
Using Rewrite Strategies for Testing BUpL Agents

Lăcrămioara Aştefănoaei?1, Frank S. de Boer1,2, M. Birna van Riemsdijk3

1 CWI, Amsterdam, The Netherlands
2 LIACS - Leiden University, The Netherlands

3 TU, Delft, The Netherlands

Abstract. In this paper we focus on the problem of testing agent programs writ-
ten in BUpL, an executable, high-level modelling agent language. Our approach
consists of two main steps. We first define a formal language for the specification
of test cases with respect to BUpL. We then implement test cases written in the
formal language by means of a general method based on rewrite strategies. Test-
ing an agent program with respect to a given test case corresponds to strategically
executing the rewrite theory associated to the agent with respect to the strategy
implementing the test case.

Keywords: Agent Languages, Testing, Rewriting, Strategies

1 Introduction

An agent is commonly seen as an encapsulated computer system that is situated in some
environment and that is capable of flexible, autonomous action in that environment
in order to meet its design objectives [12], or dynamic goals. An important line of
research in the agent systems field is the design of agent languages [3] with emphasis
on the use of formal methods. The guiding idea is that agent-specific concepts such as
beliefs (representing the environment and possibly other data the agent has to store),
goals (representing the desired state of the environment), and plans (specifying which
sequences of actions and possibly compositions of other plans to execute in order to
reach the goals) facilitate the programming of agents. Along these lines, we take as
case of study in this paper a simple variant of 3APL [7], the agent language BUpL,
which is introduced in [1]. There the authors advocate the use of the Maude language
[4] and its supporting tools for prototyping, executing, and verifying BUpL agents. One
of the main advantages of Maude is that it provides a single framework in which the
use of a wide range of formal methods is facilitated. Namely, being a rewrite-based
framework, it makes it is easy to prototype modelling languages with an operational
semantics by means of rewrite theories [8], and it provides mechanisms for verifying
programs and language definitions by means of LTL model-checking [6]. Furthermore,
the inherent reflective feature of rewriting logic (and of Maude, in particular) offers an
alternative to model-checking by means of rewrite strategies.

In this paper, we extend the results from [1]. More precisely, we investigate the
problem whether a BUpL agent is conformant with respect to a given specification,
? Email: L.Astefanoaei@cwi.nl; Address: Centrum voor Wiskunde en Informatica (CWI),P.O.

Box 94079,1090 GB Amsterdam, The Netherlands; Tel.: +31 (0)20 592 4368

however, from a different perspective. We understand conformance as the refinement
relation in [1], that is, it holds when the set of traces of a BUpL agent is included in
the set of traces of the specification. In a straight-forward approach, one solution is
to look at each execution trace of the agent and to check whether it is also a trace of
the specification. However, this is often practically unfeasible due to large (possibly
infinite) sets of agent executions. A more clever way is to consider the trace inclusion
problem in the opposite direction, that is, to look first at the traces of the specification
and to check whether these are also traces of the agent. Usually, “check” is achieved by
model-checking or inductive verification. However, both approaches have their disad-
vantages: with model-checking one might run into the state explosion problem, while
inductive verification is not automatic. An orthogonal technique is to use testing.

In the literature, the very basic idea behind testing is that it aims at showing that
the intended and the actual behaviour of a system differ by generating and checking
individual executions. Testing object-oriented software has been extensively researched
and there are many pointers in the literature with respect to manual and automated,
partition and random testing, test case generation, criteria for test selection (please see
[9] for an overview). In an agent-oriented setup, there are less references. A few pointers
are [13, 10] for developing test units from different agent methodologies, however the
direction is orthogonal to the one we consider.

Our testing methodology consists of the following steps. We see the traces of the
specification as the basic constructions for test cases. Since specifications are meant to
be “small”, generating test cases is a much simpler task than exhaustively exploring
possible agent executions. Either represented by regular expressions or by finite transi-
tion systems, specifications can be used to generate test cases by model-checking, for
example. Traces are deterministic, and since we build test cases on top of traces, also
test cases are deterministic, in contrast to specifications. This is an important feature
which makes testing an efficient approach. We define test cases as pairs of tests on ac-
tions and tests on facts. The tests on actions are finite sequences of pairs (a,R) where a
is the action to be executed and R is the set of actions which are allowed to be executed
at a given state. Whenever the agent cannot execute the action specified by the test on
actions, or whenever the agent can execute a forbidden action, the corresponding trace
represents a nonconformant execution. Tests on facts are temporal formulae that are
checked on the traces generated with respect to tests on actions. They can be further
used to detect “bad” executions.

Given that we define a formal language for expressing what a test case is, we then
describe how to implement test cases. Namely, we provide a strategy-based mechanism
to define test drivers. In a rewrite-based framework, strategies are meant to control non-
deterministic executions by instrumenting the rewrite rules at a meta-level. Usually, in
concrete implementations the nondeterminism is reduced by means of scheduling poli-
cies. While testing a concrete implementation, e.g., a multi-threaded Java application,
there is no obvious distinction between testing the program itself and testing the default
scheduling mechanism of the threads. We emphasise that the language we consider,
BUpL, is a modelling language, where the nondeterminism in choices among plans,
exception handling mechanisms and internal actions is a main aspect we deal with.
Strategies give a great degree of flexibility which becomes important when the interest

is in verification. For example, in our case, in order to analyse or experiment with a
new testing formalism one only needs to change the strategy instead of changing the
semantics of the agent language or the agent program itself.

