6, 33, 5]. The use of goal-oriented techniques makes
business process models and their implementation easier to change, it allows
specification of many different plans for a particular goal expressing how to pur-

3 BPEL stands for Business Process Execution Language.
4 http://www.whitestein.com/

2

sue the goal in varying situations, and it allows the system to “heal itself” if
problems occur, by finding alternative courses of action [33].

Moreover, as argued in [33], the use of goal-oriented techniques has signifi-
cant advantages for modeling business processes. The use of goals fits naturally
with the organization of many businesses, in which the upper management level
is typically more concerned with what is to be achieved, rather than how some-
thing is to be achieved. Also, the use of goals as an abstraction increases process
understandability, and it allows the specification of a wide and diverse set of
solutions without the significant increase in complexity of the process definition,
as found in BPEL and similar approaches. Practical experience has thus shown
that goal-oriented techniques have significant advantages over more traditional
approaches for business process modeling and service orchestration, such as
(WS-)BPEL.

In this paper, we investigate the use of goal-oriented techniques in an orches-
tration language from a theoretical perspective. We investigate how the goal-
oriented orchestration language of [32] can be translated into a program in a
more traditional procedural orchestration language that has provably the same
behavior. Since increased flexibility in handling failures is one of the main ad-
vantages of the use of goal-oriented techniques, we focus on a comparison of the
failure handling mechanism of the goal-oriented orchestration language with the
exception handling mechanism of the procedural orchestration language. The
exception handling mechanism of the latter is inspired by that of WS-BPEL.

It will become clear that the programming patterns resulting from the trans-
lation of the goal-oriented orchestration language into the procedural orchestra-
tion language do not increase understandability of the code. Since expressing the
kind of abstractions used in the goal-oriented orchestration language in a pro-
cedural orchestration language thus leads to complex orchestration definitions,
and since the use of goal-oriented techniques has significant practical advantages,
we argue that goal-oriented abstractions are worth considering as language con-
structs of an orchestration language.

The organization of this paper is as follows. In Section 2, we introduce the
running example that we use to illustrate the definitions of the orchestration lan-
guages. In Sections 3 and 4, we define the goal-oriented and procedural orches-
tration languages, respectively. We present the translation of the goal-oriented
orchestration language into the procedural orchestration language, and the result
stating the correctness of the translation, in Section 5. In Section 6, we discuss
related work on planning, and we conclude the paper in Section 7.

2 Running Example: Engineering Change Request

The running example we use in this paper is from the domain of management of
engineering processes. Engineering processes, such as designing a car, take many
years and are typically very complex with many alternative execution paths. One
of the most crucial sub-processes is Engineering Change Request (ECR) [25].
The ECR process covers the processing of an ECR from the initial proposal for

3

a change, through its evaluation regarding costs, technical feasibility, compliance
to laws and regulations, etc., to its approval or rejection.

We illustrate our definitions by specifying a simplified version of parts of the
ECR process in our orchestration languages. Whitestein has used the ECR pro-
cess of Daimler AG5, which broadly follows the standard ECR process specified
by SASIG6 [25], as a case study for their goal-oriented business process manage-
ment software [6, 33, 5]. Since our goal-oriented orchestration language is closely
related to the goal-oriented business process modeling language of Whitestein,
our specification of the ECR process resembles theirs.

It is important to note that the specification of the ECR process in our goal-
oriented orchestration language is necessarily simplified, since the language is not
meant to be a full-fledged orchestration language. Its purpose is to investigate
the semantic foundations7 of goal-oriented orchestration languages. To keep the
language simple, the specification of goals and services is based on propositional
logic. In [30], we propose a formal specification framework for services that is
based on description logic, and we refer to [8] for the description of a goal-
oriented agent programming language and platform based on first-order logic,
which uses similar goal-oriented techniques as the ones we use in this paper.

The main purpose of the ECR process is to have a change request managed,
i.e., the ECR should be specified and it should be decided whether to approve or
reject it. This top-level goal can be subdivided into four subgoals: the ECR has
to be initiated, it has to be created and described in detail, it has to be analyzed
and evaluated, and a decision has to be made as to whether the requested change
will be implemented. The full process as modeled by Whitestein contains 60 goals
[5].

In this paper, we investigate the goal-oriented orchestration language of [32]
(with some small modifications). Its main language construct is the so-called
plan selection rule. Using a plan selection rule, one can specify which plan may
be executed for achieving a certain goal in a particular context. These rules thus
consist of the goal that is to be achieved, a plan that specifies how to reach
the goal, and a condition specifying in which context the plan can be executed,
and have the following form: goal | contextCondition ⇒ plan. Plans can contain
subgoals to express that these subgoals must be reached in order to achieve the
goal of the plan selection rule.

Example 1 (ECR specified and decided) In this example, we show how a plan
selection rule can be used for specifying how the top-level goal of the ECR process
(ECRspec&decided) can be reached. Goals are preceded by an exclamation mark,
and� is used to program sequential composition. The context condition specifies
that the plan can be executed if a proposal for an ECR has been received, or if

5 http://www.daimler.com/
6 Strategic Automotive Product Data Standards Industry Group
7 “Semantic” is here meant in the sense of “semantics of programming languages” [9],

not in the sense of “semantic web technology” [2].

4

an ECR needs to be revised.

!ECRspec&decided | ECRproposal ∨ ECRrevision⇒
!ECRinitiated� !ECRcreated� !ECRanalyzed� !ECRdecided

This plan selection rule specifies, that in order to reach the goal ECRspec&decided,
the four subgoals ECRinitiated, ECRcreated, ECRanalyzed, and ECRdecided
have to be achieved in sequence. The rule does not specify how these subgoals
are to be achieved. This is in turn done using plan selection rules, of which we
will give some examples in the next section. 4

3 Goal-Oriented Orchestration Language

In this section, we present the goal-oriented orchestration language of [32], with
some small modifications. We present its syntax in Section 3.1, and in Section
3.2 we present the informal semantics and the part of the formal semantics
that is relevant for failure handling. We refer to [32] and Appendix A for more
details and explanation. While the language presented in this section is mostly
the language from [32], in this paper we illustrate the language using many
examples from the ECR domain, and we focus the presentation and discussion
on failure handling.

3.1 Syntax

A program in the goal-oriented orchestration language is called an agent. The
main components of an agent are, loosely speaking, a representation of the con-
text in which it operates, a set of top-level goals, and a set of plan selection rules.
The context, which in agent terminology is called a belief base, is a consistent
set of propositional formulas, denoted by σ. The main purpose of the belief base
is to store information about the context, but it can also be used to store infor-
mation internal to the agent. The set of top-level goals is called the goal base,
and is denoted by γ. A goal is denoted by κ and can be either an achievement
goal !p (where p is an atom)8, representing that the agent wants to achieve a
situation in which p holds, or a test goal ?p, representing that the agent wants
to know whether p holds. Formally, the belief base and goal base are defined as
follows.

Definition 1 (belief base and goal base) Assume a standard language of propo-
sitional logic L, defined over a set of propositional atoms Atom. The set of belief
bases Σ with typical element σ is defined as {σ | σ ⊆ L, σ 6|= ⊥}. The set of
goals LG with typical element κ is defined as {?p, !p | p ∈ Atom}. A goal base γ
is a subset of LG, i.e., γ ⊆ LG.

8 In [32], we used arbitrary propositional formulas for the representation of goals, but
for reasons of simplicity we use atoms here.

5

Plan selection rules are formally denoted as κ | β ⇒ π, where κ is the goal of the
plan selection rule, β is a propositional formula representing a condition on the
beliefs (context) that should hold for the rule to be applicable, and π is a plan.

The basic elements of plans are internal actions, typically denoted by a, which
can be used for making changes to the belief base, subgoals, and service calls.
A service call has the form snr(actφ, actκ), where sn is the name of the service
that is to be called (which is d if a service is to be dynamically discovered), actκ
represents the goal that is to be achieved through calling the service, and actφ
is (or should be instantiated with) a propositional formula representing input to
the service. If only the goal is needed for calling the service, the input parameter
is omitted. The revision parameter r can be np (non-persistent), meaning that
the output of the service call is not stored in the belief base, or p (persistent),
meaning that the output is stored in the belief base.

If a service is called, the output returned by the service can be used in the
remainder of a plan using the sequential composition operator >x> , where
the output is bound to the variable x. In this way, the output of one service
can conveniently be used as the input for another service. If the output is not
used, or if no result is expected, then � can be used for sequential composition.
This sequential composition operator is inspired by a similar construct in the
orchestration language Orc [7]. The execution of an internal action does not
yield an output, i.e., internal actions are always composed using �. Subgoals
can yield output. In this case, the output loosely speaking consists of those parts
of the belief base that express the achievement of the subgoal.

For example, assume the belief base contains the formula ECRinitialDoc→
ECRinitiated (denoted as φ1), representing that if a document exists describing
an initial ECR, then the ECR has been initiated, and the formula ECRinitialDoc
(denoted as φ2), representing that a document describing an initial ECR exists.9

Then, the subgoal !ECRinitiated is believed to be achieved since ECRinitiated
follows from the belief base, and the conjunction of φ1 and φ2 would be returned
as the output of this subgoal.

The formal definition of the syntax of plans is given below, where x is a
variable name, κ is as in Definition 1, and a is an internal action. For simplifying
the definition, we omit the distinction between >x> and �.

actφ ::= x | φ b ::= a | κ | snr(actφ, actκ)
actκ ::= x | κ π ::= b | b >x> π

In Example 1, we showed a plan selection rule specifying how the top-level goal
of the ECR process can be reached. The plan of the rule contained several sub-
goals, for which in turn plan selection rules have to be specified. In the following
example, we show how the plan selection rule for the subgoal of initiation of an
ECR can be specified.

9 Note that due to the fact that we use propositional logic, we cannot express conve-
niently that the document for a certain ECR concerns that ECR. For practical use,
the language will have to be extended to a first-order variant, allowing the use of
variables as parameters of goals.

6

Example 2 (initiation of an ECR) The following plan selection rule specifies
that a plan for initiation of an ECR can be executed, if a proposal for an ECR
exists. The plan specifies that a service for creating an initial ECR is called, and
the output of this service, i.e., an initial ECR (init), is passed to a service that
decides whether this ECR can be pursued.

!ECRinitiated | ECRproposal⇒
createInit(ECRproposal, !initECRcreated)np >init>

decidePursuit(init , !ECRinitiated)p

If it is decided to pursue the ECR, the output of the latter service is meant to be
a document describing an initial ECR (ECRinitialDoc). The revision parameter
p of the service decidePursuit specifies that the output of this service is stored
in the belief base. In combination with a belief base containing the formula φ1

as described above, this would mean that the subgoal !ECRinitiated is then
achieved. 4

3.2 Semantics

In this section, we present the semantics of our goal-oriented orchestration lan-
guage. First, we present the basic mechanisms involved in “normal” execution,
i.e., in case no failures occur. Then, we present the formal semantics of failure
handling mechanisms.

Normal Execution The main execution mechanism of an agent in our goal-
oriented orchestration language is the application of plan selection rules to goals
in the goal base or subgoals in plans. The application of plan selection rules is for-
malized using the notion of a stack. Each element of the stack represents, broadly
speaking, the application of a plan selection rule to a particular (sub)goal. The
initial stack element is created by applying a plan selection rule to a top-level
goal in the goal base, and other stack elements are created every time a subgoal
is encountered in the plan of the top element of a stack.

