
Formalizing Organizational Constraints

A Semantic Approach

M. Birna van Riemsdijk1 Koen V. Hindriks1 Catholijn M. Jonker1 Maarten Sierhuis2

Delft University of Technology, Delft, The Netherlands1

Carnegie Mellon University, California, USA2

{m.b.vanriemsdijk,k.v.hindriks,c.m.jonker}@tudelft.nl1
maarten.sierhuis@sv.cmu.edu2

ABSTRACT
An organizational modeling language can be used to specify an
agent organization in terms of its roles, organizational structure,
norms, etc. Such an organizational specification imposes constraints
on agents that play roles in it, and the agents are expected to take
this into account when deciding what to do. This means that agents
need to have a basic understanding of what it means to comply
with organizational constraints. For this, it is essential that these
constraints are precisely specified. In this paper, we address this
in the context of the MOISE+ organizational modeling language.
We define a semantic framework for MOISE+ MAS and an accom-
panying linear temporal logic (LTL) to express its properties. We
analyze which constraints MOISE+ imposes on agents, and inves-
tigate how these can be made precise in LTL. We show that multiple
interpretations of constraints are sometimes possible, and explore
the space of possibilities. These analyses demonstrate the need for
a rigorous specification of organizational constraints, and provide
the foundations for the development of agents that understand how
to function in a MOISE+ MAS.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, languages and structures; F.3.2 [Logics and
Meaning of Programs]: Semantics of Programming Languages

General Terms
Theory, Languages

Keywords
Organizational Modelling Languages, Organization-Aware Agents,
Temporal Logic

1. INTRODUCTION
An important line of research in the multi-agent systems (MAS)

field that has received increasing attention in the last years, is to
assign an organization to the MAS with the aim of organizing and
regulating it. Assigning an organization to a MAS can be done
by developing an organizational specification in an organizational
modeling or programming language (see, e.g., [5, 1, 14, 4, 6]).
An organizational specification abstracts from the individual agents
Cite as: Formalizing Organizational Constraints: A Semantic Approach,
van Riemsdijk, Hindriks, Jonker, and Sierhuis, Proc. of 9th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2010), van
der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010,
Toronto, Canada, pp. XXX-XXX.
Copyright © 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

that will eventually play the roles in the organization. It may define
the structure of the agent organization in terms of roles and the re-
lations between roles, and specify the norms (e.g., obligations and
prohibitions) that are to be followed by the agents of the MAS. Or-
ganizing a MAS should make the agents more effective in attaining
their purpose, or prevent certain undesired behavior from occur-
ring. An organizational specification achieves this by imposing or-
ganizational constraints on the behavior of agents that function in
the organization.

Agents that operate in such an organized MAS are expected to
take these organizational constraints into account when deciding
what to do. For example, if an agent plays a role, this typically
comes with obligations that are to be adhered to. Agents should
be aware of this and take this into account when deciding on ac-
tion, if they are to operate effectively and flexibly in the orga-
nization. Agents that are capable of such organizational reason-
ing and decision making are called organization-aware agents [20,
18]. Organization-aware agents should be contrasted with agents
that have been designed to function in a particular organization and
that do not reason about the organizational specification. For such
agents, it will be more difficult to adapt their behavior to changes
in the organizational specification. That is, an important advantage
of organization-aware agents is added flexibility due to the fact that
they are able to understand the organizational specification.

Our research objective is the development of languages and tech-
niques for organization-aware agents. An essential step towards
this is specifying clearly what an organization expects from agents,
i.e., what the organizational constraints are. Ambiguity or unclear
specifications of such constraints may at best result in innocent mis-
behavior on the part of the agents but at its worst may result in
a dysfunctioning organization. Moreover, without a precise spec-
ification of organizational constraints it is not clear what to aim
for when developing (languages and techniques for) organization-
aware agents.

In this paper, we investigate organizational constraints in the
context of the well-known MOISE+ organizational modeling lan-
guage [13, 11, 14]. We introduce MOISE+ in Section 2. MOISE+

does not come with a comprehensive formalization of all organi-
zational constraints. Nevertheless, some aspects are formalized in
[11], and [12] formalize some constraints by expressing them in a
normative programming language with formal semantics. Our ap-
proach to making organizational constraints precise is to define a
formal semantic framework for MOISE+ MAS and an accompa-
nying linear temporal logic (LTL) to express its properties (Sec-
tion 3). We discuss which constraints MOISE+ imposes on agents,
and analyze them by making them precise in LTL (Sections 4 and
5). We show that multiple interpretations of constraints are some-
times possible, and explore the space of possibilities by formalizing

different variants in LTL and investigating their properties. These
analyses demonstrate the need for a rigorous specification of orga-
nizational constraints, and provide the foundations for the devel-
opment of organization-aware agents that function in a MOISE+

MAS. We conclude the paper and discuss future work in Section 6.

2. MOISE+

In this section, we present a general overview (Section 2.1) and
more detailed specification (Section 2.2) of MOISE+.

2.1 Overview
The MOISE+ organizational modeling language [13, 11, 14]

specifies an organization in terms of a structural dimension using
the notions of roles and groups, a functional dimension that de-
scribes how global collective goals should be achieved by means of
so-called schemes, and a deontic dimension expressing permissions
and obligations for roles, related to the achievement of (sub)goals.
Together, these dimensions form an organizational specification,
which imposes organizational constraints on a MAS, for example
by specifying obligations to achieve particular goals when an agent
plays a certain role.

Given an organizational specification, it is up to the agents to
operationalize it by entering the organization and playing roles in
it. In MOISE+, the run-time information regarding, e.g., which
agents take part in the organization and which agent has adopted
which role, together with the organizational specification is called
an organizational entity (OE). Agents can change the organiza-
tional entity by executing organizational actions such as adopting a
role. MOISE+ comes with organizational middleware S-MOISE+

[14]. The middleware maintains the organizational entity and can
execute organizational actions if requested so by agents. The mid-
dleware can also prevent the execution of organizational actions if
their execution would violate organizational constraints.