Though test cases are deterministic, test drivers need to search all intermediary
states that can be reached by nondeterministically executing internal BUpL compu-
tations. Defining test drivers by means of strategies is an elegant solution to the implicit
nondeterminism in BUpL. However, it does not directly solve the problem of possibly
divergent executions of internal steps. To avoid some divergent computations, we need
to impose restrictions on the application of the strategies. This makes it less intuitive
that test drivers are faithfully implementing test cases, and thus the last issue we focus
upon is the correctness of our mapping between test cases and test drivers.

2 BUpL Agents By Example

In this section, we briefly present the syntax and semantics of BUpL for ease of ref-
erence and completeness. A BUpL agent has an initial belief base and an initial plan.
A belief base is a collection of ground (first-order) atomic formulae which we refer
to as beliefs. The agent is supposed to execute its initial plan, which is a sequential
composition and/or a nondeterministic choice of actions or composed plans. The se-
mantics of actions is defined using pre and post conditions. An action can be executed
if the precondition of the action matches the belief base. The belief base is then updated
by adding or removing the elements specified in the postcondition. When, on the con-
trary, the precondition does not match we say the execution of the action (or the plan of
which it is a part) fails. In such a case repair rules are applied (if any), and this results
in replacing the plan that failed.

Syntactically, a BUpL agent is a tuple (B0, p0, A, P , R), where B0 is the initial
belief base, p0 is the initial plan, A is the set of internal and observable actions, P are
the plans, and R are the repair rules. The initial belief base and plan form the initial
mental state of the agent. To illustrate the syntax, we take as an example a BUpL agent
that solves the Hanoi towers problem. We represent blocks by natural numbers. We
assume that the initial configuration is of three blocks arranged on a table as follows:
blocks 1 and 2 are on the table (0), and 3 is on top of 1. The agent has to rearrange them
such that they form the tower 321 (1 is on 0, 2 on top of 1 and 3 on top of 2). The only
action the agent can execute is move(x, y, z) to move block x from block y onto z, if x
and z are clear. Blocks can always be moved to the table, i.e., the table is always clear.

B0 = { on(3, 1), on(1, 0), on(2, 0), clear(2), clear(3), clear(0) }
p0 = build
A = {move(x, y, z) = (on(x, y) ∧ clear(x) ∧ clear(z), {on(x, z), ¬on(x, y), ¬clear(z))} }
P = { build = move(2, 0, 1);move(3, 0, 2) }
R = { on(x, y)← move(x, y, 0); build }

Fig. 1. A BUpL Toy Agent

The BUpL agent from Figure 1 is modelled such that it illustrates the use of repair
rules: we explicitly mimic a failure by intentionally writing a plan to move block 2
onto 1. This is not possible, since block 3 is already on top of 1. Similar scenarios
can easily arise in multi-agent systems: imagine that initially 3 is on the table, and the
agent decides to move 2 onto 1; imagine also that another agent comes and moves 3
on top of 1, thus moving 2 onto 1 will fail. The failure is handled by the repair rule
on(x, y) ← move(x, y, 0); build. Choosing [x/3][y/1] as a matcher enables the agent
to move block 3 onto the table and then the initial plan can be restarted.

We shortly describe (please see [1] for more details) the BUpL operational seman-
tics. The states of BUpL agents are pairs of belief bases and plans, symbolically denoted
by (B, p). These BUpL states change with respect to the transition rules in Figure 2.

p = (a; p′) a = (ψ, ξ) ∈ A θ ∈ Sols(B |= ψ)

(B, p) (τ/aθ)−→ (B] ξθ, p′θ)
((i/o)-act)

(B, (p1 + p2))
τ→ (B, pi)

(sumi, i ∈ {1, 2})

(B, a; p) 6 a→ φ← p′ ∈ R θ ∈ Sols(B |= φ)

(B, p) τ→ (B, p′θ)
(fail-act)

π(x1, . . . , xn) := p

(B, π(t1, . . . , tn))
τ→ (B, p(t1, . . . , tn))

(π)

Fig. 2. BUpL Rules

The rules (i-act) and (o-act)4 capture the effects of performing action a (either
internal or observable), which is the head of the current plan. These rules basically
say that for a given as a pair of a precondition (i.e., a first order formula) ψ and a
postcondition (i.e., a set of literals) ξ, if θ is a solution (i.e., a substitution) such that ψ
matches5 B (i.e., B |= ψθ), then the current mental state changes to a new one, where
the belief base is updated by adding/removing the positive/negative literals from ξ. It is
also the case that the current plan becomes p′θ, that is, the “tail” of the previous plan
p instantiated with respect to θ. The transition rule (fail-act) handles exceptions. If
the head of the current plan is an action that cannot be executed (the set of solutions
for the matching problem is empty) and if there is a repair rule φ ← p′ such that the
new matching problem B |= φ has a solution θ then the plan is replaced by p′θ. The
transition rule (π) implements “plan calls”. If the abstract plan π(x1, . . . , xn) defined
as p(x1, . . . , xn) is instantiated with the terms t1, . . . , tn then the current plan becomes
p(t1, . . . , tn) which stands for p[x1/t1] . . . [xn/tn]. The transition rule (sumi) replaces
a choice between two plans by either one of them.

4 For simplicity, they are denoted by the same transition ((i/o)-act). Syntactically, the only
difference between them is that the label for i-act is τ .

5 Belief bases are sets of ground positive literals, thus we solve a generalisation of the matching
and not unification problem.

