An Empirical Study of Agent Programs

A Dynamic Blocks World Case Study in GOAL [Extended
Version]

M. Birna van Riemsdijk and Koen V. Hindriks

EEMCS, Delft University of Technology, Delft, The Netherlands
{m.b.vanriemsdijk,k.v.hindriks}@tudelft.nl

Abstract. Agent-oriented programming has been motivated in part by
the conception that high-level programming constructs based on common
sense notions such as beliefs and goals provide appropriate abstraction
tools to develop autonomous software. Various agent programming lan-
guages and frameworks have been developed by now, but no systematic
study has been done as to how the language constructs in these lan-
guages may and are in fact used in practice. Performing a study of these
aspects may contribute to the design of best practices or programming
guidelines for agent programming, and clarify the use of common sense
notions in agent programs. In this paper, we analyze various agent pro-
grams for dynamic blocks world, written in the GOAL agent programming
language. We present several observations based on a quantitative and
qualitative analysis that provide insight into more practical aspects of
the development of agent programs. Finally, we identify important is-
sues in three key areas related to agent-oriented programming that need
further investigation.

1 Introduction

The concept of a goal lies at the basis of our understanding of why we perform
actions. It is common sense to explain the things we do in terms of beliefs and
goals. The reasons for performing actions are derived from our motivations and
the notion of rational behavior is typically explained in terms of actions that are
produced in order to further our goals. For example, a researcher who has a goal
to have finished a paper but is going on a holiday instead is not considered to
behave rationally because holidays do not further the goal of writing a paper.

Shoham was one of the first who proposed to use such common sense no-
tions to build programs [14], coining a new programming paradigm called agent-
oriented programming. Inspired by Shoham, a variety of agent-oriented program-
ming languages and frameworks have been proposed since then [3, 4]. For several
of them, interpreters and Integrated Development Environments (IDEs) are be-
ing developed. Some of them have been designed mainly with a focus on building
practical applications (e.g., JACK [16] and Jadex [13]), while for others the focus
has been also or mainly on the languages’ theoretical underpinnings (e.g., GOAL
[10], 2APL [6], and Jason [5]).

In this paper, we take the language GOAL as our object of study. GOAL is
a high-level programming language to program rational agents that derive their
choice of action from their beliefs and goals. Although the language’s theoretical
basis is important, it is designed by taking a definite engineering stance and
aims at providing useful programming constructs to develop agent programs.

However, although it has been used for developing several small-size appli-
cations, no systematic study has been done as to how the language constructs
are used in practice to program agents, and how easy it is to read the resulting
programs. Also, if the language is going to be used for building real-world appli-
cations, efficiency and a programmer’s knowledge of this becomes an important
issue. We believe it is important to get a better understanding of these issues
in order to identify which aspects need to be addressed with respect to them,
and to be able to design a set of best practices or programming guidelines that
support GOAL programmers. It is the purpose of this paper to contribute to this
aim. We do this by analyzing three GOAL programs for the dynamic blocks world
domain. To the best of our knowledge, this is the first time such comparative
analysis of agent programs programmed in a dedicated agent programming lan-
guage has been done. This kind of empirical software engineering is expected to
form over time a body of knowledge leading to widely accepted and well-formed
theories [2].

The dynamic blocks world domain is explained in Section 2 and in Section 3
we explain the GOAL language. We outline our approach in Section 4. In Section
5, we analyze the programs using various numeric measures on their code and
execution. In Section 6, we look in more detail at how the programs were written
and how the language constructs of GOAL were used. We conclude in Section 7.

2 The Dynamic Blocks World

The blocks world is a simple environment that consists of a finite number of
blocks that are stacked into towers on a table of unlimited size. It is assumed
that each block has a unique label or name a, b, c, Blocks need to obey the
following “laws” of the blocks world: (i) a block is either on top of another block
or it is located somewhere on the table; (ii) a block can be directly on top of at
most one other block; and, (iii) there is at most one block directly on top of any
other block.

A blocks world problem is the problem of which actions to perform to trans-
form an initial state or configuration of towers into a goal configuration, where
the exact positioning of towers on the table is irrelevant. A blocks world problem
thus defines an action selection problem. The action of moving a block is called
constructive (see, e.g., [15]) if in the resulting state that block is in position,
meaning that the block is on top of a block or on the table and this corresponds
with the goal state, and all blocks (if any) below it are also in position. Ob-
serve that a constructive move always increases the number of blocks that are
in position.