Figure 1 depicts the most important organizational actions, and
loosely illustrates when they can be executed. The figure also de-
picts hard and soft constraints, which we will discuss in the sequel.
It will become clear that hard constraints apply as soon as an agent
enters the organizational entity, and soft constraints are relevant
once an agent has adopted roles and once scheme instances have
been created. The rest of the figure should be read as follows.

Figure 1: Participating in a MOISE+ Organization

Once an agent has entered the organizational entity, it can cre-
ate1 group instances. These instantiate the groups that are specified

1For each “create” action there is also a dual “remove” action.

in the structural specification. A group is an element of a struc-
tural specification that is connected to roles and to other groups
through a subgroup relation. A group instance is part of an orga-
nizational entity. Once a group instance has been created, agents
can adopt roles in the group instance, and create scheme instances
for which the group instance is responsible.2 A group instance is
well-formed once enough agents are playing the roles of the corre-
sponding group. A role can only be adopted and a scheme can only
be created for a group instance. Group instances thus have to be
created before agents can adopt roles, since roles should be adopted
in group instances. This also explains why there is no restriction on
which agent can create which group instance: it should be possible
to create group instances before an agent has adopted a role. The
creation of a group instance can be viewed as an invitation to other
agents to form a group.

A scheme specifies how global goals can be achieved by decom-
posing these into subgoals, and specifies how these (sub)goals are
distributed over agents using the notion of mission. A mission con-
sists of one or more (sub)goals, and the deontic specification relates
roles to missions by defining to which missions an agent playing a
certain role is obliged or permitted to commit. Once an agent has
adopted a role in a group instance, it can commit to obliged or per-
mitted missions of scheme instances for which the group instance
is responsible. There is thus a difference between the agent being
obliged to commit to a mission, and the agent actually making the
commitment. The idea is that through committing to a mission,
the agent indicates that he “accepts” the obligation and will try to
achieve the goals of the mission. Once an agent has reached a goal
of a mission in a scheme instance, the agent can notify the organi-
zation of this by setting the goal state to “achieved” (or alternatively
setting the goal state to “impossible” if the agent believes the goal
cannot be achieved).

2.2 Detailed Specification
We now specify the dimensions of the organizational specifi-

cation in more detail. We make several simplifications for rea-
sons of presentation and refer to [13, 11, 14] for more details.
A structural specification consists of a set of roles R with typi-
cal element ρ, a set of acquaintance, communication and authority
links L between roles of the form (ρ, ρ′, l) where ρ, ρ′ ∈ R and
l ∈ {acq, com, aut} is the type of the link, a set of compatibility
constraints C ⊆ (R × R) that is reflexive and transitive, and that
expresses which roles an agent is allowed to play simultaneously, a
set of groups GR, and a set of group-role and group-group relations
((GR∪R)×GR) expressing which roles are part of which groups,
and which (sub)groups are part of other groups. For all links in L
it holds that an authority link between two roles implies a commu-
nication link, and a communication link implies an acquaintance
link. For simplicity, we have omitted inheritance between roles.

A functional specification describes how global goals should be
achieved. It consists of a set of schemes S. A scheme consists of
a set of goals G, a set of mission labels M, a goal tree T (contain-
ing the goals from G) that describes how to decompose goals into
subgoals (using the operators sequence, choice and parallelism, see
[13] for details), and a function m2g : M → P(G) that assigns a
set of goals to mission labels.3 The latter function defines the mis-

2Note that the notion of “group” in MOISE+ thus does not directly
refer to a collection of agents. It is an element of the structural
specification, and only once it is instantiated can agents adopt roles
in the resulting group instance.
3In [13], missions also have a minimum and maximum number of
agents that should commit to them. For simplicity, here we assume
the minimum is 1 and the maximum is ∞.

sions of a scheme, which are sets of coherent goals that an agent
can commit to. We use root(s) to denote the root goal of scheme s.

A deontic specification DS describes which missions an agent
playing a certain role is obliged or permitted to commit to. The de-
ontic specification consists of a set of permissions and obligations
of the form permission(ρ,m) and obligation(ρ,m), respectively,
where ρ ∈ R is a role and m ∈M is a mission label.

The set of agent names of agents participating in an organiza-
tional entity OE is denoted as N , the set of group instances that
have been created are denoted as GI, which agent has adopted
which role in a certain group instance is represented by a mapping
a2r : N → P(R × GI), the set of scheme instances that have
been created are denoted as SI, the scheme instance information
is represented by a mapping si2i : SI → (S × P(GI) ×N) that
maps each scheme instance to its corresponding scheme, responsi-
ble group instances, and the agent that created the scheme instance,
we represent which agent is committed to which missions in which
scheme instance by the mapping a2c : N → P(M×SI), and the
state of a goal in a scheme instance is represented by the mapping
g2state : (SI × G) → {unsatisfied, satisfied, impossible}.

In the sequel, we use the notation introduced here to refer to parts
of an organizational entity OE, without explicitly stating this each
time, e.g., GI refers to the group instances of OE, SI refers to the
scheme instances, and so forth.

3. BASIC FORMALISM
In this section, we introduce the basic semantic framework defin-

ing the execution of a MOISE+ MAS (Section 3.1), together with
a linear temporal logic (LTL) to express properties of its execution
(Section 3.2).