2.1 Prototyping BUpL Agents as Rewrite Theories

In [1] it is shown how the operational semantics of BUpL can be implemented and
executed as a rewrite theory in Maude. The main advantage of using Maude for this
is that the translation of operational semantics into Maude is direct [11], ensuring a
faithful implementation. Thanks to this, it is relatively easy to experiment with different
kinds of semantics, making Maude suitable for rapid prototyping.

We do not explain here the way BUpL is prototyped in Maude but we briefly il-
lustrate at a more generic level how BUpL transition rules map into rewrite rules. A
rewriting logic specification or rewrite theory is a tuple 〈Σ,E,R〉, where Σ is a sig-
nature consisting of sorts (types) and function symbols, E is a set of equations and R
is a set of rewrite rules. The signature describes the terms that form the state of the
system. These terms can be rewritten using equations and rewrite rules. Rewrite rules
are used to model the dynamics of the system, i.e., they describe transitions between
states. Equations form the functional part of a rewrite theory, and are used to reduce
terms to their “normal form” before they are rewritten using rewrite rules. The appli-
cation of rewrite rules is intrinsically nondeterministic, which makes rewriting logic a
good candidate for modelling concurrency.

In our case, the signature (the set of terms) maps the mental states of the agents and
the rewrite rules map BUpL transitions, thus they describe how BUpL mental states
change. There is a natural encoding of transition rules as conditional rewrite rules. The
general mathematical format of a conditional rewrite rule is as follows:

l : t→ t′ if (
∧
i

ui = vi) ∧ (
∧
j

wj : sj) ∧ (
∧
k

pk → qk)

It basically says that l is the label of the rewrite rule t → t′ which is used to “rewrite”
the term t to t′ when the conditions on t are satisfied. Such conditions can be either
equations like ui = vi, memberships like wj : sj (that is, wj is of type sj) or other
rewrites like pk → qk. For example, the corresponding rewrite rule for transition (act)
in the case of observable actions is:

o-act : (B, p)→ (update(B, ξθ), p′θ) if p = o-a; p′ ∧ o-a = (ψ, ξ) ∧
θ = match(B, ψ)∧ o-a : Ao

where Ao denotes the sort of observable actions. As it will be clear in the next sections,
we need the distinction between internal and observable actions for testing, in order to
have a more expressive framework.

All other transition rules are encoded as rewrite rules in a similar manner and we do
not further explain them. In what follows, we only need to remember that each transition
has a corresponding rewrite rule labelled with the same name.

2.2 Meta-controlling BUpL Agents with Rewrite Strategies

In this section we make a short overview of the strategy language presented in [5] with
illustrations of how strategies can be used to control the execution of BUpL agents.
We denote the rewrite theory that implements the operational semantics of BUpL by

T . Given a BUpL agent, we denote by ms terms corresponding to BUpL mental states
(B, p). These terms can be rewritten by the rewrite rules from T . We further denote by
S the strategy language from [5]. The strategy language S can be viewed as a transfor-
mation of the rewrite theory T into S(T) such that the latter represents the execution
of T in a controlled way. Given a strategy expression E in the strategy language S, the
application of E to ms is denoted by E@ms. The semantics of E@ms is the set of
successors which result by rewriting ms using the rewrite rules from S(T).

The simplest strategies we can define in the strategy language S are the constants
idle and fail: idle @ ms = {ms}, fail @ ms = ∅. Another basic strategy consists
of applying to a BUpL agent state ms a rule identified by one of the labels: i-act, o-
act, fail-act, or sum, possibly with instantiating some variables appearing in the rule.
The semantics of l@ms, where l is one of the above rule labels, is the set of all terms
to which ms rewrites in one step using the rule labelled l. For example, applying the
strategy o-act to the initial state (B0, build) of the BUpL builder from Figure 1 has as
result ∅ because initially the only possible observable action move(2, 0, 1) fails. How-
ever, applying the strategy fail-act has as result the set {(B0, (move(3, 1, 0); build)),
(B0, (move(1, 0, 0); build)), (B0, (move(2, 0, 0); build))} , thus the set of all possi-
ble states reflecting a solution to the matching problem B0 |= on(x, y). Of course,
some of these resulting states are meaningless in the sense that there is no point in
moving a block from the table to the table. A much more adequate strategy is fail-
act[θ ← [x/3][y/1]], that is, to explicitly give the value we are interested in to the
variable θ which appears in the rewrite rule fail-act. This results in a set containing only
the state (B0, (move(3, 1, 0); build)).

Since matching is one of the basic steps that take place when applying a rule, an-
other strategy one can define is match T s.t. C. When applied to a given state term ms,
the result of this strategy is {ms} ifmsmatches the pattern T and the conditionC is sat-
isfied with the substitutions for the variables obtained in the matching, otherwise ∅. For
example, applying match (B, p) s.t. on(2, 1) ∈ B to (B0, build) has as result ∅ because
on(2, 1) is not in B0. The language S allows further strategies definitions by combining
them under the usual regular expression constructions like concatenation (“;”), union
(“|”) and iteration (“∗”, “+”). Thus, given E,E′ as already defined strategies, we have
that (E;E′)@ms = E′@(E@ms), meaning that E′ is applied to the result of apply-
ing E to ms. The strategy (E | E′)@ms defined as (E@ms) ∪ (E′@ms) means that
both E and E′ are applied to ms. The strategy E+@ms is defined as