A stack element has the form (π, κ,PS), where κ is the (sub)goal to which
the plan selection rule has been applied, π is the plan currently being executed
in order to achieve κ, and PS is the set of plan selection rules that have not yet
been tried in order to achieve κ. That is, if a plan selection rule from PS has
been applied to try to reach κ, it is removed from PS. This is a simple heuristic
to make sure the agent does not keep trying to reach a goal over and over again
with the same plan selection rules. More advanced mechanisms could be used,
but investigating those are beyond the scope of this paper.

Example 3 (stack) Assume an ECR agent with a set of plan selection rules
PS that includes the rules of Examples 1 and 2, to which we will refer as ρ1 and
ρ2, respectively. Furthermore, assume the agent has the goal !ECRspec&decided
as top-level goal in its goal base, and the formula ECRproposal in its belief base.

7

The rule ρ1 can then be applied to the goal !ECRspec&decided, resulting in the
following initial stack element (where π1 is the plan of ρ1).

(π1, !ECRspec&decided,PS \ {ρ1}) (1)

Note that ρ1 is removed from the set of plan selection rules that can still be used
for trying to achieve the goal !ECRspec&decided, since ρ1 has just been applied
to try to reach that goal.

The first element of π1 is the subgoal !ECRinitiated, meaning that in or-
der to achieve !ECRspec&decided, this subgoal has to be achieved first. Since
ECRproposal is in the belief base, the rule ρ2 can then be applied to that sub-
goal. This results in the creation of another stack element on top of the initial
stack element, yielding the following stack (where π2 is the plan of ρ2).

(π2, !ECRinitiated,PS \ {ρ2}).(π1, !ECRspec&decided,PS \ {ρ1}) (2)

The set of plan selection rules of the top element of the stack is formed by the
set of plan selection rules of the agent, minus the plan selection rule ρ2 that has
been applied to create the stack element. 4

In order to define the semantics formally, we need to introduce several notions.
An agent is formally defined as a tuple 〈σ0, γ0,PSA, T 〉, where σ0 is the (initial)
belief base, γ0 is the initial goal base, PSA is a set of plan selection rules, and T
is a partial belief update function (InternalAction×Σ) → Σ (where InternalAction
is the set of internal actions of the agent and Σ is a set of belief bases) which
specifies how the belief base changes, if an internal action is executed by the
agent. This function is introduced as usual [28] for technical convenience. A
configuration of an agent has the form 〈σ, γ, St,PSA, T 〉, where St is the stack.
The initial configuration of an agent 〈σ0, γ0,PSA, T 〉 is 〈σ0, γ0, E, PSA, T 〉, where
E denotes an empty stack.

The formal semantics of our goal-oriented orchestration language is defined
using a transition system [23]. A transition system for a programming language
consists of a set of axioms and transition rules for deriving transitions for this
language. A transition is a transformation of one configuration into another and
it corresponds to a single computation step. The transition rules specify how to
execute the top element of a stack, and we leave out PSA and T from configura-
tions for reasons of presentation (and these do not change during computation).

In the initial configuration of an agent, the stack containing the plans that
are being executed is empty, since no plan selection rules have been applied
yet. In order to initialize the stack, a plan selection rule is applied to a goal in
the goal base as follows, where PSA are the plan selection rules of the agent
that is executing. We use a predicate applicable(ρ, κ, σ) to denote that plan
selection rule ρ is applicable to goal κ, given belief base σ (see Appendix A for
the definition).

Definition 2 (initialization of stack)

κ′ | β ⇒ π ∈ PSA κ ∈ γ applicable(κ′ | β ⇒ π, κ, σ) PS′ = PSA \ {κ′ | β ⇒ π}
〈σ, γ, E〉 → 〈σ, γ, (π, κ, PS′)〉

8

Stack elements are thus created through the application of plan selection rules.
A stack element is popped just after a service call or the execution of an internal
action if the goal of the stack element is reached, or if the goal is unreachable,
meaning that there are no applicable plan selection rules. An example of the
former case is presented next, and the latter case will be explained in more
detail in the sequel.

Example 4 (popping a stack element: goal reached) Consider stack (2). In this
situation, the plan of the top element of the stack, i.e., π2, will be executed. In
a normal execution, the goal of this stack element, i.e., !ECRinitiated, will be
reached after the execution of π2. In that case, the top element of the stack will
be popped, and the subgoal !ECRinitiated is removed from π1, since this has
been achieved. Let π′1 = !ECRcreated � !ECRanalyzed � !ECRdecided be the
remaining part of π1. We then have the following stack.

(π′1, !ECRspec&decided,PS \ {ρ1}) (3)

Now, the first subgoal of π′1 should be achieved, i.e., !ECRcreated, for which a
plan selection rule of PS \ {ρ1} should be applied. 4

Top-level goals from the goal base are removed as soon as they are believed to
be achieved, i.e., as soon as they follow logically from the belief base.

Failure Handling In the goal-oriented orchestration language, a failure is not
only caused by abnormalities in trying to execute some operation, as in more
traditional languages, but also by being unsuccessful in reaching a goal. In par-
ticular, if a service is called and returns some output, the call is only considered
to be successful if the goal of the service call is reached through the output that
is returned. That is, even if the service returns a “normal” or non-exceptional
result, the service call can still be regarded as having failed. Such situations are
not unlikely to occur, especially if services are automatically discovered at run-
time. It might, e.g., be the case that the service description was not accurate,
resulting in an unsatisfactory result. These kinds of failures are typically neither
considered nor dealt with in more classical programming paradigms, in which
a failure or exception is normally caused by the fact that some operation could
not be executed properly.

Our goal-oriented orchestration language handles failures of service calls by
repeatedly trying to find matching services for a service call (in particular if
services are to be discovered) until the goal of the service call is reached, or
there are no more matching services.10 If the latter happens, the service call has
failed definitively, in which case the plan containing the service call is considered
to have failed and the plan is dropped.

10 One might argue that a comprehensive failure handling mechanism should include
compensation, but this is without the scope of this paper. We refer to [4] for a formal
approach to compensations.

9

Example 5 (failure of service calls) We consider the subgoal !ECRanalyzed
of the plan for reaching the top-level goal !ECRspec&dec (Example 1). In order
to reach this subgoal, the costs of the ECR have to be assessed. One way to
assess the costs, is by estimating the costs. In general, there are several ways of
estimating costs, and there are correspondingly several services that can do this
estimation. Alternatively, services may be provided by people, and there may be
several people who are capable of making estimations (see [1] for an extension of
WS-BPEL to include the provision of services by people, called BPEL4People).
In order to find a service that can do cost estimations, a discovery mechanism
can be used.

The top element of the stack, when the orchestration has come to the point
where the costs of an ECR have to be estimated, may look as follows, where PS
is some set of plan selection rules.

(d(!ECRcostsEstimated), !costsAssessed,PS) (4)

The d in the service call d(!ECRcostsEstimated) represents that a service should
be discovered, in this case for doing an estimation of costs of an ECR. We as-
sume that a set of services with service descriptions exists in some repository.
In Appendix A, we provide a simple definition of when a service description
matches a service call. We refer to [30] for a more expressive framework for
service description using description logic, and for a corresponding definition of
matching.

When a service call such as d(!ECRcostsEstimated) occurs in a plan, a
matching service is discovered. If a matching service can be discovered, the
service is called, and its output is returned. The output is compared against
the goal of the service call. If the goal has been reached, the agent continues
the execution of the rest of the plan. Otherwise, it tries to find another service
that matches the service call. It may be the case that no (more) services can be
found that match the service call. In that case, the plan is dropped, yielding the
following stack element, where ε represents an empty plan.

(ε, !costsAssessed,PS) (5)

4

A formal definition of dropping a plan when no more matching services exist
for a service call, is specified in Definition 3 below. The service call construct
snr(φ, κ′) (we assume variables are instantiated when the service is called) is
annotated with a set of service descriptions S which represents those services
from the repository that have not yet been called, and the result x0 of the last
service call.11

In this setting, services are assumed to return a propositional formula. The
predicate ach(κ, σ, xo) holds iff the goal κ is achieved with respect to belief base

11 The definition of the syntax of plans can easily be extended to allow for these anno-
tations, but for simplicity and brevity, we do not do this here.

10

σ and the service call result x0. In case κ is an achievement goal, it is achieved if
the goal follows from the belief base after it is updated with x0. In case κ is a test
goal, it is achieved if the goal or its negation follow from x0. The idea is that the
belief base should not be taken into account when evaluating the achievement
of a test goal, as a service is called in order to check whether some piece of
information is accurate. Then it does not matter whether the agent already
believes something about this information. The predicate match(sn(φ, κ), σ, sd)
holds iff the service with service description sd matches with the service call
sn(φ, κ), given the belief base σ. The transition rules specify how to execute the
top of a stack. We refer to Definition 19 for a transition rule specifying that a
complete stack can be executed by executing its top.

Definition 3 (plan failure)

¬ach(κ′, σ, xo) ¬∃sd ∈ S : match(sn(φ, κ′), σ, sd)

〈σ, γ, (snr(φ, κ′)[S, xo] >x> π, κ, PS)〉 → 〈σ, γ, (ε, κ, PS)〉

We have defined a similar rule for the case that an internal action cannot be
executed, in which case the plan is dropped as well (see Appendix A.2). Plans
are thus dropped if something goes wrong, i.e., an empty plan indicates a plan
failure.12

While the handling of failures of service calls is done by trying to call other
matching services, the handling of plan failures is done by using plan selection
rules to select alternative plans for reaching a (sub)goal.

Example 6 (handling plan failure) We consider the goal !costsAssessed of
having the costs of an ECR assessed (see also Example 5). In general, there are
two ways of assessing the costs: calculating the costs, and estimating the costs.
Correspondingly, we specify two alternative plan selection rules for assessing
costs. The first rule can be applied if no estimation-based approval of an ECR is
carried out. The plan specifies that a service is to be discovered for calculating
the costs. The second rule can be applied if estimation-based approval is carried
out. The plan specifies that a service is to be discovered for estimating the costs.

!costsAssessed | ¬estBasedApproval⇒ d(!ECRcostsCalculated)
!costsAssessed | estBasedApproval ⇒ d(!ECRcostsEstimated) (6)

These plan selection rules are mutually exclusive, given the context condition of
the rules. Deciding whether an estimation-based approval of an ECR is carried
out, is usually done in the part of the orchestration preceding the subgoal of
assessing the costs. However, the decision of carrying out an estimation-based

12 It can also be the case that a plan is completely executed resulting in an empty
plan, i.e., without the plan having been dropped. This also indicates failure, namely
failure in reaching the goal of the stack element. The stack element would have been
popped immediately if its goal would have been reached after an action execution
or service call, not giving rise to a stack element with an empty plan.

11

approval or not, may be reconsidered after an attempt at calculating or esti-
mating the costs has failed. This is specified using the following plan selection
rule.