3.1 Semantic Framework
First, we define which components constitute a state of a MOISE+

MAS. We define a state of a MOISE+ MAS as a tuple
〈OE, ξ, a0, . . . , an, acti〉 where OE is an organizational entity, ξ
represents the shared environment in which the agents operate,
a0, . . . , an are the states of the agents participating in the MAS
where 0, . . . , n are the respective agent names, and acti is the ac-
tion act that has been executed by agent i to reach this state from
the previous state. The set of agent names N = {0, . . . , n} of
agents participating in the MAS is part of OE. We write an under-
score instead of acti if the executed action is not relevant. In the
initial state of a MAS we write acti = ε to denote that no action
has been executed yet. In this paper, we abstract from the inter-
nal structure of agents and how these are updated since we specify
constraints from the perspective of the organization.

We assume the repertoire of actions Acti of a participating agent
i consists of internal actions (Actint

i), environment actions (Actenv
i),

organizational actions (Actorg
i), and communication actions

(Actcom
i).4 The execution of internal actions affects the internal

mental state of the agent executing the action, environment actions
affect the environment ξ, organizational actions affect the organi-
zational entity OE, and communication actions affect the mental
states of sender and receiver of the message.

The possible organizational (Actorg) and environment (Actenv)
actions are defined by OE and ξ, respectively. We assume these
to be mutually disjoint and disjoint from communication actions.
We assume for any agent i in the MAS that Actorg

i ⊆ Actorg and
Actenv

i ⊆ Actenv. We do not further specify the environment and

4MOISE+ considers communication actions to be organizational
actions, but we separate them since their semantics are defined dif-
ferently.

the environment actions, since it is not the focus of this paper (see,
e.g., [4] for an example on how this can be done). The organiza-
tional actions Actorg are those offered by MOISE+ [11], of which
we have introduced several in Section 2.

In this paper, the following actions are particularly relevant:
adopting and removing a role in a group instance
(adoptRolei(ρ, gi) and removeRolei(ρ, gi)), creating a
scheme instance from a scheme with a set of responsible group
instances (createSchemei(st, gis)) and removing a scheme in-
stance (removeSchemei(si)), committing and finishing a mis-
sion in a scheme instance (commitMissioni(m, si) and
finishMissioni(m, si)), and setting the goal state of a goal in a
scheme instance (setGoalStatei(state, g, si)). Communication
actions have the form sendi(j, φ), where j is the agent name of
the receiving agent, and φ is the content of the message, which we
do not further detail in this paper.

The semantics of the execution of MOISE+ organizational ac-
tions, i.e., the definition of when they can be executed (precon-
ditions) and how they affect the organizational entity (postcondi-
tions), is specified in [11]. To represent how the execution of orga-
nizational actions affects the organizational entity we use the func-
tion O that takes an organizational action with instantiated param-
eters oa, the agent i that executed the action, and an organizational
entity OE and yields the updated OE. We define O(oa, i, OE) =
OE′ to yield the updated organizational entity OE’ as specified in
[11] if the precondition of oa executed by i holds, and otherwise
the function is undefined.

We define the semantics of the execution of a MOISE+ MAS as
usual as the interleaved execution of the agents participating in the
MAS, defined by means of a transition system [17] (see, e.g., [4]
for a similar formalization).5 A transition system for a MAS con-
sists of a set of axioms and transition rules for deriving transitions
for the MAS. A transition is a transformation of one state of the
MAS into another and it corresponds to a single computation step.
Below, we present the transition rule for the execution of organi-
zational actions, where ai

oa→ a′
i expresses that agent i executes

organizational action oa, through which the agent’s state changes
from ai to a′

i.

ai
oa→ a′

i O(oa, i, OE) = OE′

〈OE, ξ, a0, . . . , ai, . . . , an, _〉 → 〈OE′, ξ, a0, . . . , a′
i, . . . , an, oai〉

Similar transition rules can be defined for the execution of environ-
ment actions and internal actions, but we omit them here since it is
not the focus of this paper.

The semantics for sending of messages is as follows, where a′
j

represents the state of agent j after having received the message.6

ai
send(j,φ)→ a′

i

〈OE, ξ, a0, . . . , ai, . . . , aj , . . . , an, _〉 →
〈OE, ξ, a0, . . . , a

′
i, . . . , a

′
j , . . . , an, sendi(j, φ)〉

The execution of a MOISE+ MAS results in a computation. We
define a computation as a sequence of MAS states, such that each
state (except the initial state) can be obtained from the previous by
applying a transition rule.

3.2 Linear Temporal Logic
5This implies that only one action is executed at a time. This can
be generalized, but it is not needed for the purpose of this paper.
6This semantics assumes agent j is always able to receive a mes-
sage. This is done for simplicity, but it is not essential for our
framework.

We use linear temporal logic (LTL) [7] for formalizing organi-
zational constraints. The atomic LTL formulas in our case are “or-
ganizational predicates” to express properties of the organizational
entity of a MAS state (Lorg) and the formula of the form donei(act)
to refer to the action that was executed to reach a MAS state. The
language Lorg is introduced step by step in the sequel. Our LTL
language with typical element ϕ, is then defined by:

χ ::= any element from Lorg ∪ {donei(act)}
ϕ ::= χ | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕ until ϕ

The semantics of LTL formulas is as usual defined on traces, which
are infinite sequences of states. In our case traces are basically
MAS computations. Since LTL is defined on infinite traces, we
augment each finite MAS computation t where
sk = 〈OE, ξ, a0, . . . , an, acti〉 is the final state of t by an infi-
nite sequence of states sk+1, sk+2, . . . where each sm with m > k
equals 〈OE, ξ, a0, . . . , an, ε〉. The semantics of the temporal op-
erators is as usual [7]. The eventuality operator 3ϕ is introduced
as an abbreviation for true until ϕ and its dual 2ϕ is defined as
¬3¬ϕ. We also introduce the ϕ before ψ operator to express that
ϕ occurs before ψ. This operator does not introduce additional ex-
pressivity and can be defined in terms of until by ¬(¬ϕ until ψ).