⋃
i≥1

(Ei@ms)

with E1 = E and En = En−1;E, E∗ = idle | E+, thus it recursively re-applies
itself. It is also possible to define if-then-else combinators. The strategy E ? E′ : E′′

defined as (if (E@ms) = ∅ then E′@(E@ms) else E′′@ms fi) has the meaning that if,
when evaluated in a given state term, the strategy E is successful then the strategy E′

is evaluated in the resulting states, otherwise E′′ is evaluated in the initial state. The
if-then-else combinator is further used to define the following strategies. The strategy
not(E) = E ? fail : idle which reverses the result of applying E. The strategy try(E)
= E ? idle : idle changes the state term if the evaluation of E is successful, and if not,
returns the initial state. The strategy test(E) = not(E) ? fail : idle checks the success
(resp. the failure) result of E but it does not change the initial state. The strategy E! =
E∗ ; not(E) “repeats until the end”, that is, it applies E until no longer possible.

3 Formalising Test Cases

Our test case format is based on two main concepts: observable actions and facts as
appearing in belief bases. Our test case format is a kind of black box testing, aimed at
testing the observable behaviour of agents. For this reason, we have made a distinction
between internal and observable actions. The idea is that the execution of observable
actions is visible from outside the agent. Observable actions can be actions the agent
executes in the environment in which it operates. In the sequel, we will sometimes omit
the adjective “observable” if it is clear from the context.

We introduce a general test case format that allows to express that certain sequences
of observable actions are executed, and that the belief bases of the corresponding trace
satisfy certain properties. That is, we consider that a test case T is a pair consisting of
a test on actions Ta and a test on facts Tf . Tests on actions are finite sequences of pairs
(a0, R0); . . . ; (an, Rn). Each pair (ai, Ri) consists of a ground observable action ai to
be executed and a set of actions Ri which are allowed to be executed from the current
state. The idea is that a test on actions controls the execution of the agent in the sense
that only those actions are executed that are in conformance with the action expression.
Furthermore, the sets R can be used to identify “bad” traces. If, at a certain state of
execution, the agent can perform a forbidden action, i.e., which is not allowed by the
test case, then the corresponding trace is seen as a counter-example. If no restriction
is imposed on the enabled actions we simply use the notation a instead of the pair
(a,R). It is then the case that a counter-example can be generated when the agent
cannot execute the action indicated by the test. Tests on actions can be derived from
a given specification by means of model-checking, for example. We stress that though
the specification may be nondeterministic, tests on actions should be deterministic. This
is crucial for reducing the state space and makes this approach essentially different
from search techniques since it is more efficient. Tests on facts are specified like LTL
formulae. For ease of presentation, we work only with a subset of basic formulae:

Tf ::= true | fact | ¬fact | �(¬© true→ fact) | fact ∧ fact | �fact | ♦fact

with fact being a ground atomic formula. Observe that the syntax allows also test cases
consisting of tests on actions only, (Ta, true) which we write shortly as Ta. The LTL
formula �(¬© true→ fact) can be used to check if fact holds in the last states, that
is, in the states reachable after executing the test on actions. Tests on facts are meant to
provide additional counter-examples besides those reflecting forbidden actions. While
tests on actions can be automatically derived from the specification (where the tester
needs only to choose adequate test cases), using tests on facts requires more effort
and intuition from the tester. For illustration purposes, we provide an example of an
adequate test on facts by the end of the paper.

To define formally when a BUpL agent satisfies a test we use induction on the
structure of test cases. We denote the application of a test T on an initial configuration
(an initial BUpL mental state) ms0 as T @ms0. The (set) semantics is defined such that
it yields the set of final states reachable through executing the agent restricted by the
test, i.e., only those actions are executed that comply with the test. This means that an
agent with initial mental state ms0 satisfies a test T if T @ms0 6= ∅, in which case we

say that a test T is successful.

T @ms0 =

{ms | ms0

a⇒ ms}, T = (a,R) ∧R(ms0) ⊆ R
∅, T = (a,R) ∧R(ms0) 6⊆ R
T 2
a @(T 1

a @ms0), T = T 1
a ; T 2

a

{ms | ms ∈ Ta@ms0 ∧ΠTa
ms0(ms) |= Tf}, T = (Ta, Tf)

The arrow a⇒ stands for ⇒ a→⇒, where ⇒ denotes the reflexive and transitive clo-
sure of τ→, and R(ms) denotes the set of actions ready to be executed from ms, i.e.,
R(ms) = {a | ∃ms′ s.t. ms a⇒ ms′}. The idea behind the definition of the semantics of
(a,R)@ms0 is that the test should be successful for ms0 if action a can be executed in
ms0, while the enabled actions from the states reached by doing a should be a subset
of R (defined by R(ms) ⊆ R). The result is then the set of mental states resulting from
the execution of a, as defined by {ms | ms0

a⇒ ms}. We need to keep those mental
states to allow a compositional definition of the semantics. In particular, when defining
the semantics of T 1

a ; T 2
a we need the mental states resulting from applying the test T 1

a

, since those are the mental states in which we then apply the test T 2
a , as defined by

T 2
a @(T 1

a@ms0). In the definition of the semantics of (Ta, Tf), by abuse of notation,
we use ΠTa

ms0(ms) to denote the paths from ms0 to ms which are taken while exe-
cuting Ta. These paths are with respect to observable actions, that is, we abstract from
intermediary states reached by doing τ steps. More specifically, each state in a path is
reached from the previous by executing an observable action and then executing a num-
ber of τ steps until an observable action is again about to be executed (or no transitions
are possible). In the initial state, first τ steps can be executed before the first observable
action is executed. Tests on facts are thus checked in states resulting from the execution
of an observable action and as many τ steps as possible. We call these states stable.
The definition says that the result of applying the test (Ta, Tf) is a subset of Ta@ms0,
namely, those states ms which are reachable after executing Ta and the corresponding
path LTL satisfies Tf .