‘We have used a specific variant of the blocks world, which we call the dynamic
blocks world. In the dynamic blocks world, a user can move blocks around while
the agent is moving blocks to obtain a goal configuration. It was introduced in
[11], and comes with an implemented environment!. In that environment, there
is a gripper that can be used to move blocks and the user can move blocks
around by dragging and dropping blocks in the environment’s graphical user
interface. The agent can steer the gripper by sending two kinds of actions to the
environment: the action pickup (X) to tell it to pick up a block X, and the action
putdown(X,Y) to tell it to put down the block X, which should be the block the
gripper is currently holding, onto the block Y. The gripper can hold at most one
block. The environment has a maximum of 13 blocks, and these can all be on
the table at the same time (thereby realizing a table that is always “clear”). The
user can move the blocks around on the table, put a block inside the gripper,
or take away a block from the gripper. In contrast with the gripper, which can
only pick up a block if there is no block on top of it and move it onto a block
that is clear, the user can move any block in any way he likes.

The fact that a user can move around blocks can give rise to various kinds
of possibly problematic situations. For example, the agent may be executing the
action putdown(a,b), while the user moves some block on top of b. This means
that a can no longer be put down onto b, since b is not clear anymore. It may
also be the case that the agent is moving a block a from some other block onto
the table, since a could not yet be moved in a constructive way. It may be the
case that while the agent is doing that, the user moves blocks in such a way that
now a can be moved into position, making the previous action superfluous. A
comprehensive list of such cases where the agent has to deal with the dynamics
of the environment, can be found in Appendix E.

3 Explanation of GOAL

A GoAL agent decides which action to perform next based on its beliefs and
goals. Such a decision typically depends on the current state of the agent’s envi-
ronment as well as general knowledge about this environment. The former type
of knowledge is typically dynamic and changes over time, whereas the latter
typically is static and does not change over time. In line with this distinction,
two types of knowledge of an agent are distinguished: conceptual or domain
knowledge stored in a knowledge base and beliefs about the current state of the
environment stored in a belief base. In the implementation of GOAL, both knowl-
edge base and belief base are Prolog programs. For example, the knowledge base
may contain the definition of the predicate clear(X), and the belief base may
contain information about which blocks are present and how they are stacked,
represented using the predicate on(X,Y), as illustrated in Table 1.

A decision to act will usually also depend on the goals of the agent. Goals
of an agent are stored in a goal base. The goal base consists of conjunctions of

! http://www.robotics.stanford.edu/users/nilsson/trweb/TRTower/
TRTower_links.html

0 N oG AW N

Prolog atoms. For example, the goal to build a tower where a is stacked on b can
be represented as a conjunction of the corresponding on predicates (see Table 1).
The goals of an agent may change over time, for example, when the agent adopts
a new goal or drops one of its goals. As a rational agent should not pursue goals
that it already believes to be achieved. GOAL provides a built-in mechanism
for doing so based on a so-called blind commitment strategy. This strategy is
implemented by removing conjunctions of atoms that represent goals from the
goal base, as soon as they are believed to be achieved. These conjunctions will
only be removed if they have been achieved completely in the current state.
Together, the knowledge, beliefs and goals of an agent make up its mental state.

knowledge{
clear(table).
clear(X) :- block(X), not(on(Y,X)).
}
beliefs{
block(a). block(b). block(c).
on(a,table). on(c,b). on(b,table).
goals{
on(a,b), on(b,table).
}
program{
if bel(holding(X)), a-goal(on(X,table)) then putdown(X,table).
}

Table 1. Knowledge Base, Belief Base, Goal Base, Action Rules

To select an action, a GOAL has so-called action rules. The action rules
consist of a condition on the mental state of the agent, and an action that
should be executed if the mental state condition holds. In essence, writing such
conditions means specifying a strategy for action selection that will be used by
the GOAL agent. A mental state condition can consist of conditions on the agent’s
beliefs and on the agent’s goals. Informally, bel(p) can be read as “the agent
believes that ¢”. bel (¢) holds whenever ¢ can be derived from the belief base in
combination with the knowledge base. In the example of Table 1, it follows that
bel(clear(a)), which expresses that the agent believes that block a is clear.

Similarly, goal(y) can be read as “the agent has a goal that ¢”. goal ()
holds whenever ¢ can be derived from a single goal in the goal base in combi-
nation with the knowledge base. In the example of Table 1, it follows, e.g., that
goal(on(b,table)). In order to represent achievement goals, i.e., goals that are
not believed to be achieved yet, the keyword a-goal can be used. This is defined
as follows:

a-goal(y) i goal(p), not(bel(p))
In the example, a-goal(on(a,b)) holds, but a-goal(on(b,table)) does not.

Similarly, goal-a(y) represents that ¢ can be derived from a goal in the goal
base, but ¢ is already believed to be achieved. A mental state condition is a

conjunction of these mental atoms, or their negation. Table 1 shows an example
of an action rule that specifies the following: if the agent believes it is holding
block X and has the achievement goal of having X on the table, then the corre-
sponding putdown action should be selected. If the conditions of multiple action
rules hold at the same time, an applicable rule is selected at random.