The formula donei(act) and predicates fromLorg form the atoms
of the LTL language and are consequently state formulas, i.e., their
semantics is defined on MAS states. The semantics of donei(act)
as evaluated on a MAS state is as follows:
〈OE, ξ, a0, . . . , an, acti〉 |= donei(act). Since formulas from
Lorg refer to the organizational entity of a MAS, we will in the
sequel often say that an organizational entity satisfies an organiza-
tional predicate, which should be taken to mean that the MAS state
containing the organizational entity satisfies the predicate.

4. HARD CONSTRAINTS
When an agent enters a MOISE+ MAS, it is not completely free

to do what it wants. MOISE+ imposes certain organizational con-
straints on the participating agents, as already mentioned in Section
1. MOISE+ distinguishes between hard constraints and soft con-
straints. Hard constraints “must be enforced to maintain the orga-
nizational entity in a consistent state” and “since these constraints
cannot be violated by any agent, they should be implemented in the
middleware” [14]. Soft constraints, on the other hand, “are related
to the deontic dimension and are not guaranteed by the middleware,
since the agents are supposed to autonomously decide whether to
follow them or not” [14].

In this section, we analyze informally which hard constraints are
imposed by MOISE+ (Section 4.1) and we analyze them formally
by expressing them in LTL (Section 4.2). We address soft con-
straints in Section 5. Since MOISE+ does not formally specify
when an agent can be said to adhere to organizational constraints,
the formalizations provided in this and the next section necessarily
form our interpretation of the informal definitions of constraints.

4.1 Informal Analysis
In [14], the following hard constraints are distinguished: (i) the

number of role players in a group cannot exceed the maximum as
specified in the cardinality relation between role and group,7 (ii) the
role compatibility relation should be respected, (iii) an agent can
only commit to permitted or obliged missions, (iv) the acquaintance
and communication links should be respected, and (v) group and

7We have omitted these cardinality constraints from the specifica-
tion in Section 2.2.

scheme instances can only be created from schemes and groups as
specified in the organizational specification.

Analyzing these constraints, we identify that all except constraint
(iv) concern preconditions for the execution of organizational ac-
tions. For example, rephrasing (ii) it says that an agent cannot adopt
a role if it violates role compatibility. However, these hard con-
straints do not include all preconditions that are specified in [11].
For example, in [11] a precondition for the organizational action
removeRolei(ρ, gi) is that the agent i is playing role ρ in group
instance gi. It is not clear why certain preconditions were omitted
from the hard constraints in [14]. However, since we do not see a
reason for including certain preconditions and omitting others, we
propose to consider all preconditions for organizational actions as
hard constraints.

We thus suggest the following hard constraints:

1. Preconditions for the execution of organizational actions
should be respected.

2. Acquaintance and communication links of the structural spec-
ification should be respected.

Informally, we mean by respecting preconditions of organizational
actions that an agent can only execute organizational actions if their
preconditions hold. Respecting acquaintance links means that an
agent i is allowed to have a representation of j iff i is linked through
an acquaintance link to agent j [13]. Similarly, respecting commu-
nication links means that an agent i can only send a message to
another agent j if i is connected through a communication link to
j [13].

4.2 Formal Analysis

4.2.1 Preconditions
In this section we formally analyze the hard constraint of respect-

ing preconditions of organizational actions. The first question that
needs to be answered is what preconditions are. In [11], all precon-
ditions refer to properties of an organizational entity. Preconditions
can thus be expressed using the language Lorg.

We have informally interpreted the hard constraint as meaning
that an agent can only execute an organizational action if its pre-
condition holds. In order to formalize this, we use oai to denote
an organizational action executed by agent i and pre(oai) to denote
its precondition expressed in Lorg and corresponding to the speci-
fication in [11]. Then we formalize the hard constraint as follows,
which says that if an agent i has just executed an organizational ac-
tion oa, its precondition pre(oai) should hold in the state in which
it was executed.

DEFINITION 1. (hard constraint: respect preconditions)

2
`
©(donei(oa)) → pre(oai)

´
MOISE+ requires that hard constraints cannot be violated by agents.
In practice, this means that the organizatonal middleware should
ensure this. In our formal framework, the semantics of the MOISE+

organization should ensure that the hard constraint can never be vi-
olated, like the middleware does in the implementation. Formally,
this means that the hard constraint should be a validity of the frame-
work. This is in fact the case, as expressed in the following propo-
sition.

PROPOSITION 1. The hard constraint of Definition 1 is a va-
lidity of the semantic framework of Section 3.1.

This hard constraint expresses required agent behavior from the
perspective of the organization. However, it does not specify how
this should influence the agent’s internal reasoning processes. For
example, since the agent cannot execute organizational actions if
their preconditions do not hold, it seems it would be useful if the
agent is aware of this and does not consider those actions in its ac-
tion selection process. This would also require the agent to have
enough information about the organization to determine whether
preconditions of organizational actions hold. How the organiza-
tional constraints influence an agent’s reasoning processes is one
of the main issues that we will investigate in future research. Mak-
ing precise what the organizational constraints are as we do in this
paper, is an important and necessary step towards this goal.

4.2.2 Acquaintance and Communication Links
Respecting acquaintance links informally means that an agent

i is allowed to have a representation of j iff i is linked through
an acquaintance link to agent j [13]. In order to formalize this
constraint, we have to clarify two issues: (i) what does it mean that
an agent has a representation of another agent, and (ii) what does it
mean that an agent has an acquaintance link to another agent?

We interpret (i) as meaning that information about the existence
of an agent j can only be made available from the organizational
entity to i if i has an acquaintance link to j. However, the for-
mal tools needed to formalize this interpretation of the constraint
require a more elaborate formal framework for the interaction of
agents with the organization than presented in this paper. Though
of great relevance, defining such a framework is beyond the scope
of this paper and remains for future work.