!costsAssessed | true⇒
reconsiderApprovalStrategy(!approvalStrategyReconsidered) (7)

Note that this would require an ordering among rules, since rule (7) should be
applied only after one of the rules of (6) has been applied, and has failed to
reach the goal !costsAssessed. If a previous decision to do an estimation-based
approval or not is reconsidered after execution of (7), the alternative rule of (6)
that has not yet been applied, can be tried. 4

The application of an alternative plan selection rule to achieve a particular
(sub)goal after a plan has failed, is formally specified by the transition rule
below. Note that the plan selection rule that is applied is removed from the set
of available plan selection rules PS, which prevents the agent from trying the
same rule over and over again. Moreover, note that the fact that we store the
subgoal that the agent is trying to reach in the stack elements, facilitates the
selection of alternative plans to reach this goal. If we would not have such a
representation, it would be more difficult to determine what to do if something
went wrong.

Definition 4 (apply rule after plan failure) Below, PS′ = PS \ {κ | β ⇒ π}.

κ | β ⇒ π ∈ PS ¬ach(κ, σ,>) σ |= β

〈σ, γ, (ε, κ, PS)〉 → 〈σ, γ, (π, κ, PS′)〉

At some point, it may be the case that all plan selection rules for a particular
subgoal have been tried, without the subgoal being reached. In this case, the
subgoal is considered to have failed definitively. In that case, the top element of
the stack containing the failed subgoal is popped, and the plan of the new top
element of the stack is dropped.

Example 7 (subgoal failure) We consider again stack (2) of Example 3, which
is the stack after a plan selection rule for achieving the top-level goal
!ECRspec&decided has been applied, followed by the application of a plan selec-
tion rule for achieving the subgoal !ECRinitiated.

(π2, !ECRinitiated,PS \ {ρ2}).(π1, !ECRspec&decided,PS \ {ρ1}) (8)

Now assume that π2 is executed, but it is decided not to pursue the proposal
for the ECR. In this case, the subgoal !ECRinitiated is not reached after the
execution of π2. Typically, there will be no alternative plans for achieving that
subgoal, which means that it has failed. Then, the top element of the stack is
popped, and the plan π1 of the new top element is dropped, yielding the following
stack.

(ε, !ECRspec&decided,PS \ {ρ1}) (9)

12

The plan π1 is dropped, because it contained the subgoal !ECRinitiated, and
the agent has failed to achieve that subgoal. This means that π1 has failed as well.
If an alternative plan selection rule for !ECRspec&decided exists in PS \ {ρ1},
that rule can consecutively be applied in this situation. If this is not the case,
the agent has failed to achieve the top-level goal !ECRspec&decided. 4

This is specified formally below. Consider a (top-part of a) stack
(ε, κ,PS).(κ >x> π, κ′,PS′), in which the plan of its top element is empty, and
assume there are no plan selection rules applicable to the subgoal κ of this stack
element. In this case, the top element is popped, and the plan κ >x> π that
contains κ is dropped from the new top element. Consecutively, the agent can
try another plan for reaching the subgoal κ′, or, if there are no applicable plan
selection rules, the stack element with subgoal κ′ is popped as well, etc.

Definition 5 (subgoal failure)

¬∃ρ ∈ PS : applicable(ρ, κ, σ)

〈σ, γ, (ε, κ, PS).(κ >x> π, κ′, PS′)〉 → 〈σ, γ, (ε, κ′, PS′)〉

4 Procedural Orchestration Language

The main ingredients of our procedural orchestration language are standard
features of procedural languages, i.e., assignment, test, procedure call, and an
exception handling mechanism. The particular instantiations of these features
are tailored towards the translation of the goal-oriented orchestration language
in the procedural orchestration language. Further, the language includes a con-
struct for service calls, similar to the corresponding one in the goal-oriented
orchestration language.

The state of configurations of the language consists of a belief base and
goal base as also used in the goal-oriented orchestration language. However, the
goal base is interpreted simply as a set of data elements, i.e., it is a normal data
structure that does not have the semantics of its counterpart in the goal-oriented
orchestration language. The syntax of statements in the procedural language is
formally defined below, where e is an exception name, x is a variable name, and
actφ, actκ are as in Section 3.1.

κ ::= ?p | !p
v ::= true | false | φ | κ
t ::= φ? | (x = v)? | ach(actκ, x)? | not t | t ∧ t′

act ::= x | v
exp ::= v | κ(act1, . . . , actn) | snr(actφ, actκ) | base(actκ)
b ::= a | x := exp | t | return act | throw e
π ::= b | b; π | π + π′ | while t do π od

The language of procedure names κ is the same as the language of goals of
the goal-oriented orchestration language. Procedures may use local variables,
typically denoted by x. These local variables may have a value v, which is true,
false, a formula φ, or a procedure name κ. Tests t can be global tests on the

13

belief base φ? (note the difference with test goals ?p, which can only be fulfilled
through service calls), local tests (x = v)? which can be used for testing the
value of a variable, or ach(actκ, x), which tests whether the goal actκ is achieved
with respect to the value of the variable x.

Expressions exp are values, procedure calls κ(act1, . . . , actn), service calls, or a
call to a predefined function base(actκ), which returns a conjunction of formulas
from the belief base from which actκ follows, or false if actκ does not follow.
Intuitively, this represents how actκ is achieved. An elementary statement b can
be an action a to change the belief base (as in the goal-oriented orchestration
language), an assignment x := exp to change the value of local variable x, a
test, the returning of a variable, and the throwing of an exception. Composed
statements are formed by sequential composition, non-deterministic choice, or a
while construct.

The exception handling mechanism that we use is inspired by the exception
handling mechanism in the service orchestration language WS-BPEL [18]. In
WS-BPEL, exception handlers are associated with a scope of a business process.
If a fault occurs in a scope and the scope contains a matching handler, the process
specified by the handler is executed.13 If there is no handler, the exception is
passed to the enclosing scope. In the context of our procedural language, the
scope is formed by procedures, i.e., each procedure call gives rise to a new scope.
Therefore, we associate exception handlers to procedures, as defined below. A
handler contains the name of the exception that it handles, and a statement that
should be executed if the relevant exception is thrown.

Definition 6 (procedures and exception handlers) A procedure has the form
κ(x1, . . . , xn) ⇒ π. Exception handlers, typically denoted by h, have the form
e.Handler ⇒ π, where e is an exception name. A procedure definition is a proce-
dure accompanied with a possibly empty set of exception handlers, denoted by
[κ ⇒ π,H], where H is a set of exception handlers.

The semantics is defined by means of a transition system. We use stacks to
define the mechanism of calling procedures, analogously to the way this was
done for applying plan selection rules. Each stack element (π, θ,H) corresponds
to a procedure call, where π is the statement that still needs to be executed, θ is a
substitution specifying which values have been assigned to which local variables,
and H is the set of exception handlers of the procedure that was called and for
which the stack element was created. The set of handlers of a stack element does
not change during computation.

A configuration 〈σ, γ, St,P, T 〉 consists of a belief base σ and goal base γ
(together forming the global state), a stack St, a set of procedure definitions P,
and a belief update function T . A program 〈σ0, γ0, π0,P, T 〉 has the initial con-
figuration 〈σ0, γ0, (π0, ∅, ∅),P, T 〉. Analogously to the goal-oriented orchestration
language, we omit the procedure definitions and the belief update function from
configurations in the transition rules below.
13 Additionally, WS-BPEL has a compensation mechanism (see also [20]), which is,

however, outside the scope of this paper.

14

We only show the transition rules for exception handling. The semantics of
the other constructs is as one would expect, and for formal details we refer to
Appendix B. The semantics of procedure calls is a simple call-by-value semantics.
The first transition rule below expresses that if an exception e is thrown from
within a stack element, and the stack element contains a handler e.Handler ⇒ π′

for this exception, then the statement π′ is executed instead of the statement
from which the exception was thrown. If the stack element does not contain a
handler for e, the exception is passed to the stack element one level lower in the
stack.

Definition 7 (throwing exceptions)

e.Handler ⇒ π′ ∈ H

〈σ, γ, (throw e; π, θ, H)〉 ; 〈σ, γ, (π′, θ, H)〉

¬∃h′ ∈ H ′ : h′ is of the form e.Handler ⇒ π′′

〈σ, γ, (throw e; π′, θ′, H ′).(π, θ, H)〉 ; 〈σ, γ, (throw e, θ, H)〉

5 Translation and Correctness Result

In this section, we show how the goal-oriented orchestration language can be
translated to a procedural orchestration. This translation shows, first of all, how
goal-oriented orchestration, and in particular its failure handling mechanism, is
related to a more standard procedural orchestration language and its exception
handling mechanism. Moreover, it shows that the programming patterns result-
ing from the translation do not increase understandability of the code. As stated
in [12] in a more general context, the problem with programming patterns is that
“they are an obstacle to an understanding of programs for both human readers
and programming-processing programs”.14

Example 8 (translation of the ECR program) In this example, we show how
the part of the goal-oriented ECR orchestration related to the subgoal of assess-
ing the costs of an ECR (see Example 5) could be programmed in the procedural
orchestration language.

We combine the plan selection rules for the goal !costsAssessed as presented
in Example 5 into one procedure using non-deterministic choice between the
translated rules. The idea is then to translate any occurrence of the subgoal
!costsAssessed in a plan, in this case in the plan for !ECRanalyzed, into a
corresponding procedure call.

The service calls occurring in the plans of the plan selection rules are trans-
lated into a while-loop, that tries calling matching services until the goal of
the service call is reached, or until no more matching services are available. If
no matching service is available, an exception !costsAssessed.planFailedExc is

14 The term “programming patterns” should not be confused with “design patterns”.
While the former are computational in nature, the latter are concerned with software
architecture.

15

thrown, as the plan has failed and should be aborted in this case. The corre-
sponding exception handler calls the procedure costsAssessed recursively, so
that another plan can be tried to achieve the goal costsAssessed.

We use the variables tried1, tried2, and tried3 to record which of the plans
(as specified in the three plan selection rules) have already been tried to reach
the goal. If all plans have been tried and/or none are applicable, the exception
ECRanalyzed.planFailedExc is thrown which is caught lower down in the proce-
dure call stack in the procedure ECRanalyzed. This is done since the procedure
costsAssessed was called from the procedure ECRanalyzed, and a failure to
achieve the goal of assessing costs should lead to failure of the plan that is being
executed to achieve the goal of getting the ECR analyzed.

We omit some aspects from the example program, such as removing services
that have been tried but failed from the set of tried services, for reasons of
simplicity.

costsAssessed(tried1, tried2, tried3) ⇒
((tried1 = false)? ∧ ¬estBasedApproval;
(tried1 := true); x := base(!ECRcostsCalculated);
while not ach(!ECRcostsCalculated, x) do

x := d(!ECRcostsCalculated);
((x = nomatch)?; throw costsAssessed.planFailedExc) +
(not(x = nomatch))? od;

return x)
+

((tried2 = false)? ∧ estBasedApproval;
(tried2 := true); x := base(!ECRcostsEstimated);
while not ach(!ECRcostsCalculated, x) do

x := d(!ECRcostsCalculated);
((x = nomatch)?; throw costsAssessed.planFailedExc) +
(not(x = nomatch))? od;

return x)
+

((tried3 = false)?;
(tried3 := true); x := base(!approvalStrategyReconsidered);
while not ach(!approvalStrategyReconsidered, x) do

x := reconsiderApprovalStrategy(!approvalStrategyReconsidered);
((x = nomatch)?; throw costsAssessed.planFailedExc) +
(not(x = nomatch))? od;

return x)
+
(not((tried1 = false)? ∧ ¬estBasedApproval) ∧
not((tried2 = false)? ∧ estBasedApproval) ∧
not((tried3 = false)?);
throw ECRanalyzed.planFailedExc)

costsAssessed.planFailedExc.Handler ⇒ costsAssessed(tried1, tried2, tried3)

4

16

Since expressing the kind of abstractions used in the goal-oriented orchestration
language in a procedural orchestration language thus leads to complex orches-
tration definitions, and since the use of goal-oriented techniques has significant
practical advantages as discussed in Section 1, we argue that the kind of abstrac-
tions as used in the goal-oriented orchestration language are worth considering
as language constructs of an orchestration language.