Actions that may be performed by a GOAL agent need to be specified by the
programmer of that agent. GOAL does provide some special built-in actions but
typically most actions that an agent may perform are derived from the environ-
ment that the agent acts in. Actions are specified by specifying the conditions
when an action can be performed (preconditions) and the effects of performing
the action (postconditions). Pre- and postconditions are conjunctions of literals.
A precondition ¢ is evaluated by verifying whether (an instantiation of) ¢ can
be derived from the belief base (as always, in combination with knowledge in
the knowledge base). Any free variables in a precondition may be instantiated
during this process just like executing a Prolog program returns instantiations
of variables. In GOAL, the effect ¢ of an action is used to update the beliefs of
the agent to ensure the agent believes ¢ after performing the action. The pos-
itive literals are added to the belief base, and negative literals are removed. In
addition, actions that correspond to actions that can be executed in the agent’s
environment, are sent to that environment. In the dynamic blocks world, the
pickup and putdown actions are specified as in Appendix D. They have a true
postcondition, and therefore do not update the belief base.

In addition to the possibility of specifying user-defined actions, GOAL pro-
vides several built-in actions for changing the beliefs and goals of an agent, and
for communicating with other agents. Here we only briefly discuss the two built-
in actions adopt () and drop(y) which allow for modifying the goal base of an
agent. The action adopt (¢) is an action to adopt a new goal . The precondition
of this action is that the agent does not believe that ¢ is the case, i.e. in order to
execute adopt () we must have not (bel(p)). The idea is that it would not be
rational to adopt a goal that has already been achieved. The effect of the action
is the addition of ¢ as a single, new goal to the goal base. The action drop(y) is
an action to drop goals from the goal base of the agent. The precondition of this
action is always true and the action can always be performed. The effect of the
action is that any goal in the goal base from which ¢ can be derived is removed
from the goal base. For example, the action drop(on(b,table)) would remove
all goals in the goal base that entail on(b,table); in the example agent of Table
1 the only goal present in the goal base would be removed by this action.

A final aspect of GOAL that we have to discuss, is sensing. Sensing is not
represented as an explicit act of the agent but a perceptual interface is defined
between the agent and the environment that specifies which percepts an agent
will receive from the environment. Each time after a GOAL agent has performed
an action, the agent processes any percepts it may have received through its
perceptual interface. Incoming percepts are processed through percept rules.
The percept rules for the dynamic blocks world are specified in Appendix D.
Percept are of the form block(X), representing that there is a block X in the

environment, holding(X), representing that the gripper is holding block X, and
on(X,Y), representing that block X is on Y. The percept rules specify that these
atoms are added to the belief base as soon as they are perceived (indicated by
the percept keyword), and they are removed from the belief base if they are not
perceived.

4 Approach

In this section, we describe the research approach that we have followed. First,
we have asked three programmers to program a GOAL agent for the dynamic
blocks world. We refer to the resulting programs as A, B, and C. The code of
the programs can be found in the corresponding appendices. The person who
programmed A had the least experience with GOAL, while the programmer of C
had the most. All programmers were somewhat familiar with the blocks world
domain. As a starting point, they were given the action specification and percept
rules of Appendix D. Another constraint was that the agent would only get one
goal configuration to achieve. They were also given a set of test cases in order
to test the functioning of their program. Some of these test cases are included
in Appendix F. After the programs were handed in for analysis, they were not
modified anymore.

We have performed three kinds of analyses on the programs. First, we have
analyzed the code, both using quantitative metrics such as the number of action
rules (Section 5.1), as well as performing a qualitative analysis, looking in more
detail at the code itself (Section 6). Second, we have performed an experiment
where we have asked six test subjects to look at the code of all three programs
and comment on their readability (Section 6.2). The test subjects were some-
what familiar with the GOAL language, but did not have extensive experience
in programming with it. All comments were removed from the programs before
they were given to the test subjects, but white space was preserved. Third, we
have performed limited testing of the programs to obtain quantitative metrics
on the action sequences that were executed (Section 5.2).

5 Quantitative Analysis

In this section, we compare the three GOAL agent programs for the dynamic
blocks world based on numeric measures of their code (Section 5.1) and of be-
havior shown during execution (Section 5.2). In this and the next section, we
summarize our main findings by listing observations. It is important to note that
these observations are based only on the three blocks world programs that we
used for our analysis.

5.1 Code

We provide numeric measures for each of the sections of a GOAL program, except
for the action specification and percept rules sections, since these formed the

starting point for all three programs (see Section 4) and are the same (with a
slight exception for A, see Appendix D). The results are summarized in Table 2.

Before we discuss the table, we provide some additional information on how
to interpret our measures for action rules. The other measures speak for them-
selves. The total number of action rules is counted for each of the programs,
and is also split into environment actions (pickup or putdown), and actions for
adopting or dropping a goal. We also counted the number of belief and goal
conditions in action rules. We provide the average (avr) number of conditions
per rule, and the minimum (min) and maximum (max) number of conditions
that have been used in one rule. The average number of conditions is obtained
by dividing the total number of conditions by the total number of rules. The
conditions have been counted such that each atom inside belief or goal keyword
was counted as one condition. For example, a conjunctive belief condition with n
conjuncts, bel(condl, ..., condn)), is counted as n conditions, and similarly
for a disjunctive belief condition. If the number of belief or goal conditions that
are used is 0, we do not split this into avr/min/max, but simply write 0.