We now proceed by formalizing the constraint that an agent i can
only send a message to another agent j if i is connected through a
communication link to j. In order to formalize this, we have to
specify what it means that agents are connected through a commu-
nication link. Following [14], we define that an agent i is connected
to another agent j through a communication link iff i plays a role
ρ in a group instance gi, ρ is connected in gr through a communi-
cation link to another role ρ′, and j plays role ρ′ in the same group
instance gi.8

Formally, we introduce a predicate hasLinkcom(i, j) ∈ Lorg to
specify that agents i and j are connected through a communication
link in a MAS state, defined as follows. Let i, j ∈ N . We define an
auxiliary function r2rOE

com : R → P(R) that takes a role and yields
the roles that are connected to it through a communication link:
r2rOE

com(ρ) = {ρ′ ∈ R | (ρ, ρ′, com) ∈ L}. We then define that
hasLinkcom(i, j) holds in a MAS state with organizational entity
OE iff

∃ρ, gi, ρ′ : (ρ, gi) ∈ a2r(i) and

ρ′ ∈ r2rOE
com(ρ) and (ρ′, gi) ∈ a2r(j)

We now use the predicate hasLinkcom(i, j) to formally define the
hard constraint, which says that if an agent i has just performed
a send(j, φ) action, hasLinkcom(i, j) should hold in the state in
which the message was sent.

DEFINITION 2. (hard constraint: sending messages)

2
`
©(donei(send(j, φ))) → hasLinkcom(i, j)

´
This hard constraint is defined analogously to the hard constraint of
Definition 1. However, in contrast with the latter, under the seman-
tics of Section 3.1 the constraint of Definition 2 is not a validity
8For simplicity, we only consider so-called intra-group links [14],
which means that links only concern agents of the same group in-
stance, and we omit inter-group links.

of the semantic framework. This is due to the fact that we have
defined the semantics of sending of messages independently from
the organizational entity. In order to make the constraint of Defi-
nition 2 a validity, the semantics has to be adapted by adding the
condition hasLinkcom(i, j) to the premise of the transition rule for
sending messages as done below.

ai
send(j,φ)→ a′

i hasLinkcom(i, j)

〈OE, ξ, a0, . . . , ai, . . . , aj , . . . , an, _〉 →
〈OE, ξ, a0, . . . , a

′
i, . . . , a

′
j , . . . , an, sendi(j, φ)〉

(1)

PROPOSITION 2. The hard constraint of Definition 2 is a va-
lidity of the semantic framework of Section 3.1, where the transition
rule for sending messages is replaced by (1).

This semantics brings sending of messages under the control of
the organizational entity. This corresponds to the structure of the
middleware as proposed in [14], where the communication infras-
tructure is part of the organizational middleware. However, there
remains the issue of communication between agents that is not con-
trolled by the middleware. In particular, it may be the case that
agents can identify each other by communicating outside the orga-
nization. This would then provide the means for circumventing all
restrictions on communication imposed by the organization.

Concluding this section, we note that the formalizations of the
two hard constraints have a similar structure. They specify that if
a certain action has been executed, certain conditions should hold
in the state in which it was executed. That is, they constrain action
execution. The fact that they constrain action execution explains
why they can naturally be guaranteed by the organizational mid-
dleware, thereby forming hard constraints. If the actions are exe-
cuted through the middleware, the middleware can check whether
the conditions on their execution hold, and prevent their execution
if necessary.

5. SOFT CONSTRAINTS
In contrast with hard constraints, soft constraints cannot natu-

rally be guaranteed by the middleware. Soft constraints do not
constrain action execution by specifying conditions under which
actions cannot be executed as in the case of hard constraints, but
rather specify when actions should be executed. It is up to the
agents to decide whether to comply with this or not, since organi-
zational middleware cannot force agents to do anything. A sanc-
tioning system can be used to enforce soft constraints [8].

MOISE+ distinguishes the following soft constraints [14]:

1. An agent should commit to missions that it is obliged to ful-
fill.

2. An agent should achieve goals that it is obliged to achieve.

3. Authority links should be respected.

As will become clear in the sequel, while we have proposed a sin-
gle formalization for each hard constraint, soft constraints leave
more room for interpretation. The reason may be that soft con-
straints have a less direct link to the organizational middleware.
Their purpose is to stimulate agents to do something useful, but it
is then up to the agents to decide whether to comply. The organi-
zational middleware may come in again to apply sanctions in case
soft constraints are violated (which to the best of our knowledge
is currently not part of the MOISE+ middleware). Both for devel-
oping middleware that detects violations of soft constraints as well
as for developing organization-aware agents that comply with (or

can decide to violate) soft constraints, however, it is essential that
it becomes clear what the soft constraints mean.9

In this section we suggest multiple interpretations and propose
corresponding formalizations. We do not argue that one interpre-
tation is necessarily better than another. In fact, this may depend
on the domain or even on the scheme or scheme instance under
consideration. However, the fact that soft constraints may be inter-
preted in several ways demonstrates the need to be precise to avoid
ambiguity.

In this paper, we focus on the formalization of the first two soft
constraints (Sections 5.1 and 5.2, respectively). The third soft con-
straint informally means that if agent i has an authority link to agent
j, agent i is allowed to “have authority on [i], i.e., to control [i]”
[13]. We consider authority links part of a more elaborate formal
framework for organizational interaction, and as such is without
the scope of this paper. As noted, although these issues are very
relevant for a complete framework, we focus here on the core of a
semantic framework for MOISE+ organizations.

5.1 Commit to Obliged Missions
In this section, we investigate how the soft constraint of commit-

ting to obliged missions can be interpreted.