As our procedural orchestration language and WS-BPEL are comparable in
the sense that they have a similar exception handling mechanism, and both
are imperative languages without goal-oriented constructs, we conjecture that
an implementation of goal-oriented orchestration patterns in WS-BPEL will be
similarly involved as in our procedural orchestration language.

The rest of the section will be concerned with the definition of a transla-
tion of arbitrary goal-oriented orchestrations to procedural orchestrations, and
proving the correctness of this translation. We present the most important parts
of the translation, i.e., the translation of plan selection rules (Section 5.1) and
the translation of plans (Section 5.2). For the full technical details of the trans-
lation, we refer to Appendix C. The theorem expressing the correctness of the
translation is presented in Section 5.3.

5.1 Translation of Plan Selection Rules

Example 8 already hints at how a translation of a goal-oriented orchestration
into a procedural one might be defined. That is, all plan selection rules for a
certain goal are translated into one procedure that has this goal as the procedure
name. The body of the procedure resulting from the translation of a set of plan
selection rules, broadly speaking, consists of a non-deterministic choice between
the translated plans of the relevant plan selection rules, guarded by tests on
the belief base corresponding with the guards of the plan selection rules.15 The
translation of plans is specified through the function uκ (see Section 5.2).

Definition 8 (translating plan selection rules) Without loss of generality, as-
sume that variables in the goal-oriented orchestration language are not the re-
served variables triedi. Let PS be a set of plan selection rules. Let PSκ be defined
as {κ | β ⇒ π : κ | β ⇒ π ∈ PS} and let n = |PSκ |. We assume an ordering on
the elements of PSκ as follows: {κ | β1 ⇒ π1, . . . , κ | βn ⇒ πn}. The translation
function t(PSκ) for translating PSκ into one procedure definition is defined as
follows, where we use the notation +1≤i≤nexpri to denote expr1 + . . . + exprn.

[κ(tried1, . . . , triedn, from) ⇒
this := κ;
(+1≤i≤n((triedi = false)? ∧ βi?; triedi := true; uκ(πi); [αfail] throw κ.planFailedExc) +
(
V

1≤i≤n not((triedi = false)? ∧ βi?); [αfail] throw from.planFailedExc)),

{κ.planFailedExc.Handler ⇒ xf := κ(tried1, . . . , triedn, from); return xf}]
15 In the example we used if-then-else constructs rather than non-deterministic choice,

but in order to make the translation correct, we need non-deterministic choice to
match the non-determinism of the goal-oriented orchestration language in selecting
plan selection rules.

17

It needs to be recorded which plans have already been tried to reach a certain
goal, as done in the goal-oriented orchestration language through storing the
set of not yet tried plan selection rules PS in each stack element. This is done
using the variables triedi, which can be true or false, depending on whether the
statement corresponding with the plan of the ith plan selection rule has already
been tried or not, respectively.

Each situation of failure of the goal-oriented orchestration language as an-
alyzed in detail in Section 3.2, corresponds to the throwing of an exception in
the procedural language. That is, we throw a planFailedExc if a plan has been
executed completely, as this means that the goal to be achieved by this plan
was not reached. Further, a planFailedExc is thrown if all plans have been tried
and/or none are applicable (as the belief condition does not hold), corresponding
to subgoal failure (Definition 5). The throwing of an exception in case a service
call fails is specified in Definition 9.

We annotate each planFailedExc with the name of the procedure in which
the exception should be handled. The exception should be handled either in the
procedure κ from which it was thrown (in case another plan should be selected
for achieving the goal of the procedure), or in the procedure from which κ was
first called (as passed to κ through the variable from). The latter case represents
the failure of a subgoal, and it corresponds to the popping of a stack element in
the goal-oriented orchestration language (Definition 5).

We associate with each procedure κ a handler for the exception
κ.planFailedExc. This handler specifies that the procedure should be called re-
cursively with the variables triedi as parameters. This recursive call makes sure
that if a plan fails, another plan is tried which has not been tried yet (Defi-
nition 4). The annotations [αfail] are “program points” which mark particular
points in the code. They are used for defining and proving the correctness of the
translation, and do not affect the semantics.

Note that the programmer thus needs to program the throwing of exceptions
and their handlers explicitly in the procedural orchestration language, while the
identification of situations of failure and the consecutive course of action is part
of the semantics of the goal-oriented orchestration language.

5.2 Translation of Plans

The next definition specifies the function uκ, which translates plans of the bodies
of plan selection rules with head κ into statements of the procedural language.
The function is also used to translate the plan of a stack element with subgoal
κ. The annotations (program points) of the form [α] are introduced similarly to
the way this was done in Definition 8 for defining and proving the correctness of
the translation.

Definition 9 (translating plans to statements) We define a function uκ(π)
where κ is the head of the plan selection rule of which the body π is translated,
or the goal of the stack element containing π. Let PSκ′ = {κ′ | β′ ⇒ π′ :
κ′ | β′ ⇒ π′ ∈ PS}, let n′ = | PSκ′ |, let false1,...,n′ be a vector of length n′

18

of parameters being the value false, and let SO be the set of available service
descriptions, and let sdsn be the service description of the service called for
service call snr(actφ, actκ′).

uκ(κ′ >x> π) = [ακ′] ((ach(κ′)?; x := base(κ′)) +
(not ach(κ′)?; x := κ′(false1,...,n′ , κ))); uκ(π)

uκ(a � π) = [αa] a; ((ach(κ)?; x := base(κ); return x) +
(not ach(κ)?; uκ(π)))

uκ(snr(actφ, actκ′) >x> π) = [αsn1] x := base(actκ′); ((ach(actκ′ , x); uκ(π)) +
(not ach(actκ′ , x)?; S := SO;
while not ach(actκ′ , x) do [αsn2] x := snr(actφ, actκ′);
((x = nomatch)?; [αfail] throw κ.planFailedExc) +
(not(x = nomatch)?; S := S \ {sdsn}) od);
[αsn3] ((ach(κ, x)?; return x) +

(not ach(κ, x)?; uκ(π)))

A subgoal κ′ >x> π is translated into a non-deterministic choice, followed by
the translation of π. The non-deterministic choice expresses that if the goal κ′

is already reached before calling the procedure κ′, x gets a value through the
function base(κ′). If κ′ is not yet achieved, the procedure κ′ is called, which
returns a value (a propositional formula) that expresses how κ′ was achieved or
an exception in case κ′ could not be achieved. The actual parameters for the
procedure κ′ are a series of false values, expressing that no plans have yet been
tried to reach κ′, and the last parameter is the subgoal κ, which is the goal to be
reached through execution of the statement uκ(κ′ >x> π) (as we are translating
plan selection rules with head κ).

The translation of an action a expresses that a should be executed, and, de-
pending on whether the goal κ is reached, the orchestration returns or continues
with the execution of uκ(π). The translation of a service call snr(actφ, actκ′)
defines that matching services are called until actκ′ is reached, or there are no
more matching services. If the latter is the case, a planFailedExc is thrown (cor-
responding to Definition 3).

Using the translation functions as defined above, we have defined a function
v (see Appendix C for its definition) for translating agents of the goal-oriented
orchestration language into procedural programs in the procedural orchestration
language. This function v uses the function t of Definition 8 to translate plan
selection rules to procedures. Moreover, an initialization procedure is added,
which is called from the initial statement of the resulting procedural program.
The purpose of the initialization procedure is to initiate the pursuit of goals of
the goal base (corresponding to Definition 2). The procedure is defined such that
the program terminates if the goal base is empty, in correspondence with the
semantics of the goal-oriented orchestration.

5.3 Correctness of Translation

We show, broadly speaking, that an agent in the goal-oriented orchestration
language has the same behavior as its translation in the procedural orchestration

19

language. We do this by showing that each run of an agent A has a matching
run of agent v(A) and vice versa. A run of A matches a run of v(A), loosely
speaking, if each configuration of the former has a matching configuration in the
latter (in the right order). Each transition in a run of A is matched by a series
of transitions in a run of v(A), i.e., not each configuration of a run of v(A) has
a matching configuration in the corresponding run of A.

The definition of when a procedural configuration matches a goal-oriented
configuration is provided by a function z (see Appendix C for its definition),
which translates a configuration of the procedural orchestration language into a
configuration of the goal-oriented language. The function cannot be defined the
other way around, as procedural configurations contain certain implementation
details that do not have a counterpart in goal-oriented configurations.

The function z translates in particular procedural stacks into goal-oriented
stacks by translating statements of stack elements to plans. The function uses
the substitution of stack elements to determine the goal of the resulting goal-
oriented stack element (recorded in the variable this), and to determine which
plan selection rules have not yet been tried to reach the goal (recorded in the
variables tried i).

The function does not translate arbitrary statements to plans, but only those
that have reached a program point of the form [α]. These statements correspond
to a plan in the goal-oriented orchestration language. The idea is that each
transition in a run of A is matched by a series of transitions in a run of v(A),
where this series of transitions starts in a configuration where the statement is
at a program point, and ends in a configuration where the statement has reached
the next program point.

The correctness of the translation is formulated formally below. We refer to
Appendix C for the complete proof.

Theorem 1 Let A be a program in the goal-oriented orchestration language
with initial configuration c0 and v(A) the translation of A. Then it holds for any
run c0 → c1 → . . . that there exist indices 0 = p0 < p1 < . . . and configurations
d0, d1, . . . such that d0 ; d1 ; . . . is a run in the procedural orchestration
language, d0 is the initial configuration of v(A), and for all pi with i ≥ 0 it holds
that z(dpi) = ci.

Let P be a program in the procedural orchestration language with initial
configuration d0 such that there is some program A of the goal-oriented orches-
tration language with v(A) = P . Then it holds for any run d0 ; d1 ; . . . that
there exist indices 0 = p0 < p1 < . . . and configurations c0, c1, . . ., such that
c0 → c1 → . . . is a run in the goal-oriented orchestration language, c0 is the
initial configuration of A, and for all pi with i ≥ 0, it holds that z(dpi) = ci.

Sketch of proof: The main tool for proving the correctness result, is the inser-
tion of program points in statements of the procedural program resulting from
the translation of a program in the goal-oriented orchestration language. We
specify that a configuration d of a procedural program is at program point α, if
the statement of the top element of the stack of d is of the form [α]π, denoted

20

by α : d. We then define the relation ⇒ as follows. If α0 : d0 ; . . . ; αn : dn

such that no configuration di with 0 < i < n is at a program point, then
α0 : d0 ⇒ αn : dn. The idea is that we can partition a run from the procedural
program into parts that go from one program point to the next, where such a
part is abstractly denoted by α0 : d0 ⇒ αn : dn. The indices 0 = p0 < p1 < . . .
referred to in the theorem then correspond to those configurations that are at a
program point.