Table 2. Numeric Measures of Code

Numeric measure ‘ A ‘ B C
clauses knowledge base 16 4 8
defined Prolog predicates in knowledge base 11 2 3
clauses (initial) belief base 0 0 1
goals (initial) goal base 0 1 1
action rules [env. action/adopt/drop] 3[3/0/0]|14 [5/6/3]|12 [3/3/6]
bel conditions in action rules (avr/min/max) 1.3/1/2 | 1.8/0/4 | 1.7/0/6
a-goal conditions in action rules (avr/min/max) 0 1.6/1/2 | 0.8/0/1
goal conditions in action rules (avr/min/max) 0 0 0.8/0/2
goal-a conditions in action rules (avr/min/max) 0 0 0.08/0/1

As can be seen in Table 2, the extent to which the knowledge base is used
differs considerably across the three programs. Where A has 16 clauses and 11
defined predicates in the knowledge base, thereby making heavy use of Prolog,
program B has only 4 clauses and 2 defined predicates. The belief base initially
has very little information in all three programs, which suggests that it is used
mostly through updates that are performed during execution by means of the
percept rules. Both B and C initially have one goal in the goal base, which reflects
the fact that in our setting we consider only one goal configuration of the blocks.
Program A does not use the goal base for representing the goal configuration.

The number of action rules is very small for program A (only 3), while B
and C use considerably more rules (14 and 12, respectively). Also, program A
only uses action rules for selecting environment actions, while the majority of
the rules of B and C (9 in each case) concern the adoption or dropping of goals.
Moreover, A only uses a small number of belief conditions in the rules (maximum
of 2), and does not make use of goal conditions. The latter corresponds with the

fact that in A, no goals are inserted into the goal base (neither initially, nor
through the use of action rules). The number of belief conditions in B and C
are comparable, ranging from 0 to 4 or 6 conditions per rule, respectively. The
number of conditions on goals in B and C is rather similar (1.6 on average),
and is typically smaller than the number of belief conditions (maximum of 2).
The use of conditions on goals differs for B and C in that B uses only a-goal
conditions, while in C there is an equal number of a-goal and goal conditions,
and one goal-a condition. Program C thus makes the most use of the various
constructs offered by GOAL.

What we did not include in the table is that almost all rules in B and C have
at least one positive, i.e., non-negated, condition on goals (only one exception
in B). This corresponds with the idea that actions are selected because an agent
wants to reach certain goals. None of the programs use the action rules to select
actions for updating the belief base.

We summarize our findings through a number of main observations. The first
concerns the relation between the experience that programmers have with the
GOAL language, and how this relates to their use of the constructs.

Observation 1 (Experience with GOAL) For our programs it is the case
that the more experienced the programmer is with GOAL, the more of the lan-
guage constructs offered by GOAL are used.

This suggests that programmers have a tendency to stick to what they know
best, rather than try out constructs they are less familiar with. This means
that education and training is essential if programmers are to make full use of
the features offered by GOAL. The observation is also in line with the following
observation, which addresses the use of the knowledge base in comparison with
the action rules.

Observation 2 (Focus on Knowledge Base or Action Rules) Two ways in
which the GOAL language can be used, are by focusing on the knowledge base and
keeping the number of action rules small, or by focusing on the action rules and
keeping the knowledge base small.

A final observation of this section concerns the use of action rules for adopting
and dropping goals, in comparison with rules for selecting environment actions.

Observation 3 (Many Action Rules for Adopt or Drop) In both programs
that use goals, the number of action rules for adopting or dropping goals is con-
siderably larger than the number of rules for selecting environment actions.

5.2 Execution

Besides looking at the code of the programs, we have also analyzed their behavior
during execution. We have run the programs using four test cases (see Appendix
F), of which two included dynamics (one block was moved by the user while
the agent was executing). The number of blocks ranged from 3 to 13. We have

recorded the number of actions (both environment actions as well as adopt and
drop actions) that were executed by the agent in one run of each test case (see
Table 3).2 The number of executed actions to solve a certain problem can be
taken as a measure for the efficiency of an agent program.

Table 3. Executed Actions

Test Case‘Action Type‘ A‘ B ‘ C

1 adopt or drop | 0 2 3
env. action 4 4 4
2 adopt or drop | 0 | 36 | 18
env. action 28 1 36 | 30
3 adopt or drop | 0 | 10 8
env. action 11| 12 10
4 adopt or drop | 0 8 12
env. action 8 9 8

All three programs achieved the goal in all four test cases. The number of
executed environment actions was comparable for all three programs throughout
the test cases, although program B always executed a little more than A and C
(up to 20% more). Since A does not use adopt or drop actions in the program,
the only actions executed by A were environment actions. By contrast, B and C
execute a considerable amount of adopt and drop actions. The average portion
of adopt or drop actions compared to the total number of actions was 0.44 and
0.46 across the four test cases for B and C, respectively. It ranged between 0.33
and 0.50 for B, and between 0.38 and 0.60 for C. We thus make the following
observation, which seems in line with Observation 3.