Our language is such that tests on facts can be omitted. By design, they are meant to
provide more expressivity and to give more freedom to the tester. One might raise the
issue that inspecting facts classifies our method as white-box testing. However, since
facts can be deduced from the effects of actions, our method lies at the boundary be-
tween black-box and gray-box testing. In order to define test cases, there is no need to
understand the way BUpL agents work (i.e., the internal mechanism for updating states
or the structure of repair rules and plans), but only to look at basic actions, which we
see as the interface of BUpL agents.

4 Using Rewrite Strategies to Define Test Drivers

In this section we describe how to define test drivers for test cases by means of the
strategy language S. To give some intuition and motivation, we consider the way one
would implement the basic test case a. By definition, the application of this test case to
a BUpL mental statems is the set of all mental states which can be reached fromms by
executing the observable action a after eventually executing τ steps corresponding to
internal actions, applying repair rules or making choices, i.e., after computing closure

sets of particular types of rewrite rules. It thus represents a strategic rewriting of ms.
We are only interested in those rewritings which finally make it possible to execute a.
To achieve this at the object-level means to have a procedure implementing the com-
putation of the closure sets. However, the semantics of the application of the test a is
independent of the computation of closure sets. Following [5], we promote the design
principle that automated deduction methods (e.g., closure sets of τ steps) should be
specified declaratively as nondeterministic sets of inference rules and not procedurally.
Depending on the application, specific algorithms for implementing the specifications
should be given as strategies to apply the inference rules. This has the implication that
there is a clear separation between execution (by rewriting) at the object-level and con-
trol (of rewriting) at the meta-level.

In what follows, for ease of reference, we denote by S (resp. T) the set of strategies
(tests) and by s the mapping from tests to test drivers, i.e., s : T → S. Since the
definition of tests is inductive, so is the definition of s. We first consider the test drivers
for tests on actions:

s(T) =
{
allow(R) ; do(a), T = (a,R)
s(T1) ; s(T2), T = T1 ; T2

thus sequences of tests map to sequences of strategies. We describe the basic test driver
do(a) in more detail. Observe that though tests on actions are deterministic, there are
still possibly many executions due to internal actions, choices in plans and repair rules.
Thus the test driver must search “all” possible intermediary states which can be reached
by doing τ steps. By means of strategies, this is an easy process. By definition, the
transitive closure of τ steps, ⇒, is τ→

∗
, with τ being one of the label sum, i-act, or

fail-act and the corresponding being maximal, in the sense that no τ steps are possible
from the last state. Thus, in a naive approach, we could simply consider the following
test driver:

tauClosure = (sum | i-act | fail-act)!

which is clearly implementing ⇒. However, though the order of application of the τ
steps does not matter when the computation paths are finite, this is no longer the case
when considering infinite paths. Consider an extraneous agent program with a plan
p = i-a + i-b where i-a is always enabled and i-b, on the contrary, is never enabled and
a repair rule (true← i-b) which says that whenever there is a failure repair it by execut-
ing i-b. Applying tauClosure as defined above we obtain two solutions corresponding
to a finite path reflecting the choice for executing i-a and a divergent path reflecting the
choice for executing i-b then failing all the time. As long as we are only interested in
the “first” solution, then tauClosure is fine, however, if we want to generate also the
“next” solution then the computation will not terminate. From this we conclude that
we may lose termination if any application order is allowed while we may be able to
achieve it if we impose a certain order. Since one source of non-termination is mainly
in a sort of “unfairness” with regard to enabled internal actions, a much more adequate
test driver is implemented if we enforce the execution of internal actions after eventually
applying the sequence (sum; fail-act). That is, tauClosure becomes:

tauClosure = (try(sum); try(fail-act); i-act)!; try(sum); try(fail-act)

We make a few observations with respect to the new definition of tauClosure. First,
since one might expect multiple sum and fail applications before an internal action is
executed, it is no longer immediately clear that tauClosure faithfully implements⇒.
We present a correctness proof by the end of the section. Second, because we use the
sequential strategy, we need to surround both sum and fail-act by try blocks. Otherwise,
if either one of them were not applicable, i.e., the current plan is not a sum and the
“head” action is enabled, then the strategy (sum ; fail-act; i-act) fails which is not what
we want. By means of the parametrised strategy try the initial state is preserved in the
case that sum or fail-act fails. Third, we order fail-act after sum because if we were to
use the strategy (try(sum | fail-act) ; i-act) and the current plan is a sum of two failing
plans, then the whole strategy fails though there might have been possible to replace the
failing plans with a “good” plan by applying fail-act. Fourth, we require that repair rules
are of a particular format, that is φ ← p with p not containing the sum operator. This
is in order to avoid situations where the application of fail-act entails the application
of sum which entails the application of fail-act and so forth (that is, non-terminating
strategies (sum ; fail-act)!). Such format does not result in the loss of expressivity since
having one repair rule φ ← p1 + p2 is equivalent to having two repair rules φ ← pi,
with i ∈ {1, 2}. Fifth, the use of strategies can be tricky. Though one might be tempted
to use the strategy try(sum ; fail-act) instead of try(sum) ; try(fail-act), the first one is
“wrong”, meaning that if fail-act is not applicable after sum then the original state is
returned instead of the one reached by applying sum. The last observation is with respect
to the normalisation strategy. Since “!” returns the state previous to the one that failed,
we need to apply again try(sum); try(fail-act) to make sure that from the resulting state
no τ steps can be taken.