The first part of the theorem is proven by induction over the length of runs in
the goal-oriented orchestration language, and by structural induction (reasoning
by cases) to prove the result for arbitrary configurations. That is, we show that if
z(αi : dpi

) = ci for i ≥ 0, there is a pi+1 such that αi : dpi
⇒ αi+1 : dpi+1 and

z(αi+1 : dpi+1) = ci+1, where ci → ci+1. The induction basis is provided by
showing that z(αinit : d0) = c0.

In order to prove the second part of the theorem for a program P such that
v(A) = P for some A, we take 0 = p0 < p1 < . . . to be indices such that for each
dpi with i ≥ 0, dpi is at a program point and αi : dpi ⇒ αi+1 : dpi+1 holds. We
then prove that for all pi with i ≥ 0, it holds that z(dpi) = ci and c0 → c1 → . . .
is a run of A, by induction over the length of dp0 ;∗ dp1 ;∗ We have that
p0 = 0 and z(dp0) = c0, providing the induction basis. For i ≥ 0 and z(dpi) = ci,
we show for ci+1 with z(dpi+1) = ci+1 that ci → ci+1. 2

6 Related Work: Planning

In this section, we highlight a related area of research that has not been ad-
dressed so far in this paper, i.e., planning. Planning can be used for service
composition as an alternative to programming a service composition in an or-
chestration language. The classical AI planning problem is to search for a plan
(a sequence of actions) to get from the current state to a goal state, given a set
of action specifications [13, 14]. It has been observed that automated composi-
tion of services can be viewed as a planning problem (see, e.g., [21, 22]), where
services are viewed as actions (with appropriate specifications), and composition
requirements form planning goals.

The main difference between planning and programming approaches is that
planning involves search for a plan that reaches a particular goal, while plans
are specified by the programmer in the other case. Search is typically performed
off-line, before execution of the plan. In order to reduce the search space, plan-
ning approaches often extend the classical planning problem by making use of
pre-specified plan templates (see, e.g., [11, 15]). Such planning approaches bear a
strong resemblance to programming approaches. In fact, in [24], HTN (Hierarchi-
cal Task Network) style planning [11] is incorporated into an agent programming
language by building on the underlying similarities between the programming
language and HTN planning.

Despite these commonalities between planning and programming approaches,
the difference remains that planning involves off-line search for a plan that
reaches a particular goal, while plans specified as programs are executed directly

21

on-line, without first checking whether a plan will reach a goal. This difference
leads to different research questions being addressed in each case. In particular,
research on planning is often concerned with the development of efficient algo-
rithms for performing the search, while research on programming approaches is
concerned with the specification of appropriate execution semantics of programs.
In this paper, we have been concerned with orchestration languages, taking a
programming approach to service composition. Consequently, our focus has been
on the investigation of the (operational) semantics of these languages.

7 Conclusion

In this paper, we have shown how the goal-oriented orchestration language of
[32] can be correctly translated to a procedural orchestration language. As we
have argued that the failure handling mechanism of the goal-oriented orches-
tration language is one of its main advantages, it is important to investigate
whether a similar mechanism cannot be implemented just as easily in a more
traditional language. As we have shown, however, the translation is non-trivial
and the programming patterns resulting from the translation do not increase un-
derstandability of the code. We thus argue that the kind of abstractions as used
in the goal-oriented orchestration language are worth considering as language
constructs of an orchestration language.

An important topic for future research is the extension of the goal-oriented
orchestration language towards more practically usable versions, e.g., by making
use of description logic instead of propositional logic (see [30] for a formal service
specification and matchmaking framework based on description logic). This will
allow us to experiment with the language in order to further investigate the use-
fulness of such a language in the domain of service orchestration. The usefulness
of goal-oriented abstractions will not only have to be investigated on the level
of orchestration languages, but also on the modeling level. The approach for
goal-oriented business process modeling of [6, 33, 5] (see Section 1) suggests that
goal-oriented techniques can be used for business process modeling. In future
work, we aim to investigate this in more detail. Moreover, we want to inves-
tigate whether the KAOS goal-oriented requirements engineering methodology
[27] can be adapted to fit the goal-oriented orchestration language.

References

1. Active Endpoints Inc., Adobe Systems Inc., BEA Systems Inc., Inter-
national Business Machines Corporation, Oracle Inc., and SAP AG.
WS-BPEL Extension for People (BPEL4People), Version 1.0, 2007.
https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/

30c6f5b5-ef02-2a10-c8b5-cc1147f4d58c.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

22

3. L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal representation for
BDI agent systems. In Programming multiagent systems, second international
workshop (ProMAS’04), volume 3346 of LNAI, pages 44–65. Springer, Berlin, 2005.

4. R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensa-
tions in flow composition languages. In POPL ’05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
209–220, 2005.

5. B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa. BDI-agents for agile
goal-oriented business processes. In Proceedings of the seventh international joint
conference on autonomous agents and multiagent systems (AAMAS’08): Industry
and Applications Track, pages 37–44, Estoril, 2008.

6. B. Burmeister, H.-P. Steiert, T. Bauer, and H. Baumgärtel. Agile processes through
goal- and context-oriented business process modeling. In Business Process Man-
agement Workshops, volume 4103 of LNCS, pages 217–228. Springer, 2006.

7. W. R. Cook and J. Misra. Computation orchestration: A basis for wide-area com-
puting, 2007. To appear in the Journal on Software and System Modeling.

8. M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Programming multi-
agent systems in 3APL. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms and Appli-
cations. Springer, Berlin, 2005.

9. J. de Bakker. Mathematical Theory of Program Correctness. Series in Computer
Science. Prentice-Hall International, London, 1980.

10. T. Erl. Service-Oriented Architecture: Concepts, Technologies, and Design. Pren-
tice Hall, 2005.

11. K. Erol, J. Hendler, and D. S. Nau. HTN planning: Complexity and expressiv-
ity. In Proceedings of the Twelfth National Conference on Artificial Intelligence
(AAAI’94), volume 2, pages 1123–1128, Seattle, Washington, USA, 1994. AAAI
Press/MIT Press.

12. M. Felleisen. On the expressive power of programming languages. In N. Jones, edi-
tor, ESOP ’90 3rd European Symposium on Programming, Copenhagen, Denmark,
volume 432, pages 134–151. Springer-Verlag, New York, N.Y., 1990.

13. R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

14. M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice.
Morgan Kaufmann, 2004.

15. G. d. Giacomo, Y. Lespérance, and H. Levesque. ConGolog, a Concurrent Pro-
gramming Language Based on the Situation Calculus. Artificial Intelligence, 121(1-
2):109–169, 2000.

16. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming with declarative goals. In Intelligent Agents VI - Proceedings of
the 7th International Workshop on Agent Theories, Architectures, and Languages
(ATAL’2000), Lecture Notes in AI. Springer, Berlin, 2001.

17. J. F. Hübner, R. H. Bordini, and M. Wooldridge. Declarative goal patterns for
AgentSpeak. In Proceedings of the Fifth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’06), 2006.

18. M. Juric, P. Sarang, and B. Mathew. Business Process Execution Language for
Web Services 2nd Edition. Packt Publishing, 2006.

19. M. Klein, C. Dellarocas, and A. Bernstein. Journal of computer supported coop-
erative work: Special issue on adaptive workflow systems. 9(3-4), 2000.

20. R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL, 2006. To
appear in Journal of Logic and Algebraic Programming (JLAP), Elsevier press.

23

21. S. McIlraith and T. Son. Adapting golog for composition of semantic web services.
In Proceedings of the Eighth International Conference on Knowledge Representa-
tion and Reasoning (KR’02), pages 482–493, 2002.

22. M. Pistore, P. Traverso, and P. Bertoli. Automated composition of web services
by planning in asynchronous domains. In Proceedings of the fifth international
conference on automated planning and scheduling (ICAPS’05), pages 2–11, 2005.

23. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

24. S. Sardina, L. P. de Silva, and L. Padgham. Hierarchical planning in BDI agent
programming languages: A formal approach. In Proceedings of Autonomous Agents
and Multi-Agent Systems (AAMAS’06), pages 1001–1008, Hakodate, Japan, 2006.
ACM Press.

25. SASIG: strategic automotive product data standards industry group. Ecm
recommendation, part 1 (ecr), 2008. http://www.prostep.org/de/downloads/

empfehlungen-standards.html.

26. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and avoiding interference
between goals in intelligent agents. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI 2003), 2003.

27. A. van Lamsweerde and E. Letier. From object orientation to goal orientation: a
paradigm shift for requirements engineering. In Radical Innovations of Software
and Systems Engineering in the Future: 9th International Workshop (RISSEF’02),
volume 2941 of LNCS, pages 325–340, London, UK, 2004. Springer-Verlag.

28. M. B. van Riemsdijk. Cognitive Agent Programming: A Semantic Approach. PhD
thesis, 2006.

29. M. B. van Riemsdijk, M. Dastani, J.-J. Ch. Meyer, and F. S. de Boer. Goal-oriented
modularity in agent programming. In Proceedings of the fifth international joint
conference on autonomous agents and multiagent systems (AAMAS’06), pages
1271–1278, Hakodate, 2006.

30. M. B. van Riemsdijk, R. Hennicker, and M. Wirsing. Service specification and
matchmaking using description logic: An approach based on institutions. In
12th International Conference on Algebraic Methodology and Software Technology
(AMAST’08), volume 5140 of LNCS, pages 392–406. Springer-Verlag, 2008.

31. M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer. Agent program-
ming in Dribble: from beliefs to goals using plans. In Proceedings of the second
international joint conference on autonomous agents and multiagent systems (AA-
MAS’03), pages 393–400, Melbourne, 2003.

32. M. B. van Riemsdijk and M. Wirsing. Using goals for flexible service orchestra-
tion: A first step. In J. Huang, R. Kowalczyk, Z. Maamar, D. Martin, I. Mueller,
S. Stoutenburg, and K. Sycara, editors, Service-Oriented Computing: Agents, Se-
mantics, and Engineering (SOCASE’07), volume 4504 of LNCS, pages 31–48, 2007.

33. Whitestein Technologies AG. Goal-oriented autonomic business process manage-
ment: Whitepaper, 2007. http://www.whitestein.com.

34. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and proce-
dural goals in intelligent agent systems. In Proceedings of the eighth international
conference on principles of knowledge respresentation and reasoning (KR2002),
Toulouse, 2002.

24

A Goal-Oriented Orchestration Language

A.1 Service Description

Syntax

Definition 10 (service description) Throughout this paper we assume a lan-
guage of propositional logic L with typical element φ that is based on a set of
atoms Atom, where >,⊥ ∈ Atom and failure 6∈ Atom. Moreover, we define a
language Lo = L ∪ {failure} for describing the output of services. We use φ not
only to denote elements of L, but also of Lo, but if the latter is meant, this will
be indicated explicitly. Let Nsn with typical element sn be a set of service names
such that d 6∈ Nsn.

The set of service descriptions S with typical element sd is then defined as
follows:

{〈sn, in, out, prec, eff〉 | in ⊆ Atom, out ⊆ Lo, failure ∈ out, prec ∈ L and eff ⊆ L}.

Definition 11 (information providing and world altering services) Let
〈sn, in, out, prec, eff〉 be a service description. This service description is an in-
formation providing service iff eff ≡ > and for each φ 6= failure ∈ out, there is
a φ′ ∈ out such that φ′ ≡ ¬φ. The service description is a world altering service
iff out \ {failure} ≡ eff, i.e., if φ ∈ out \ {failure}, then ∃φ′ ∈ eff : φ′ ≡ φ, and
vice versa.