Observation 4 (Number of Executed Adopt or Drop Actions) In the pro-
grams that use goals, the adopt and drop actions form a considerable portion of
the total number of executed actions.

When taking the total number of executed actions as a measure for efficiency,
it is clear that A is much more efficient than B and C. However, when looking
only at environment actions, the programs’ efficiency is comparable. Whether to
take the number of executed environment actions as a measure for efficiency or
whether to also take into account (internal) adopt and drop actions, depends on
how much time it takes to execute them. Assuming that the selection and exe-
cution of adopt or drop actions takes comparably little time compared with the
execution of environment actions, one can take only the executed environment
actions as a measure for the efficiency of the program. However, if this is not the

2 If the same action was sent to the environment multiple times in a row, this was
counted as one action. Sending an action to the environment multiple times in a row
can happen if the action rule for selecting that action keeps being applicable while
the action is being executed.

case then the selection of adopt and drop actions should be taken into account.
In that case it should be carefully considered by the programmer whether the
reasoning overhead is necessary and how it may be reduced. In our case study,
however, environment actions took considerably more time than adopt or drop
actions.

This data is based on one run per program per test case. However, we did do
several more runs for some of the test cases. Those runs showed that there was
non-determinism in the programs, since the execution traces were not identical
in all cases. Non-determinism can, e.g., occur if the goal of the agent is to put
block a on b on ¢ on d on the table, and initially block a is on ¢ and b is on d.
In this case, the agent has no choice but to move both a and b onto the table.
However, the order in which this is done may differ.

The fact that the programs show non-determinism, means that they under-
specify the behavior of the agent. The programs are thus a high-level specification
of agent behavior, in the sense that they do not specify the behavior to the full
detail. This leaves room for refinement of the programs in several was (see, e.g.,
[8,1,9] for approaches that take advantage of this).

Observation 5 (Underspecification) GOAL naturally induces the specifica-
tion of non-deterministic agents, i.e., agents of which the behavior is underspec-
ified.

6 Analysis of Programming Aspects

In this section, we discuss the code of the GOAL programs in more detail. We
describe their structure (Section 6.1), and discuss similarities and differences
(Section 6.2). We do not discuss the process of programming GOAL agents. The
reason is that we did not collect sufficient data on how the programmers went
about programming the agents. Also, where usually one would start by thinking
about percepts (and percept rules) and action specifications, these were given
in our setting. Therefore, the focus was on programming the strategy of how to
solve the dynamic blocks world problem.

6.1 Structure of Programs

Program A The knowledge base is used to determine where blocks should be
moved. This is done by defining a predicate goodMove (X,Y) on the basis of sev-
eral other predicates. A distinction is made between a constructive move, which
moves a block to construct a goal tower, and an unpile move, which moves a
block to the table in order to clear blocks such that eventually a constructive
move can be made. If possible, a constructive move is selected. The goal con-
figuration of the blocks is specified in the knowledge base, rather than in the
goal base. The predicate isgoal (tower (T)) is used for this, where T is a list
of blocks specifying a goal tower. In order to derive which towers are currently
built, the predicate tower (T) is defined, which specifies that the list T is a tower

if the blocks in the list are stacked on top of each other, such that the head of
the list is the top block and this top block is clear (defined using the predicate
clear(X)).

Three action rules are defined. The first two specify that pickup(X) or
putdown(X,Y) can be executed if goodMove (X,Y). The third rule specifies that
if the agent is holding a block for which no good move can be derived, the block
should be put onto the table. Most of the dynamics cases specified in Section E
are handled by the knowledge base, and some are handled by one of the action
rules (see Appendix A).

Program B The knowledge base defines the predicates clear (X) and tower (T),
where T is a list of blocks that are stacked on top of each other. In contrast with
the definition of this predicate in A, here the top block of the tower does not
have to be clear (i.e., a bottom part of a tower is also a tower). The belief base is
empty. The goal base initially contains the goal configuration as a conjunction of
on(X,Y) atoms. During execution, goals of the form clear(X) and holding(X)
are adopted.

The action rules are divided into three parts: rules for clearing blocks, rules
for moving blocks to construct towers, and rules for dealing with dynamics. In
addition, there is one rule for selecting the pickup action, which can be used
either for clearing blocks or for moving blocks to construct towers. The rules for
clearing blocks mainly adopt goals: the goal to make a block clear, and on the
basis of this goal the agent adopts the goal to hold a particular block and then
to put the block on the table. The rules for dealing with dynamics mainly drop
goals, or select the action of putting a block down onto the table. These rules
explicitly address dynamics cases (2a), (2b), (2¢), (2e), and (3a) (see Appendix
B). Case (2d) is handled automatically by adopting a new goal of holding a
block, and cases (3b-d) are not handled.