5.1.1 Formalizing Obligation
The first question that needs to be answered is what it means

that an agent is obliged to fulfill a mission. In [14] a function is
defined that yields the obliged missions for an agent, given an or-
ganizational entity. A similar declarative definition is as follows.
Let i ∈ N , si ∈ SI and (s, gis, j) ∈ si2i(si). Agent i is
obliged to commit to mission m in a scheme instance si iff the
state of the root goal (retrieved from scheme s) of si is unsatis-
fied (g2state(si, root(s)) = unsatisfied), the agent i plays a role
ρ in a group instance gi ((ρ, gi) ∈ a2r(i)) that is responsible for
a scheme instance si (gi ∈ gis), and the role ρ is obliged to m
(obligation(ρ,m) ∈ DS).

This definition says that an agent is obliged to commit to mission
m in scheme instance si if the root goal of si is unsatisfied. Intu-
itively, it makes sense that an agent is obliged to commit to mission
m in si if si is not yet completely satisfied (or impossible). How-
ever, we argue that this definition is too weak. An agent should only
be obliged to commit to a mission if goals of this mission are still
unsatisfied. Intuitively, if the agent has performed its part of the
job, it should no longer be obliged to do it. Formally, this condi-
tion can be specified as follows: ∃g ∈ m2g(m) : g2state(si, g) =
unsatisfied, replacing g2state(si, root(s)) = unsatisfied.

We introduce the predicate obligedi(m, si) ∈ Lorg to refer to
this modified version of when an agent i is said to be obliged to
commit to missionm in scheme instance si. Note the difference be-
tween obligation(ρ,m) and obligedi(m, si). The former expresses
an obligation associated to a role which exists as part of the orga-
nizational specification, while the latter expresses an obligation for
a specific agent arising at a certain point in time due to the creation
of a specific scheme instance.10

Adapting the definition of obligation as done above is important
not only to comply with intuitions, but also to obtain an appropriate
9In [8] this is not clarified. Although sanctions are discussed, this
is not done in relation to soft constraints.

10This nicely matches the distinction between norms and obliga-
tions as made in deontic logic, where norms exist in the agent’s
social environment independent of agents, while obligations apply
to an agent at a particular time and for particular situations orig-
inating from the norms holding for the group of agents the agent
is part of and holding over the interval of time the agent is in the
group [3].

formalization of the soft constraint that an agent should commit to
obliged missions. Without the adaptation, and agent could commit
to an obliged mission, achieve all the goals of this mission, finish
the mission, and still be obliged to commit to the mission because
the root goal of the scheme is still unsatisfied (because other agents
have not achieved the goals of their missions yet). This is not de-
sirable, because committing to the mission again is not useful if the
goals have already been satisfied (or are impossible).

5.1.2 Formalizing the Constraint
Now that we have a definition of when an agent is obliged to

commit to a mission, we can start formalizing the soft constraint
that an agent should commit to obliged missions. For convenience
of representation, we introduce the predicate committedi(m, si) ∈
Lorg to express that agent i is committed to missionm in scheme in-
stance si, which is satisfied by an organizational entity iff
(m, si) ∈ a2c(i).11

A first attempt to formalize the soft constraint may be the fol-
lowing, which specifies that if the agent is obliged to commit to a
mission, it should at some point be committed to it.

2(obligedi(m, si) → 3(committedi(m, si))) (2)

This formalization suggests that the agent can postpone committing
to an obliged mission arbitrarily long. Presumably, it is however
not desirable that an agent postpones the fulfillment of obligations
indefinitely. This is related to research in deontic logic where it
is argued that achievement obligations (where an agent is obliged
to achieve something in the future that is not already (necessarily)
true now) need a deadline condition to express that they should be
achieved before the deadline [2].

To the best of our knowledge, MOISE+ does not address dead-
lines in relation to commitment to missions. Following [2], how-
ever, we do argue that obligations, also in the context of MOISE+,
need deadlines. In this paper, we do not investigate how to extend
MOISE+ with deadlines. Rather, we discuss which deadlines may
be considered and formalize them in LTL.

A general formalization expressing that if agent i is obliged to
commit to mission m in scheme instance si, it should be committed
to this mission before deadline d, can be given as in the following
definition.

DEFINITION 3. (soft constraint: commit to obliged missions)

2(obligedi(m, si) → (committedi(m, si) before d))

We note several properties of the relation between constraint (2)
and the constraint of Definition 3.

PROPOSITION 3. The constraint of Definition 3 implies con-
straint (2), i.e., the former is stronger. Assume d never occurs, i.e.,
obligedi(m, si) → 2¬d. It then holds that constraint (2) is equiv-
alent to the constraint of Definition 3.

We now investigate possible instantiations of the deadline d. First,
we observe that in order to be useful, the deadline should be such
that it can be easily identified when it has passed. For the organi-
zation this is useful to be able to detect violations of the soft con-
straint, and for the agent it will be easier to base its reasoning on
such deadlines (see also [10]). This means that the deadline should
at least be a state formula, i.e., a formula without temporal oper-
ators. The language Lorg can thus be used, and also a language
for expressing properties of the shared environment of the MAS.

11The result of executing the action commitMissioni(m, si) is
that the mapping a2c is updated with i 7→ (m, si), and executing a
commitMission action is the only way to update a2c [11].

We do not discuss aspects related to the shared environment in this
paper, but we do investigate several instantiations of d using Lorg.

If an agent is to commit to obliged missions, it should do this
before it becomes impossible. A situation when it becomes impos-
sible to commit to a mission in a scheme instance si, is when si
has been removed. That is, assuming that new scheme instances
that are created have a label that is different from any instances
that have been created before. This deadline can be expressed as
d = ¬SI(si), where SI(si) ∈ Lorg is a predicate that we introduce
to express that si is a scheme instance, i.e., it is satisfied by an or-
ganizational entity iff si ∈ SI. Although this deadline seems to be
more restrictive than constraint (2), it actually is not, as expressed
in the following proposition.

PROPOSITION 4. Assume that new scheme instances that are
created have a label that is different from any instances that have
been created before. Then if d = ¬SI(si), the constraint of Defini-
tion 3 is equivalent to constraint (2).