Semantics

Definition 12 (matching a service to a goal) Assume a function atoms : L →
℘(Atom) that takes a formula from L and yields the set of atoms that occur in
the formula. Let sd = 〈sn′, in, out, prec, eff〉 be a service description. Then the
matching predicate match(sn(φ, κ), σ, sd), which takes a service call sn(φ, κ), a
belief base σ, and a service description sd, is defined as follows if sn 6= d.

match(sn(φ, ?φ′), σ, sd) ⇔ sd is information providing and sn = sn′ and
atoms(φ), {p} ⊆ in and σ 6|= ¬prec and
∃out′ ⊆ out : out′ 6|= ⊥ and out′ |= φ′

match(sn(φ, !p), σ, sd) ⇔ sd is world altering and sn = sn′ and
atoms(φ), {p} ⊆ in and σ 6|= ¬prec and
∃eff ′ ⊆ eff : eff ′ 6|= ⊥ and eff ′ |= φ′

If sn = d, then the same definition applies, but the requirement that sn = sn′

is dropped.

Definition 13 (semantics of service execution) Let sd = 〈sn, in, out, prec, eff〉
be a service description. The predicate ret is then defined as follows.

ret(sd, φ) ⇔ φ ≡ failure or
∃out′ ⊆ out \ {failure} : (out′ 6|= ⊥ and

∧
φo∈out′ φo ≡ φ)

25

A.2 Orchestration Language

Syntax

Definition 14 (belief base and goal base) The set of belief bases Σ with typical
element σ is defined as {σ | σ ⊆ L, σ 6|= ⊥}. The set of goals LG with typical
element κ is defined as {?p, !p | p ∈ Atom}. A goal base γ is a subset of LG, i.e.,
γ ⊆ LG.

Definition 15 (plan) Let a be an internal action, let x be a variable, and let
N+

sn be defined as Nsn ∪ {d}.16 Let sn ∈ N+
sn, r ∈ {np, p}, φ ∈ L and κ ∈ LG.

Then the set of plans Plan with typical element π is defined as follows, where b
stands for basic plan element.

actφ ::= x | φ b ::= a | κ | snr(actφ, actκ)
actκ ::= x | κ π ::= b | b >x> π

Definition 16 (plan selection rules) The set of plan selection rules RPS is
defined as {κ | β ⇒ π : κ ∈ LG, β ∈ L, π ∈ Plan}17.

Definition 17 (stack) The set of stacks Stack with typical element St to denote
arbitrary stacks, and st to denote single elements of a stack, is defined as follows,
where π ∈ Plan, κ ∈ LG, and PS ⊆ RPS.

st ::= (π, κ,PS)
St ::= st | st.St

E is used to denote the empty stack (or the empty stack element), and E.St is
identified with St.

Definition 18 (agent) An agent A is a tuple 〈σ0, γ0,PS, T 〉 where σ0 ∈ Σ
is the belief base, γ0 ⊆ LG is the goal base, PS ⊆ RPS is a finite set of plan
selection rules, and T is a partial function of type (InternalAction × Σ) → Σ
and specifies the belief update resulting from the execution of internal actions.
The initial configuration of this agent is 〈σ0, γ0, E, PS, T 〉, i.e., it has initially an
empty stack.

Semantics

Definition 19 (stack execution) Let st 6= E.

〈σ, γ, st〉 → 〈σ′, γ′, st′〉
〈σ, γ, st.St〉 → 〈σ′, γ′, st′.St〉

16 We use sn as typical element of Nsn and of N+
sn. It will generally be clear from the

context which is meant, and otherwise it will be indicated explicitly.
17 We use the notation {. . . : . . .} instead of {. . . | . . .} to define sets, to prevent

confusing usage of the symbol | in this definition.

26

Definition 20 (belief revision function) In the following, we assume a partial
belief revision function brev : (℘(L) × ℘(L)) → (L → ℘(L)). The function
brev(σ, x) should satisfy the following constraints on behavior: brev(σ, x) = σ′

where σ′ |= x and σ′ 6|= ⊥; if σ |= x, then brev(σ, x) = σ.

Definition 21 (semantics of goal achievement) The semantics of goal achieve-
ment is defined as a predicate ach(κ, σ, x) that takes a goal κ, a belief base σ,
and a propositional formula x ∈ L that represents the result against which κ
should be checked.

ach(?p, σ, x) ⇔ brev(σ, x) = σ′ and (x |= p or x |= ¬p) and x 6= failure
ach(!p, σ, x) ⇔ brev(σ, x) = σ′ and σ′ |= p and x 6= failure

Definition 22 (applicability of plan selection rule) We define a predicate
applicable(ρ, κ, σ) that takes a plan selection rule ρ, a goal κ, and a belief base
σ as follows, where “·” stands for ? or !.

applicable(· p | β ⇒ π, · φ, σ) ⇔ φ |= p and σ |= β and ¬ach(· p, σ,>)

In the following, SA is the set of service descriptions we assume to be available
to the agent, and PSA is its set of plan selection rules.

Definition 23 (initialization of stack)

κ′ | β ⇒ π ∈ PSA κ ∈ γ applicable(κ′ | β ⇒ π, κ, σ) PS′ = PSA \ {κ′ | β ⇒ π}
〈σ, γ, E〉 → 〈σ, γ, (π, κ,PS′)〉

Definition 24 (calling services)

¬ach(!φ′, σ,>)
〈σ, γ, (sn(φ, !p) >x> π, κ,PS)〉 → 〈σ, γ, (sn(φ, !p)[SA,>] >x> π, κ,PS)〉

¬ach(κ, σ, xo) sd ∈ S match(sn(φ, κ), σ, sd) ret(sd, xn)
〈σ, γ, (sn(φ, κ)[S, xo] >x> π, κ′,PS)〉 →

〈σ, γ, (sn(φ, κ)[S \ {sd}, xn] >x> π, κ′,PS)〉

Definition 25 (revision function) The revision function rev is defined as fol-
lows: rev(np, σ, x) = σ and rev(p, σ, x) = brev(σ, x).

Definition 26 (goal of service call achieved after service execution)

¬ach(κ′, σ, x′) ach(κ, σ, x′) rev(r, σ, x′) = σ′ γ′ = γ \ {κ | ach(κ, σ, x′)}
〈σ, γ, (snr(φ, κ)[S, x′] >x> π, κ′,PS)〉 → 〈σ′, γ′, ([x′/x]π, κ′,PS)〉

Definition 27 (base) The predicate base(σ, κ, x) has a belief base σ, a goal κ,
and a formula x representing the base of κ in σ as parameters. Let σ′ ⊆ σ such
that σ′ |= p and for any σ′′ such that σ′′ ⊂ σ′, we have σ′′ 6|= p. The predicate is
then defined as follows:

base(σ, !p, x) ⇔ σ′ exists and x =
∧

φ∈σ′ φ

base(σ, ?p, x) ⇔ x = ⊥

27

Definition 28 (goal of service call achieved before services are called)

ach(!p, σ,>) base(σ, !p, x′)
〈σ, γ, (sn(φ, !p) >x> π, κ′,PS)〉 → 〈σ, γ, ([x′/x]π, κ′,PS)〉

Definition 29 (apply rule to create stack element) Below, PS′ = PSA \ {κ′ |
β ⇒ π}.

κ′ | β ⇒ π ∈ PSA applicable(κ′ | β ⇒ π, κ, σ)
〈σ, γ, (κ >x> π′, κ′′,PS)〉 → 〈σ, γ, (π, κ,PS′).(κ >x> π′, κ′′,PS)〉

Definition 30 (apply rule after plan failure) Below, PS′ = PS \ {κ′ | β ⇒ π}.

κ′ | β ⇒ π ∈ PS applicable(κ′ | β ⇒ π, κ, σ)
〈σ, γ, (ε, κ,PS)〉 → 〈σ, γ, (π, κ,PS′)〉

Definition 31 (popping a stack element: goal of stack element reached or un-
reachable)

ach(κ1, σ, x) rev(r, σ, x) = σ′ γ′ = γ \ {κ | ach(κ, σ′, x)}
〈σ, γ, (snr

1(φ1, κ3)[S, x] >x1> π1, κ1,PS1).(κ1 >x2> π2, κ2,PS2)〉 →
〈σ′, γ′, ([x/x2]π2, κ2,PS2)〉

T (σ, a) = σ′ ach(!p, σ′,>) base(σ′, !p, x′) γ′ = γ \ {κ | ach(κ, σ′,>)}
〈σ, γ, (a � π′, !p, PS′).(!p >x> π, κ, PS)〉 → 〈σ′, γ′, ([x′/x]π, κ,PS)〉

¬∃ρ ∈ PS : applicable(ρ, κ, σ)
〈σ, γ, (ε, κ,PS).(κ >x> π, κ′,PS′)〉 → 〈σ, γ, (ε, κ′,PS′)〉

Definition 32 (plan failure)

¬ach(κ′, σ, xo) ¬∃sd ∈ S : match(sn(φ, κ′), σ, sd)
〈σ, γ, (snr(φ, κ′)[S, xo] >x> π, κ,PS)〉 → 〈σ, γ, (ε, κ,PS)〉

T (σ, a) is undefined
〈σ, γ, (a � π, κ,PS)〉 → 〈σ, γ, (ε, κ,PS)〉

B Procedural Orchestration Language

The syntax and semantics of service descriptions is the same as was defined for
the goal-oriented orchestration language.

B.1 Syntax

Definition 33 (statement) Assume a set InternalAction of internal actions with
typical element a, and a set of variable names Var with typical element x. The
set Var contains the reserved variable names from and this. Let sn ∈ Nsn,

28

r ∈ {np, p}, let e be an exception name, let p be an atom, and let φ propositional
formula. Then the set of statements Plan with typical element π is defined as
follows, where t stands for test, and b stands for basic plan element.

κ ::= ?p | !p
v ::= true | false | φ | κ
t ::= φ? | (x = v)? | ach(actκ, x)? | not t | t ∧ t′

acti ::= x | v
actφ ::= x | φ
actκ ::= x | κ
exp ::= v | κ(act1, . . . , actn) | snr(actφ, actκ) | base(actκ)
b ::= a | x := exp | t | return act | throw e
π ::= b | b;π | π + π′ | while t do π od

We abbreviate ach(κ,>) as ach(κ).

Definition 34 (procedures and exception handlers) A procedure has the form
κ(x1, . . . , xn) ⇒ π. Exception handlers, typically denoted by h, have the form
e.Handler ⇒ π, where e is an exception name. A procedure definition is a proce-
dure accompanied with a possibly empty set of exception handlers, denoted by
[κ ⇒ π,H], where H is a set of exception handlers.

Definition 35 (procedural program) A procedural program is a tuple
〈σ0, γ0, π0,P, T 〉, where the belief base σ0 and goal base γ0 are as in Definition
1, and together form the global state of the program, π0 is the initial statement,
P is a set of procedure definitions, and T is as in Definition 18. The initial
configuration of this program is 〈σ0, γ0, (π0, ∅, ∅),P, T 〉.

B.2 Semantics

Definition 36 (stack execution) Let st 6= E.