Program C The knowledge base defines the predicates clear(X), tower(T)
and above (X,Y). The definition of tower (T) is the same as in B, and above (X,Y)
expresses that block X is somewhere above block Y, but not necessarily on Y. As
in B, the goal base initially contains the goal configuration as a conjunction
of on(X,Y) atoms. During execution, goals of the form do(move((X,Y)) are
adopted, to express that block X should be moved onto Y. The belief base contains
one clause for specifying when such a goal is reached (namely when on(X,Y)
holds).

The action rules are divided into three parts: rules for adopting goals of
the form do (move ((X,Y)), rules for selecting pickup and putdown actions, and
rules for dropping goals of the form do(move((X,Y)). The rules for adopting
goals both adopt goals in order to construct towers, as well as to move blocks
to the table in order to clear other blocks. For each of the actions pickup and
putdown there is one regular rule, and in addition there is a rule for putdown
for dealing with dynamics cases (2b) and (2¢) (see Appendix C). The rules for

dropping goals explicitly address dynamics cases (2a), (2¢), and (3a-d). Case
(2d) is handled automatically by adopting a new goal of moving a block.

6.2 Similarities and Differences in Structure

In this section, we discuss similarities and differences with respect to the struc-
ture of the GOAL programs, as can be found when looking in more detail at the
code.

Similarities Our first observation concerns the knowledge base.

Observation 6 (Basic Domain Predicates) All programs define basic do-
main predicates in the knowledge base.

In all three programs, the predicates clear(X) and tower(T) were defined in
the knowledge base, although their definitions vary slightly. The definition of
clear is needed, since this predicate is used in the action specifications. The
tower predicate is needed in order to select constructive moves: a constructive
move moves a block on top of a partial goal tower. One could view these two
predicates as the most basic and essential for the domain, which explains why
all programs define them.

An aspect where programs B and C are similar, is the use of dropping of
goals.

Observation 7 (Dynamics of Environment) In both programs that use goals,
dropping of goals is used for dealing with the dynamics of the environment.

If the user moves blocks around, it can be the case that a goal that was adopted
in a certain situation, is no longer achievable or should no longer be achieved
in the changed situation. This means that the goal should be dropped again.
Since A does not adopt goals, it does not have to consider dropping them again
if the environment is changed. Another more domain specific way in which the
programs handle dynamics, is that they select the action putdown(X,table),
e.g., if the agent is holding a block that it does not want to move in that situation.

Another aspect where B and C are similar, is the frequent use of nega-
tive goal conditions in the action rules for adopting goals, through which it
is checked whether the goal that is to be adopted did not already have an
instance in the goal base. In particular, in B there should not be more than
one goal of the form holding(X) in the goal base, because this goal specifies
which block the agent should pick up next. This is achieved by checking whether
not (a-goal (holding(S))) is the case (where S is unbound), before adopting a
goal holding(X). Similarly, in C there should not be more than one goal of the
form do (move(X,Y)), and corresponding negative goal conditions are included
in the action rules.

Observation 8 (Single Instance Goals) In both programs that use goals, there
are goals of which at most one instance can occur in the goal base at any one
time. This is achieved through the use of negative goal conditions.

Interestingly, in the Jadex framework the notion of cardinality is introduced [12]
to restrict the number of instances of a goal that can be active at the same
time. A similar feature may be added to GOAL in order to help the programmer
specify these kinds of uses of goals.

Differences One of the main differences between B and C are the goal predi-
cates that are added during execution. B uses clear (X) and holding(X), while
C uses do (move ((X,Y)). The goals of B correspond to the most basic predicates
of the domain. They do not allow to specify as part of the goal where a block
that is or should be picked up, has to be moved. Instead, this is determined on
the basis of the goal in the goal base that specifies the goal configuration of the
blocks: if the block that an agent is holding can be moved onto a partially build
tower, this should be done; otherwise, it should be moved onto the table. In C,
a single goal do(move ((X,Y)) represents that the agent should hold X if this is
not yet the case, and move it onto Y if it holds X. Since predicates of the form
do(move ((X,Y)) are not added to the belief base through percepts, the pro-
grammer in this case has to define when such a goal is reached. This is done by
adding a corresponding clause to the belief base. Moreover, since B uses action
rules to derive the goal to clear blocks as an intermediate step for selecting a
goal to hold a block, B uses more rules than C (6, where C uses 2) for specifying
that blocks should be moved onto the table in order to clear blocks.

Observation 9 (Abstraction Levels of Goals) Goals can be used on differ-
ent abstraction levels. They can correspond to the most basic predicates of the
domain, or higher-level goals can be defined. In the latter case, clauses can be
added to the belief base in order to define when the higher-level goals are reached.