By means of tauClosure, the definition of do(a) is straight-forward:

do(a) = tauClosure; o-act[o-a← a]; tauClosure

which corresponds to the definition of a⇒. We note that tauClosure is no longer ap-
plicable when i-act fails after sum and fail-act have been applied. This means that the
only possible scenario is that the head of the current plan is an observable action. If this
action is in fact a, then o-act[o-a← a] is successful, otherwise it fails.

The definition of the strategy allow(R) makes use of the match construction:

allow(R) = match ms s.t. ready(ms) ⊆ R

which means that allow(R) succeeds if the current mental state satisfies the condition
ready(ms) ⊆ R, where ready is a function defined on BUpL mental states. This func-
tion is implemented such that it returns the set of actions ready to be executed. For
simplicity, we do not detail its implementation but briefly describe it. Recall that BUpL
mental states are pairs of belief bases and plans. The function ready reasons on possible
cases. If the current plan is a sum of plans then ready is called recursively. Otherwise,
depending on the action a in the head of the plan, either a is enabled and so the function
ready returns a, or a fails and the function ready recursively considers all the plans that
can substitute the current one, that is, it recursively analyses the active repair rules.

So far, we have focused on tests on actions Ta. We focus now on the general
test cases(Ta, Tf). We begin by first considering the test driver implementing the test

case for checking whether fact is in the last states reachable by executing Ta, i.e.,
s((Ta,�(¬©true→ fact))). For this, we consider an auxiliary strategy check(fact):

check(fact) = match(B, p) s.t. fact ∈ B

which is successful if fact is in the belief base from the current state. With this strategy
we can define s((Ta,�(¬©true→ fact))) simply as s(Ta); check(fact). We can fur-
ther use check(fact) for defining test drivers working with ¬fact as not(check(fact))
and with fact1 ∧ fact2 as check(fact1); check(fact2). The cases with respect to the
temporal formulae are defined by case analysis. We present only the implementation of
the non-trivial ones:

s(((a,R); Ta,♦fact)) = check(fact) ? s((a,R); Ta) : s((a,R)) ; s((Ta,♦fact))
s(((a,R); Ta,�fact)) = check(fact) ; s((a,R)) ; s((Ta,�fact))

which illustrates that the main difference between them is that for ♦factwe stop check-
ing fact as soon as we reached a state where fact is in the belief base; from this state
we continue with only executing the test on actions. However, for �factwe check until
the end.

Observe that the semantics of the testing language was defined such that we have
a separation between implementing test drivers and reporting the results. This is im-
portant since running a test driver should be orthogonal to the interpretation and the
analysis of the possible output. One plausible and intuitive interpretation is the follow-
ing one. When the test driver is successful the tester has the confirmation that the test
case corresponds to a “good” trace in the agent program. When the test driver fails,
the tester can further define new strategies to obtain more information. Consider, as
an example, a strategy returning the states previous to the failure. More sophisticated
implementations like gathering information about traces instead of states are left to the
imagination of the reader. These traces correspond to the shortest counter-examples.
This follows from the semantics of the testing language. At each action execution a
check is performed whether forbidden actions are possible. If this is the case, then the
test fails.

Assuming that we fix an interpretation of the results as above, we proceed by show-
ing that test drivers are partially correct and complete with respect to the definition of
test cases.

Definition 1. Given a test case T and the corresponding test driver s(T), we say that
the application of s(T) is correct, if, on the one hand, successful executions of the test
driver are successful applications of the test case, and if, on the other hand, the test
driver fails then test case also fails. Similarly, s is complete if (un)successful applica-
tions of the test case T are (un)successful executions of the test driver s(T).

Before stating the main result, we show two helpful lemmas. Recall that, at each
repetition step, the strategy tauClosure tries to apply sum and fail-act only once. Intu-
itively, this is sufficient for the following reason. Let us first consider fail-act: if, on the
one hand, after the application of fail-act no action can take place then applying fail-act
again can do no good, since nothing changed; if, on the other hand, after applying once
fail-act the first action of the new plan can be executed then we are done, the faulty plan
has been repaired. From this, we have the following lemma:

Lemma 1. The strategy try(fail-act) is idempotent, i.e., for any ms try(fail-act)2 @ms
= try(fail-act) @ms.

Proof. Let Res = try(fail-act) @ms. Any ms′ ∈ Res different from ms is the result of
applying the rewrite rule fail-act so it has the form (B, pθ), where φ ← p ∈ R (the set
of repair rules) and θ ∈ Sols(B |= φ). If fail-act were again applicable for such ms′,
the resulting term ms′′ is also of the same form sinceR is fixed and B does not change.
Thus, any ms′′ is already an element of Res and so try(fail-act) @Res = Res. ut

An analogous reasoning works also for sum. Taking into account that the “+” op-
erator is commutative and associative and that the “;” operator is associative, a normal
form (i.e., sum of plans with only sequence operators) always exists. Since sum is ap-
plied to states where the plans are reduced to their normal form we have that states with
basic plans will always be in the result of trying to apply sum more than once.

Lemma 2. Given a mental state ms we have that sum! @ms ⊆ try(sum) @ms.