〈σ, γ, st〉 ; 〈σ′, γ′, st′〉
〈σ, γ, st.St〉 ; 〈σ′, γ′, st′.St〉

Definition 37 (action execution)

T (σ, a) is undefined [κ/this] ∈ θ

〈σ, γ, (a;π, θ,H)〉 ; 〈σ, γ, ([αfail] throw κ.planFailedExc, θ,H)〉

Definition 38 (assignment of values to variables) We define [v/x]θ as θ ∪
{[v/x]} if there is no v′ such that [v′/x] ∈ θ, and as (θ \ {[v′/x]}) ∪ {[v/x]}
otherwise.

〈σ, γ, (x := v;π, θ,H)〉 ; 〈σ, γ, (π, [v/x]θ, H)〉

Definition 39 (procedure call)

[κ′(f1, . . . , fn) ⇒ π′,H ′] is a procedure definition [v1/x1], . . . , [vm/xm] ∈ θ

〈σ, γ, (x := κ′(x1, . . . , xm, vm+1, . . . , vn);π, θ,H)〉 ;

〈σ, γ, (π′, {[v1/f1], . . . , [vn/fn]},H ′).(x := κ′;π, θ,H)〉

29

Definition 40 (service call)

sd ∈ S match(sn(φ, κ), σ, sd) ret(sd, v)
〈σ, γ, (x := snr(φ, actκ);π, θ,H)〉 ; 〈σ, γ, (π, [v/x]θ, H)〉

¬∃sd ∈ S : match(sn(φ, κ), σ, sd)
〈σ, γ, (x := snr(φ, κ);π, θ,H)〉 ; 〈σ, γ, (π, [nomatch/x]θ, H)〉

If (some of) the parameters of the service call are variables, the values of these
variables are first retrieved from θ.

Definition 41 (retrieving the base) The semantics of the predicate base(σ, κ, v)
is specified in Definition 27.

base(σ, κ, v)
〈σ, γ, (x := base(κ);π, θ,H)〉 ; 〈σ, γ, (π, [v/x]θ, H)〉

If the parameter of base is a variable, the value of this variable is first retrieved
from θ.

Definition 42 (tests) The semantics of ach(κ, σ, x) is specified in Definition
21, and the semantics of negation and conjunction is as usual.

σ |= φ

〈σ, γ, (φ?; π, θ,H)〉 ; 〈σ, γ, (π, θ,H)〉
[v/x] ∈ θ

〈σ, γ, ((x = v)?; π, θ,H)〉 ; 〈σ, γ, (π, θ,H)〉
ach(κ, σ, x)

〈σ, γ, (ach(κ, x)?; π, θ,H)〉 ; 〈σ, γ, (π, θ,H)〉
If the first parameter of ach is a variable, the value of this variable is first
retrieved from θ.

Definition 43 (return)

[v/x′] ∈ θ′

〈σ, γ, (return x′;π′, θ′,H ′).(x := κ′;π, θ,H)〉 ; 〈σ, γ, (π, [v/x]θ, H)〉
Definition 44 (throwing exceptions)

e.Handler ⇒ π′ ∈ H

〈σ, γ, (throw e;π, θ,H)〉 ; 〈σ, γ, (π′, θ,H)〉
¬∃h′ ∈ H ′ : h′ is of the form e.Handler ⇒ π′′

〈σ, γ, (throw e;π′, θ′,H ′).(π, θ,H)〉 ; 〈σ, γ, (throw e, θ, H)〉
Definition 45 (non-deterministic choice)

〈σ, γ, (π1;π, θ,H)〉 ; 〈σ, γ, S〉
〈σ, γ, ((π1 + π2);π, θ,H)〉 ; 〈σ, γ, S〉

〈σ, γ, (π2;π, θ,H)〉 ; 〈σ, γ, S〉
〈σ, γ, ((π1 + π2);π, θ,H)〉 ; 〈σ, γ, S〉

Definition 46 (while) The specification of whether test t holds, is given in
Definition 42.

t holds
〈σ, γ, (while t do π od;π′, θ,H)〉 ; 〈σ, γ, (π; while t do π od;π′, θ,H)〉

t does not hold
〈σ, γ, (while t do π od;π′, θ,H)〉 ; 〈σ, γ, (π; while t do π od;π′, θ,H)〉

30

C Translation and Correctness

C.1 Translation

Definition 47 (program points) We extend statements in the procedural or-
chestration language with program points α, which can be placed before any
atomic statement b, yielding [α]b, in a statement π. Program points do not influ-
ence the semantics, and they disappear if their corresponding atomic statement
is executed. An empty statement has by definition a program point [αε]. We
say that a configuration d of a procedural program is at program point α, if the
statement of the top element of the stack of d is of the form [α]π, and denote this
by α : d. We define the relation⇒ as follows. If α0 : d0 ; . . . ; αn : dn such that
no configuration di with 0 < i < n is at a program point, then α0 : d0 ⇒ αn : dn.

Definition 48 (translating plan selection rules) Without loss of generality,
assume that variables in the goal-oriented orchestration language are not the
reserved variables triedi. Let PS be a set of plan selection rules. Let PSκ be
defined as {κ | β ⇒ π : κ | β ⇒ π ∈ PS} and let n = |PSκ |. We assume an
ordering on the elements of PSκ as follows: {κ | β1 ⇒ π1, . . . , κ | βn ⇒ πn}. The
translation function t(PSκ) for translating PSκ into one procedure definition is
defined as follows.

[κ(tried1, . . . , triedn, from) ⇒
this := κ;
(+1≤i≤n((triedi = false)? ∧ βi?; triedi := true; uκ(πi); [αfail] throw κ.planFailedExc) +
(not

V
1≤i≤n((triedi = false)? ∧ βi?); [αfail] throw from.planFailedExc)),

{κ.planFailedExc.Handler ⇒ xf := κ(tried1, . . . , triedn, from); return xf}]

Definition 49 (translating plans to statements) We define a function uκ(π)
where κ is the head of the plan selection rule of which the body π is translated,
or the goal of the stack element containing π. Let PSκ′ = {κ′ | β′ ⇒ π′ :
κ′ | β′ ⇒ π′ ∈ PS}, let n′ = | PSκ′ |, let false1,...,n′ be a vector of length n′

of parameters being the value false, and let SO be the set of available service
descriptions, and let sdsn be the service description of the service called for
service call snr(actφ, actκ′).

uκ(κ′ >x> π) = [ακ′] ((ach(κ′)?; x := base(κ′)) +
(not ach(κ′)?; x := κ′(false1,...,n′ , κ))); uκ(π)

uκ(a � π) = [αa] a; ((ach(κ)?; x := base(κ); return x) +
(not ach(κ)?; uκ(π)))

uκ(snr(actφ, actκ′) >x> π) = [αsn1] x := base(actκ′); ((ach(actκ′ , x); uκ(π)) +
(not ach(actκ′ , x)?; S := SO;
while not ach(actκ′ , x) do [αsn2] x := snr(actφ, actκ′);
((x = nomatch)?; [αfail] throw κ.planFailedExc) +
(not(x = nomatch)?; S := S \ {sdsn}) od);
[αsn3] ((ach(κ, x)?; return x) + (not ach(κ, x)?; uκ(π)))

Definition 50 (translating agents) Let 〈σ0, γ0,PS, T 〉 be a program in the
goal-oriented orchestration language. We then define the procedure init() and

31

its exception handlers as follows, relative to goal base γ0 = {κ0, . . . , κn}, with
0 ≤ i ≤ n, ni = |PSκi |, and ∗ is the disjunction of all guards of all rules in PS.

[init() ⇒ +i(goal(κi)?; x := κi(false1,...,ni
, κi); stop := init(); return stop) +

((
V

i not goal(κi))?; stop := st; return stop) + ((not ∗)?; stop := st; return stop),S
i κi.planFailedExc ⇒ stop := init(); return stop]

The function v, which takes a program in the goal-oriented orchestration lan-
guage and yields the corresponding program in the procedural orchestration
language, is then defined as follows: v(〈σ0, γ0,PS, T 〉) = 〈σ0, γ0, π0,P, T 〉 where
π0 = [αinit]stop := init() and P =

⋃
κ∈{κ : κ|β⇒π∈PS} t(PSκ) ∪ {init()} where

init() denotes the procedure definition above.

Note that we do not record which rules have been tried for achieving goals in
the goal base. Goals in the goal base should not be dropped if all rules have
been tried. Rather, it should be tried again to achieve these goals, if a first try
failed. This level of commitment to top-level goals is standard in goal-oriented
programming.

Definition 51 (translating statements to plans) The function u−1
θ , which takes

a statement at a program point from the procedural language and yields a plan
in the goal-oriented language is defined as follows, where π is a statement and
[κ/this] ∈ θ.

u−1
θ (π) = u−1

κ (π) for π of the form of the statements of Definition 9
u−1

θ (fail) = ε
u−1

θ (sn−while) = snr(actφ, actκ′)[Sn, xn] >x> π with [Sn/S], [xn/x] ∈ θ
u−1

θ (sn− done) = snr(actφ, actκ′)[Sn, xn] >x> π with [Sn/S], [xn/x] ∈ θ

where fail is shorthand for [αfail] throw κ.planFailedExc, sn−while is shorthand
for

[αsn2] x := snr(actφ, actκ′); (((x = nomatch)?; [αfail] throw κ.planFailedExc) +
(not(x = nomatch)?; S := S \ {sdsn}));
while not ach(actκ′ , x) do [αsn2] x := snr(actφ, actκ′);
(((x = nomatch)?; [αfail] throw κ.planFailedExc) +
(not(x = nomatch)?; S := S \ {sdsn})) od;
[αsn3] ((ach(κ, x)?; return x) + (not ach(κ, x)?; uκ(π)))

and sn− done is shorthand for

[αsn3] ((ach(κ, x)?; return x) + (not ach(κ, x)?; uκ(π))).

Definition 52 (translating procedural stacks to goal-oriented stacks) Let A =
〈σ0, γ0,PSA, T 〉 be a program in the goal-oriented orchestration language. We
define a function y′(PSA, θ), which takes a set of plan selection rules and a
substitution, and which yields a set of plan selection rules. Let [κ/this] ∈ θ and
let PSAκ be as in Definition 48 with n = |PSAκ | and rules numbered 1 to n. We
then define y′(PSA, θ) as

{κ | βi ⇒ πi : [false/triedi] ∈ θ, κ | βi ⇒ πi ∈ |PSAκ |} ∪ (PSA \ PSAκ)

32

where 1 ≤ i ≤ n.
If d0 ;∗ α : dn where d0 is the initial configuration of v(A), we have that

the top elements of the stack S of dn are of the form

([α]π, θ, H).(xf := κ(tried1, . . . , triedn, from); return xf , θm−1, H).
(xf := κ(tried1, . . . , triedn, from); return xf , θ1, H)

(10)

where [κ/this] ∈ θ, n = |PSAκ |, and m = | {[true/triedi] | [true/triedi] ∈ θ} | for
1 ≤ i ≤ n. The elements just below these top elements are of the form

(x := κ(false1, . . . , falsen, κ′); [α′]π′, θ′, H ′).
(xf := κ′(tried1, . . . , triedk, from); return xf , θ′k−1, H

′).
(xf := κ′(tried1, . . . , triedk, from); return xf , θ′1, H

′)
(11)

where [κ′/this] ∈ θ′. The first element thus has a procedure call at the start of
its statement, just before reaching a program point. This pattern repeats itself,
until reaching the bottom elements of S, which are of the form

S′.(x := κ(false1,...,n, κ); stop := init(); return stop, ∅, H).
(stop := init(); return stop, ∅, H)1.
. . .
(stop := init(); return stop, ∅, H)k.
[αinit](stop := init(), ∅, ∅)

(12)

where k ≥ 0.
We now define the function y(S), which takes a stack from a procedural con-

figuration dn as defined above, and yields a stack in the goal-oriented language,
as follows, where the top elements of S are of the form (10) (denoted by top),
i.e., the top element is of the form ([α]π, θ,H) with [κ/this] ∈ θ, middle is of
the form (11), init is of the form (12), u−1

θ (π)θ expresses the application of θ to
u−1

θ (π), and π′, θ′, and κ′ are as in (11):

y(top.S) = (u−1
θ (π)θ, κ, y′(PSA, θ)).y(S)

y(middle.S) = (κ >x> u−1
θ (π′)θ′, κ′, y′(PSA, θ′)).y(S)

y(init) = E
y(([αinit]stop := init(), ∅, ∅)) = E.