In Section 5.2 we have shown that for programs B and C, the portion of adopt
and drop actions compared to the total number of actions generated during
execution is comparable. However, the number of adopt actions generated by B
will most likely grow with the size and complexity of the initial configuration,
since in that case many intermediate clear goals have to be generated, followed
by the goal of holding a block. In C, by contrast, one move goal is created for
each block that the agent choses to move.

Another difference between B and C is the way in which action rules are
clustered. In B, they are clustered according to their function in the strategy
(clearing blocks, making constructive moves, and dealing with dynamics), while
in C they are clustered according to the type of their consequent (adopt, en-
vironment action, and drop). This points to a different style of programming,
which may be related to the different levels of goals used in B and C. In C, there
is only one type of goal that drives the selection of actions. It is then the job of
the programmer to specify when this goal should be adopted, what should be
done if the goal is adopted, and when it should be dropped. In B, by contrast,
the goals for clearing blocks are selected as intermediate goals, on the basis of
which the agent selects the goal of holding a block. Since the goals to clear blocks
are thus closely related to the corresponding goal of holding a block, it seems

more natural to cluster these rules. The way the rules are clustered in B may
also be related to the fact that B was programmed in an incremental way. First
a highly non-deterministic GOAL agent was programmed that solved the blocks
world problem in a non-efficient way and that did not deal with the dynamics
of the domain. Then, rules for dealing with dynamics were added and finally
efficiency was addressed. The tower predicate was introduced in this last step,
and was only used to modify the conditions of the rules for making constructive
moves. B was thus developed through refinement (see also Observation 5) of a
initial program, where refinement was done both through the addition of rules,
as well as by modifying conditions of rules.

Observation 10 (Clustering of Action Rules) Two ways in which action
rules can be clustered are according to the type of their consequent, and according
to their function in the action selection strategy.

One of our motivations for doing this research is to find code patterns or
typical ways in which the GOAL constructs are used, which can serve as guidelines
for programming GOAL agents in various applications domains. Although no
general conclusions can be drawn on the basis of our three blocks world programs,
the observations that have been made so far in this section already suggest some
possible code patterns or typical usages of the GOAL constructs.

A difference between A, compared to B and C, is that A does not use goals in
the goal base. Instead, a predicate isgoal (tower (T)) is used in the knowledge
base. Since goals are not explicitly adopted in A, they do not have to be dropped
again in case the user moves blocks around. On the other hand, if the goal base
is not used, it is the job of the programmer to check which parts of the goal
configuration have already been reached, and which have not. If the a-goal
operator is used in action rules, the semantics of GOAL takes care of this. Also,
the GoAL IDE provides a means to inspect the agent’s mental state while it is
executing, but if goals are used only as part of the knowledge base, one cannot
see them when running the agent. Being able to see the agent’s goals while it is
executing helps in debugging: one can see why the agent is executing a certain
action.

A difference between B, compared to A and C, is that B does not deal with
dynamics cases (3b-d). This corresponds to the results presented in Section 5.2,
which show that B is slightly less efficient than A and C. More action rules would
probably have to be added to deal with these cases.

Another difference between the programs concerns their readability. We have
asked several subjects somewhat familiar with the GOAL language to comment
on the readability of the programs. Program A was found to be the easiest
to understand, while the readability of B and C varied across subjects. This
seems to be related to Observation 1, which suggests that more of the GOAL
constructs are used as more experience is gained. Since all subjects had relatively
little experience with programming in GOAL, it seems natural that they find the
program making the least use of GOAL constructs easiest to understand. This
also suggests that sufficient training is necessary to familiarize programmers with

the various GOAL— constructs. Another reason why action rules may be difficult
to understand, as suggested by some of the subjects, is the relatively high number
of belief and goal conditions that each have to be read and interpreted, in order
to understand what the action rule is aimed at.

7 Conclusion and Future Work

In this paper, we have analyzed three GOAL programs for the dynamic blocks
world. We have made several observations based on a quantitative and qualitative
analysis. The observations concern the use of GOAL constructs, the behavior of
GOAL programs during execution, and the readability of GOAL programs. Based
on this analysis of three GOAL programs in a specific domain we cannot draw
very general conclusions on how GOAL programs should be written. However, we
do identify important issues in three key areas that need further investigation.

With respect to use of the GOAL constructs, we have identified several sim-
ilarities and differences across the three programs. Concerning the similarities,
it needs to be further investigated whether these can be used as guidelines for
programming GOAL agents. Where we have identified different possible usages
of GOAL, it needs to be investigated what the advantages and disadvantages of
these approaches are, in order to be able to determine whether and if so, when,
they can be used as guidelines. These investigations should lead to a program-
ming methodology for GOAL.