Proof. We only consider the interesting case where sum is applicable, that is, when

try(sum) @ms = sum @ms. Letms = (B, p) where p has been reduced to the form
n∑
i=1

pi

and pi are basic plans (composed by only the “;” operator). Since sum is commutative,

we have that sum @ms = {(B,
k∑
j=1

pij) | ∀k, ij ∈ {1, . . . , n}}, i.e., any possible

combination of pi. On the other hand, sum! @ms = {(B, pi) | i ∈ {1, . . . , n}} which
is clearly included in sum @ms. ut

Theorem 1 (Partial Correctness & Completeness). Given ms a mental state, T a
test case we have that s(T)@ms = T @ms.

Proof. We consider only the strategy do. The proof for the compositions follows from
the definitions of the strategies. We proceed, by showing, as usually, a double inclusion.
“⊆”: By the definition of do(a) we have that the result of applying it on ms is:

Res = tauClosure @ (o-act[o-a← a] @ tauClosure @ ms︸ ︷︷ ︸
Res′

)

︸ ︷︷ ︸
Res′′

If the normalisation strategy “!” from the definition of tauClosure terminates, then by
definition, there exists an i ≥ 0 s.t.:

Resi = i-act @ (try(fail-act) @ (try(sum)@Resi−1))

and for any msi ∈ Resi we have that i-act @ (try(fail-act) @ (try(sum) @msi)) is
empty (1). Thus, we can construct the computation:

ms0
τ→
∗
ms1

τ→
∗
. . .

τ→
∗
msi−1

τ→
∗
msi

where we take msj ∈ Resj with j ≤ i, ms0 as ms and ∗ denotes at most 3 τ steps,
corresponding to the 3 possible rule labels for τ steps. By the definition of tauClosure,
Res′ is the union of try(fail-act) @ (try(sum)@Resi). This implies that anyms′ ∈ Res′
is obtained from a msi after eventually applying sum and fail-act. From (1) we have
that from ms′ it is not possible to apply i-act. Furthermore, by the lemmas, whatever
state can be reached fromms′ by sum and fail-act is already inRes′. Thus,ms⇒ ms′.
By definition,Res′′ is empty iff o-act[o-a← a] @ms′ fails for any elementms′ ∈ Res′.
That is, if Res′′ is empty then ms 6 a⇒ ms′ and thus a@ms returns the empty set.
If Res′′ were not empty, then for any element ms′′ contained in it we have that ms′ a→
ms′′, thusms⇒ a→ ms′′. Similarly, for any elementmsf ∈ Res we havems′′ ⇒ msf
and from this we can conclude that ms a⇒ msf , thus msf is also an element of a@ms.
“⊇”: By the definition of⇒ we have that, if no τ divergence, then there exists a k ≥ 0

s.t. ms τ
k

→ ms1 and ms1 6→. The trace τk can be divided in m packages of the form:

σm = (sumim ; fail-actjm ; i-actlm)m,

with
∑
m(im+ jm+ lm)∗m = k. By the lemmas we have that sumim ; fail-actjm ; i-act

is obtained by applying the strategy try(sum); try(fail-act); i-act (2). As for i-actlm−1, it
is obtained by (try(sum); try(fail-act); i-act)lm−1 (3). If successive applications of i-act
are possible then neither fail-act nor sum is applicable (at most one of i-act, fail-act,
sum is enabled at a time) thus trying to applying them is harmless, i.e., does not change
the state. Repeating m times the same argument from (2) + (3) and taking into account
that we have that sequences σm where lm is 0 are mapped to try(sum); try(fail-act) we
can derive that ms1 ∈ tauClosure@ms (4).
If ms1

a→ ms′, then ms′ ∈ o-act[o-a ← a] @ms1. Applying a similar reasoning
for ms′ we obtain (4’): ms2 ∈ tauClosure@ms′. In consequence, we have that if
ms

a⇒ ms2 then also ms2 ∈ do(a)@ms.
Ifms1 6

a→ ms′, then o-act[o-a← a] @ms1 fails, thus this is also the case for do(a). ut

Observe that in our proof we consider only finite computations. Thus, infinite com-
putations do not violate the result. Since τ divergence is undecidable for BUpL agents,
we cannot provide conditions such that test drivers terminate for all test cases. The most
we can do, with respect to divergent computations, is to state the following proposition
as a consequence of the above result:

Corollary 1 (Divergence). If the application of s(T) diverges then so does T .

5 A Running Example

The BUpL builder described in Figure 1 has a small number of states. Thus, verification
by model-checking is feasible. We provide now an illustration of the utility of testing.
Consider the agent from Figure 36. It is meant to implement the specification “the agent
should always construct towers, the order of the blocks is not relevant, however each
tower should use more blocks than the previous, and additionally, the length of the
towers must be an even number”7 (for example, 21, 4321 are “well-formed” towers).

6 The code presents only the constructions which are additional to the ones from Figure 1.
7 Since it is just meant to be an illustration, the notion of specification is merely informal.