A stack S.E is identified with S.

Definition 53 (translating configurations) Let dn be a configuration in the
procedural orchestration language such that d0 ;∗ α : dn where d0 is the initial
configuration of v(A) where A is some program in the goal-oriented orchestration
language. The function z takes such a configuration dn of the form 〈σ, γ, S〉
and yields the corresponding configuration in the goal-oriented orchestration
language.

z(〈σ, γ, S〉) = 〈σ, γ, y(S)〉

33

C.2 Correctness

Lemma 1 LetA be a program in the goal-oriented orchestration language with
initial configuration c0 and v(A) the translation of A with initial configuration
d0. Then it holds that z(d0) = c0.

Proof: Let A = 〈σ0, γ0,PS, T 〉 with c0 = 〈σ0, γ0, E, PS, T 〉 (Definition 18).
We then have that v(A) = 〈σ0, γ0, π0,P, T 〉 where π0 = [αinit]stop := init()
and P =

⋃
κ∈{κ : κ|β⇒π∈PS} t(PSκ) ∪ {init()} (Definition 50). Then v(A) has

initial configuration d0 = 〈σ0, γ0, (π0, ∅, ∅)〉 (Definition 35). We have that z(d0) =
〈σ0, γ0, E〉 by Definition 53, which concludes the proof. 2

Lemma 2 Let P be a program in the procedural orchestration language with
initial configuration d0 such that there is some program A of the goal-oriented
orchestration language with v(A) = P and let d0 ; d1 ; . . . be a run where
z(d0) = c0 for c0 being the initial configuration of A. Let 0 = p0 < p1 < . . .
be indices such that for each dpi with i ≥ 0, dpi is at a program point and
αi : dpi ⇒ αi+1 : dpi+1 holds. We then have that for each dpi it holds that z(dpi)
is defined.

Proof: Definition 53 translates procedural configurations by translating their
stack, as specified in Definition 52 through the function y. The function y speci-
fies how to translate a stack at program point αinit. The translation of all other
program points is specified through the function u−1

θ (Definition 51), which is
used by y. 2

Theorem 2 Let A be a program in the goal-oriented orchestration language
with initial configuration c0 and v(A) the translation of A. Then it holds for any
run c0 → c1 → . . . that there exist indices 0 = p0 < p1 < . . . and configurations
d0, d1, . . . such that d0 ; d1 ; . . . is a run in the procedural orchestration
language, d0 is the initial configuration of v(A), and for all pi with i ≥ 0 it holds
that z(dpi) = ci.

Let P be a program in the procedural orchestration language with initial
configuration d0 such that there is some program A of the goal-oriented orches-
tration language with v(A) = P . Then it holds for any run d0 ; d1 ; . . . that
there exist indices 0 = p0 < p1 < . . . and configurations c0, c1, . . ., such that
c0 → c1 → . . . is a run in the goal-oriented orchestration language, c0 is the
initial configuration of A, and for all pi with i ≥ 0, it holds that z(dpi) = ci.

Proof: Let A be a program in the goal-oriented orchestration language with
initial configuration c0 and v(A) the translation of A.

Part 1 Let c0 → . . . c1 → . . . be an arbitrary run and let d0 be the initial
configuration of v(A). We prove the result by induction over the length of runs in
the goal-oriented orchestration language, and by structural induction (reasoning
by cases) to prove the result for arbitrary configurations. We have to show that

34

there exist indices 0 = p0 < p1 < . . . and configurations d0, d1, . . . such that
d0 ; d1 ; . . . is a run in the procedural orchestration language, and for all pi

with i ≥ 0 it holds that z(dpi) = ci.
We show that if z(αi : dpi) = ci for i ≥ 0, there is a pi+1 such that αi : dpi ⇒

αi+1 : dpi+1 and z(αi+1 : dpi+1) = ci+1. We have that z(αi : dpi) is defined by
Lemma 2. Further, we have that z(αinit : d0) = c0 by Lemma 1, which provides
the induction basis.

For the induction step, we only show the case where the plan of the
top element of the stack of ci is a subgoal, i.e., where ci is of the form
〈σ, γ, (κ′ >x> π, κ,PS).S〉. Other cases are analogous. All configurations α : di

from the procedural run for which it holds that z(αi : dpi) = ci, have the follow-
ing form (Definition 52):

〈σ, γ, ([ακ′]πproc, θ, H).(xf := κ(tried1, . . . , triedn, from); return xf , θm−1, H).
(xf := κ(tried1, . . . , triedn, from); return xf , θ1, H).S′〉

(13)

where πproc is of the form

((ach(κ′)?; x := base(κ′)) + (not ach(κ′)?; x := κ′(false1,...,n′ , κ))); π′

where u−1
θ (π′)θ = π, y(S′) = S, and y′(PSA, θ) = PS.

Two possible transitions are derivable from ci.
(A) Assume that ach(κ′, σ,>) and base(σ, κ′, φ). Then the following transi-

tion is derivable.

〈σ, γ, (κ′ >x> π, κ,PS).S〉 → 〈σ, γ, ([φ/x]π, κ,PS).S〉 (14)

From ach(κ′, σ,>) in the goal-oriented case, we have that ach(κ′)? holds in the
procedural case (Definition 42). The first of the two possible non-deterministic
choices of π will thus be executed. From base(σ, κ′, φ) in the goal-oriented case
we have that x := base(κ′) assigns φ to x, i.e., the substitution in the next
configuration will be [φ/x]θ (Definition 41). We are then at the next program
point, as we have u−1

θ (π′)θ = π. Applying the function z to that configuration,
we get that the result is equal to ci+1, as u−1

θ (π′)[φ/x]θ = [φ/x]π, y(S′) =
S, [κ/this] ∈ θ, and the tried variables of θ have not changed, and therefore
y′(PSA, [φ/x]θ) = PS.

(B) Assume that κ′ | β1 ⇒ π1 ∈ PSA and that this rule is applicable, i.e.,
we have that ¬ach(κ′, σ,>). Then the following transition is derivable.

〈σ, γ, (κ′ >x> π, κ,PS).S〉 → 〈σ, γ, (π1, κ
′,PS′).(κ′ >x> π, κ,PS).S〉 (15)

We have that αi : dpi is of the form (13). From ¬ach(κ′, σ,>) in the goal-
oriented case, we have that not ach(κ′)? in the procedural case. The second
of the two possible non-deterministic choices of π will thus be executed. The
procedure κ′(false1,...,n′ , κ) is then called, which leads to the creation of a new
stack element with a statement of the form

this := κ′;
(+1≤i≤n((triedi = false)? ∧ βi?; triedi := true; π′i; [αfail] throw κ.planFailedExc) +
(not

V
1≤i≤n((triedi = false)? ∧ βi?); [αfail] throw from.planFailedExc))

35

where the substitution θ′ of this stack element is
{[false/tried1], . . . , [false/triedn′ , [κ/from]} and u1

θ(π
′
i)θ = π1. The first

assignment of the statement is then executed, leading to the addition of [κ′/this]
to θ′. We have that the rule κ′ | β1 ⇒ π1 ∈ PSA is applicable, which means
that β1 holds, and tried1 = false. The first non-deterministic choice can thus
be executed, after which the variable tried1 is set to true. We then reach the
next program point at π′i.

If we now apply z to the reached configuration. We have that u−1
θ (π′i)θ = π1,

i.e., the statement of the top element is translated correctly into π1. Further, we
have that [κ′/this] is in the substitution of the top element, which is correctly
translated into the goal of the top element of the goal-oriented stack. Also, we
have that the only tried variable set to true is tried1, which means that the set
of plan selection rules resulting from the translation are PS without the applied
rule κ′ | β1 ⇒ π1, which is equal to PS′.

The second element and the next n elements of the procedural stack are of the
form (13), except that the statement of the first of these elements is now of the
form x := κ′(false1,...,n′ , κ)));π′. Applying y to these elements, we get that all
but the first element are disregarded. The statement x := κ′(false1,...,n′ , κ)));π′

is translated into κ′ >x> π, as we have u−1
θ (π′)θ = π. The translation of the

other components is similar to case (A), yielding the desired result.

Part 2 Let P be a program in the procedural orchestration language with
initial configuration d0 such that there is some program A of the goal-oriented
orchestration language with v(A) = P and let d0 ; d1 ; . . . be a run of P .
Let 0 = p0 < p1 < . . . be indices such that for each dpi with i ≥ 0, dpi is at a
program point and αi : dpi ⇒ αi+1 : dpi+1 holds.

We prove that for all pi with i ≥ 0, it holds that z(dpi) = ci and c0 → c1 → . . .
is a run of A, by induction over the length of dp0 ;∗ dp1 ;∗ We have that
p0 = 0, and we thus have z(dp0) = c0 by Lemma 1, providing the induction basis.
Let i ≥ 0 and let z(dpi) = ci. We have to show for ci+1 with z(dpi+1) = ci+1

that ci → ci+1. We show the result only in case the program point of dpi is a
subgoal program point.

Let dpi be of the form

〈σ, γ, ([ακ′] ((ach(κ′)?; x := base(κ′))+
(not ach(κ′)?; x := κ′(false1,...,n′ , κ)));π′, θ,H).S〉 (16)

i.e., we have ακ′ : dpi . We also have that z(dpi) =
〈σ, γ, (κ′ >x> u−1

θ (π′)θ, κ,PS).y(S)〉, where PS is obtained from θ. We
then have that ci+1 is of the form of resulting configuration of the transition
of (14), or of (15), respectively, where u−1

θ (π′)θ = π. Assume ci+1 is of the
form (14). We know that the next program point to be encountered if dpi is
executed and the first test of the non-deterministic choice succeeds, occurs at π′

(Definition 9), i.e., dpi+1 is in that case of the form 〈σ, γ, ([α]π′, θ′,H).S〉 where
α is the program point of π′. We have that z(dpi+1) = 〈σ, γ, (πθ′, κ,PS′).y(S)〉.
We have that θ′ = [base(κ′)/x]θ]. We thus have that πθ′ is equal to the plan of

36

the top element of the stack of (14), and the only change to θ was with respect
to the variable x. We can thus conclude that PS′ = PS, yielding the desired
result. The other case is analogous. 2

37