This means that choosing d = ¬SI(si) does not put a stronger
constraint on agent behavior. Nevertheless, an agent trying to sat-
isfy the constraint may use in its reasoning that there may occur a
situation, induced by other agent’s actions, where it can no longer
satisfy the constraint. This may be an incentive not to postpone
committing to missions arbitrarily long.

We now consider several other deadlines that we do not formal-
ize for reasons of space. The second deadline is the case where the
agent stops playing a role (“removes” a role, in MOISE+ terminol-
ogy). If an agent i has the obligation obligedi(m, si) that is due
to the fact that the agent is playing role ρ, the obligation will cease
to exist if the agent stops playing ρ (assuming the agent does play
any other roles that give rise to this obligation). There are cases
where this is an appropriate deadline. For example, consider a soc-
cer game between teamsA andB where teamB has just started an
attack, and agent i is playing the keeper role in team A. A defense
scheme instance is created for team A, in which the keeper should
take part. That is, agent i is obliged to commit to relevant missions
in this scheme instance. In this situation, it is not desirable that
agent i stops playing the keeper role. However, in case of a lec-
turer who is obliged to teach a certain course next year, it should be
allowed that the lecturer changes jobs before committing to teach-
ing the lecture. The third deadline is when the agent should start
pursuing a goal of a mission that the agent should commit to. A
disadvantage of this kind of “just in time committing” is that other
agents don’t know if the agent will join in.

Besides strengthening (2) using deadlines, another approach is
to refine the soft constraint saying that the agent should commit “as
soon as possible” to obliged missions. Since an agent may have
multiple obligations at the same time, we cannot require the agent
to commit immediately after the obligation arises. However, we
can say that the agent cannot execute any other actions until it has
committed to its obliged missions. A variant of the third deadline
where instead of using a deadline, the agent should commit as soon
as possible after it should start the pursuit of goals, can also be
considered.

5.2 Achieve Obliged Goals
Committing to obliged missions is of no use unless the agent also

pursues the corresponding goals. This is reflected in the second soft
constraint, which says that an agent should achieve goals that it is
obliged to achieve. In this section, we investigate that constraint.

For this, we first need to clarify what it means that an agent is
obliged to achieve goals. We propose to define this similarly to
the way this is done in [12]. An agent i is obliged to achieve a

goal g in a scheme instance si, denoted as obligedi(g, si) ∈ Lorg,
iff there is a mission m in scheme instance si that the agent has
committed to (committedi(m, si)), g is an unsatisfied goal of that
mission (g ∈ m2g(m) and g2state(si, g) = unsatisfied), and the
preconditions for starting to achieve the goal g are satisfied, i.e.,
the goals preceding g in the scheme s of the scheme instance si
(si2i(si) = (s, gis, a)) have been achieved. The latter corresponds
to the ready(s, g) predicate of [12], which we do not further detail
here.

We thus define that an agent must have committed to a mission
in a scheme instance in order for the goals of this mission to be
obliged. We have decided to define it like this because otherwise
the obligation to commit to a mission and the obligation to achieve
the goals of the mission would occur simultaneously. This could
suggest that the agent can already start pursuing the goals to ful-
fill the obligation to achieve them, before it has even committed to
the corresponding mission. This is not desirable for two reasons.
First, the agent cannot change the state of a goal in a scheme in-
stance unless it is committed to the corresponding mission [11].
Consequently, from the perspective of the organization the agent
cannot achieve goals unless it has committed to the mission. Sec-
ond, it will most likely be beneficial to coordination with the other
agents in the organization if agents announce that they are commit-
ted to a mission before they start pursuing the goals of the mission.
For these reasons it is desirable that an agent commits to a mis-
sion before pursuing its goals. This is in line with the semantics
of obligedi(g, si) as defined above, since it implies that goals only
become obliged after the agent has committed to the corresponding
mission.

In order to express the soft constraint, we introduce the predi-
cate goalState(g, si, state) ∈ Lorg to express that the state of goal g
in scheme instance si is state, where state ∈ {unsatisfied,achieved,
impossible}. It is satisfied by an organizational entity iff
g2state(si, g) = state. A first attempt at specifying the soft con-
straint is now the following.

2(obligedi(g, si) → 3(goalState(g, si, achieved))) (3)

This formalization is analogous to (2), and a similar discussion
regarding the use of deadlines applies. However, in this case we
suggest that the most suitable language for expressing deadlines of
obliged goals will be a language for expressing properties of the
shared environment of the MAS, rather than Lorg. This has to do
with the fact several organizational actions are no longer possible
once the agent has committed to a mission: it cannot finish the mis-
sion before the corresponding goals are achieved or impossible, and
it cannot remove the role related to this mission before it has fin-
ished the mission. In [12], specific kinds of deadlines are added to
MOISE+ goals by extending these with a “time-to-fulfill” attribute,
indicating how much time an agent has to achieve the goal.

Another observation with respect to (3) is that it might be con-
sidered too strong. If the agent comes to realize while pursuing
goals of the mission that they are actually impossible to achieve, it
will violate (3) by setting their goal state to impossible. One may
argue that this is unfair since the constraint would require the agent
to achieve impossible goals. A weaker variant that remedies this is
the following.

2(obligedi(g, si) →
3(goalState(g, si, achieved) ∨

textitgoalState(g, si, impossible))) (4)

When developing agents that are to comply with these constraints,
one would need to think about what it means for the agent that

it is obliged to achieve a goal. Presumably, it should try pursu-
ing it. This may be represented naturally in agent programming
languages that incorporate a notion of goal, such as the GOAL lan-
guage. However, even in those languages several aspects need to be
clarified with respect to this constraint. For example, how should
the agent determine when to start pursuing a goal? If the goal has
a deadline, this should influence the agent’s reasoning with respect
to this, and techniques from [10] may be used. Also, the agent may
have to reason about goal conflicts [19], since not all of its obliged
goals might be achievable before their deadlines. Moreover, if an
agent i has an obliged goal that is achieved or declared impossible
by another agent, agent i can drop the goal if it was pursuing it. It
is these kinds of questions that are important to address in future
research on developing organization-aware agents.