A = { incLength(x) = (length(x), { ¬length(x), length(x+ 1) }),
addBlock(x) = (¬on(x, 0), { on(x, 0), clear(x) }),
setMax(x, y) = (max(y), { ¬max(y),max(x) }),
finish(x, y) = (¬done(x) ∧ done(y), { ¬(done(y)), done(x) }) }

P = { build(n, c) = move(c− n, 0, c− n− 1); incLength(c− n− 1); build(n− 1, c)
generate(x, y) = addBlock(x); generate(x− 1, y),
p0(x, y) = setMax(x, y); generate(x, y)) }

R = { length(x) ∧max(y) ∧ (x ≤ y)← build(y, y + x− 1),
length(x) ∧max(x) ∧ done(y) ∧ (x ≥ y)← finish(x, y);⊥,
max(x) ∧ done(x)← setMax(x+ 2, x), generate(x+ 2, x) }

Fig. 3. A BUpL Builder with Infinite State Space

The agent is designed such that it always builds a higher tower. The example can be
understood as a typical agent with maintenance goals. Since the number of its mental
states continuously increases, instead of model-checking, we test it. For illustration
purposes, the implementation of the agent is on purpose faulty: assuming a correct
initialisation, the agent program does not perform a sanity check with respect to the
parity of X before adding the fact done(X) to signal that it constructed a tower X .

Thanks to the fact that the strategy language S has been incorporated into the Maude
system, it was relatively easy to extend the implementation from [1]. In this way, we
provide a testing framework as alternative to the model-checking facility. We have ex-
perimented with different test cases which we applied to the Maude prototype of the
BUpL builder. For example, we have considered the test whether done(2) appears
in the belief base after executing move(2, 0, 1). To implement it, we only needed to
apply the strategy do(move(2, 0, 1)); check(done(2)). The application of the strat-
egy failed, meaning that the agent is not conformant with the test case. On the con-
trary, the application succeeded when the correct agent program is tested. We have
run our tests on a Fedora 10 system (Kernel linux 2.6.27.12-170.2.5.fc10.x86 64) with
an AMD Athlon(tm) 64 Processor 3500+ and 1 GB memory. The process of execut-
ing the BUpL builder with respect to the test case do(move(2, 0, 1)); check(done(2))
took 1876ms and generated 35745 rewrites. The number of rewrites is high mainly
because the strategy language is implemented at the meta-level and because compu-
tations at the meta-level involve many rewrite steps. For the correct agent, the out-
put generated by Maude illustrates that the strategy has succeeded and that the result-
ing state reflects that done(2) has been updated to the belief base and that the cur-
rent tower is 21. By means of the Maude command next we can further see that
there are no more solutions (corresponding to faulty executions). More examples and
the actual Maude code (also including more test case implementations) can be down-
loaded from our website http://homepages.cwi.nl/˜astefano/agents/
bupl-strategies.php.

6 Conclusions and Future Work

In this paper, we focused on two aspects. First, we have provided a formalisation for
testing BUpL agents. Second, we have introduced rewrite strategies to define test drivers
that implement test cases. For simplicity, we have considered testing individual agents.
Generalising our current results to multi-agent systems should be easy in a particular
framework as the one proposed in [2]. There, the interaction between agents is achieved
not by means of communication but by action-based coordination mechanisms. The
advantage of this approach is that the framework is compositional and thanks to this,
the verification problem (by model-checking) of the whole system can be reduced to
the verification of individual agents. Using the compositionality result we can obtain
the same reduction when we consider testing instead of model-checking.

References

1. L. Astefanoaei and F. S. de Boer. Model-checking agent refinement. In Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 705–712. IFAAMAS, 2008.

2. L. Astefanoaei, F. S. de Boer, and M. Dastani. The refinement of choreographed multi-agent
systems. In Proceedings of the 9th International Workshop on Declarative Agent Languages
and Technologies (DALT). LNAI, 2009. to appear.

3. R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors. Multi-Agent Pro-
gramming: Languages, Platforms and Applications, volume 15 of Multiagent Systems, Arti-
ficial Societies, and Simulated Organizations. Springer, 2005.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. L. Talcott, edi-
tors. All About Maude - A High-Performance Logical Framework, How to Specify, Program
and Verify Systems in Rewriting Logic, volume 4350 of LNCS. Springer, 2007.

5. S. Eker, N. Martı́-Oliet, J. Meseguer, and A. Verdejo. Deduction, strategies, and rewriting.
Electronic Notes in Theoretical Computer Science (ENTCS), 174(11):3–25, 2007.

6. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker. In F. Gad-
ducci and U. Montanari, editors, Proceedings of the 4th Workshop on Rewriting Logic and
its Applications (WRLA), volume 71 of ENTCS. Elsevier, 2002.

7. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer. Agent programming in
3APL. Autonomous Agents and Multi-Agent Systems (AAMAS), 2(4):357–401, 1999.

8. N. Martı́-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework. In
J. Meseguer, editor, Electronic Notes in Theoretical Computer Science, volume 4. Elsevier,
2000.

9. B. Meyer. Seven Principles of Software Testing. IEEE Computer, 41(8):99–101, 2008.
10. D. C. Nguyen, A. Perini, and P. Tonella. A Goal-Oriented Software Testing Methodology.

In Agent Oriented Software Engineering (AOSE), pages 58–72, 2007.
11. T.-F. Serbanuta, G. Rosu, and J. Meseguer. A rewriting logic approach to operational se-

mantics (extended abstract). Electronic Notes in Theoretical Computer Science (ENTCS),
192(1):125–141, 2007.

12. M. Wooldridge. Agent-based software engineering. IEEE Proceedings Software Engineer-
ing, 144(1):26–37, 1997.

13. Z. Zhang, J. Thangarajah, and L. Padgham. Automated unit testing intelligent agents in
PDT. In Proceedings of the 7th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1673–1674. IFAAMAS, 2008.