6. CONCLUSION AND FUTURE WORK
In this paper, we have analyzed hard and soft constraints imposed

by MOISE+. We have done this by defining a semantic frame-
work for MOISE+ MAS and formalizing and analyzing the con-
straints using LTL. We have formalized two main hard constraints
and shown that they are validities of the semantic framework. We
have analyzed soft constraints by proposing and discussing several
possible formalizations. The fact that we see several possible for-
malizations of soft constraints demonstrates the need to be precise.
Moreover, following work in deontic logic, we have highlighted the
need for deadlines to appropriately constrain agent behavior in the
context of soft constraints. Through these analyses, we have pro-
vided the foundations for the development of organization-aware
agents that function in a MOISE+ MAS.

As for future work, we aim to further investigate the formal-
ization of constraints related to acquaintance and authority links.
Moreover, the fact that we see several possible formalizations of
soft constraints suggests that it may be useful to extend MOISE+

in order to allow to specify which interpretation is taken. The next
main steps with respect to the development of languages and tech-
niques for organization-aware agents are to investigate how orga-
nizational constraints may influence an agent’s reasoning and deci-
sion making, and which information the agent needs from the or-
ganization to perform this reasoning. We will investigate how this
kind of reasoning can be incorporated into existing agent program-
ming languages, and to what extent existing approaches for reason-
ing about goals and norms in agent programming languages can be
used for this (see, e.g., [19, 16]). We will investigate the generaliza-
tion of these techniques for organization-aware agent development
to other kinds of organizations, such as the OperA framework [5].
This may also shed light on the relations between various organi-
zational modeling languages, such as [15].

7. REFERENCES
[1] J. L. Arcos, M. Esteva, P. Noriega, J. A. Rodríguez-Aguilar,

and C. Sierra. Engineering open environments with
electronic institutions. Engineering applications of artificial
intelligence., 18(2):191–204, 2005.

[2] J. Broersen. Strategic deontic temporal logic as a reduction
to ATL, with an application to Chisholm’s scenario. In
L. Goble and J.-J. Meyer, editors, DEON’06, volume 4048 of
LNCS, pages 53–68. Springer, 2006.

[3] J. Broersen. Issues in designing logical models for norm
change. In G. Vouros, A. Artikis, K. Stathis, and J. Pitt,
editors, OAMAS’08, volume 5368 of LNCS, pages 1–17,
2009.

[4] M. Dastani, N. Tinnemeier, and J.-J. Ch. Meyer. A
programming language for normative multi-agent systems.
In V. Dignum, editor, Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. IGI Global, 2009.

[5] V. Dignum. A Model for Organizational Interaction: Based
on Agents, Founded in Logic. PhD thesis, 2004.

[6] V. Dignum, editor. Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. IGI Global, 2009.

[7] E. Emerson. Temporal and modal logic. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume
B: Formal Models and Semantics, pages 996–1072. Elsevier,
Amsterdam, 1990.

[8] B. Gateau, O. Boissier, D. Khadraoui, and E. Dubois.
Controlling an interactive game with a multi-agent based
normative organizational model. In COIN’06@ECAI, 2006.

[9] K. V. Hindriks. Programming rational agents in GOAL. In
R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni, editors, Multi-Agent Programming:
Languages, Tools and Applications. Springer, Berlin, 2009.

[10] K. V. Hindriks, W. van der Hoek, and M. B. van Riemsdijk.
Agent programming with temporally extended goals. In
AAMAS’09, pages 137–144. IFAAMAS, 2009.

[11] J. F. Hübner. Um Modelo de Reorganizacao de Sistemas
Multiagentes. PhD thesis, 2003.

[12] J. F. Hübner, O. Boissier, and R. H. Bordini. Normative
programming for organisation management infrastructures.
In (COIN@MALLOW’009), 2009.

[13] J. F. Hübner, J. S. Sichman, and O. Boissier. A model for the
structural, functional, and deontic specification of
organizations in multiagent systems. In SBIA’02, volume
2507 of LNCS, pages 118–128. Springer, 2002.

[14] J. F. Hübner, J. S. Sichman, and O. Boissier. Developing
organised multiagent systems using the MOISE+ model:
programming issues at the system and agent levels.
International Journal of AOSE, 1(3/4):370–395, 2007.

[15] C. M. Jonker, A. Sharpanskykh, J. Treur, and P. Yolum. A
framework for formal modeling and analysis of
organizations. Appl. Intell., 27(1):49–66, 2007.

[16] F. Meneguzzi and M. Luck. Norm-based behaviour
modification in BDI agents. In AAMAS’09, pages 177–184,
Budapest, 2009.

[17] G. D. Plotkin. A Structural Approach to Operational
Semantics. Technical Report DAIMI FN-19, University of
Aarhus, 1981.

[18] M. Sierhuis, C. Jonker, B. v. Riemsdijk, and K. Hindriks.
Towards organization aware agent-based simulation.
International Journal of Intelligent Control and Systems,
(Special Issue on Agent Directed Simulation), To appear.

[19] M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Goals
in conflict: Semantic foundations of goals in agent
programming. JAAMAS, 18(3):471–500, 2009.

[20] M. B. van Riemsdijk, K. V. Hindriks, and C. M. Jonker.
Organization-aware agent programming: A research agenda.
In ESAW’09, volume 5881 of LNAI, pages 98–112. Springer,
2009.

[21] M. Wooldridge. Semantic Issues in the Verification of Agent
Communication Languages. Autonomous Agents and
Multi-Agent Systems, 3(1):9–31, 2000.