Regarding readability, we have observed that the relatively high number of
belief and goal conditions in action rules makes them difficult to understand. We
believe it is essential to address this issue in order to make GOAL easier to use,
and clear code is often argued to be less error-prone. We suggest that the use of
macros and a notion of modules to structure action rules such as proposed in [7]
may improve readability. In addition, we believe that proper training is essential
to allow programmers to make full use of the features offered by GOAL.

A third area where more research is needed, is efficiency. We have observed
that if goals are used, on average a little less than half of the executed actions
were actions for adopting or dropping goals. The use of goals thus creates con-
siderable overhead. In the blocks world domain, this is not problematic since
the time it takes to execute environment actions is considerably larger than the
time it takes to select and execute adopt and drop actions. However, in other
domains this may not be the case. Then, it might be necessary to design the
program such that a limited number of adopt and drop actions is executed.

In future work, we also aim at refining the approach that we have used for
analyzing the programs. For example, it may be useful to obtain data on the
level of familiarity of the test subjects with GOAL. One way to do this, is to
give them a test program and let them suggest which actions the agent might
execute next. Also, several subjects indicated that the assignment was quite hard
to do. We may have to reconsider our decision to remove all comments from the
programs before giving them to the test subjects. Moreover, in a future study

we would also like to investigate the use of the debugging facilities of the GOAL
IDE.

References

1.

2.

10.

11.

12.

13.

14.
15.

16.

L. Astefanoaei and F. S. de Boer. Model-checking agent refinement. In AAMAS,
pages 705712, 2008.

V. R. Basili and L. C. Briand, editors. Empirical Software Engineering: An
International Journal. Springer, 2009. http://www.springer.com/computer/
programming/journal/10664.

. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Multi-Agent

Programming: Languages, Platforms and Applications. Springer, Berlin, 2005.

R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Multi-Agent
Programming: Languages, Tools and Applications. Springer, Berlin, 2009.

R. H. Bordini, J. F. Hiibner, and M. Wooldridge. Programming Multi-agent Sys-
tems in AgentSpeak using Jason. Wiley, 2007.

M. Dastani. 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems, 16(3):214-248, 2008.

K. Hindriks. Modules as policy-based intentions: Modular agent programming in
goal. In Proceedings of the International Workshop on Programming Multi-Agent
Systems (ProMAS’07), volume 4908, 2008.

K. Hindriks, C. Jonker, and W. Pasman. Exploring heuristic action selection in
agent programming. In Proceedings of the International Workshop on Programming
Multi-Agent Systems (ProMAS’08), 2008.

K. Hindriks and M. B. van Riemsdijk. Using temporal logic to integrate goals and
qualitative preferences into agent programming. In Declarative Agent Languages
and Technologies VI (DALT’08), 2008. To appear in LNAI.

K. V. Hindriks. Programming rational agents in GOAL. In R. H. Bordini, M. Das-
tani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent Programming:
Languages, Tools and Applications. Springer, Berlin, 2009.

N. J. Nilsson. Teleo-reactive programs and the triple-tower architecture. Electronic
Transactions on Artificial Intelligence, 5:99-110, 2001.

A. Pokahr, L. Braubach, and W. Lamersdorf. A goal deliberation strategy for BDI
agent systems. In MATES 2005, volume 3550 of LNAI, pages 82-93. Springer-
Verlag, 2005.

A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: a BDI reasoning engine. In
R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-
Agent Programming: Languages, Platforms and Applications. Springer, Berlin,
2005.

Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51-92, 1993.
J. Slaney and S. Thiébaux. Blocks World revisited. Artificial Intelligence, 125:119—
153, 2001.

M. Winikoff. JACK™ intelligent agents: an industrial strength platform. In R. H.
Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent
Programming: Languages, Platforms and Applications. Springer, Berlin, 2005.

© W N oA W N e

Ah W W W W W W W WWwWNNNNNNNNDNNE R R R e e e e
O ©® N0 O hEWR®NRO®®ONTOAE®NRRO®©OWNO®U K ®WNRRO

A Program A

knowledge{
% handles dynamics cases (2a), (2d), (3a), (3b), (3c), and (3d)
clear(X) :- block(X), not(on(Y,X)), not(holding(X)).
ordered([X]) :- on(X,table).
ordered([X,Y[S8]) :- on(X,Y), ordered([Y|S]).
tower ([X|8]) :- ordered([X|S]) , clear(X).

clear(table).

towerWithBadTop(S) :- tower(S), isgoal(tower(T)), last(T,T1l),last(S,S1),
S1=T1, not(append(_,S,T)).

nextBlockForTower(S,X) :- tower(S), isgoal(tower(T)), append(R,[X|S],T).
towerContainsNeededBlock(S) :- nextBlockForTower(R,X), tower(S), member(X,S).
towerContainsNeededBlock(S) :- isgoal(tower(T)), last(T,B), not(on(B,table)),
tower (S) ,member (B,S) .
constructiveMove(X,Y) :- nextBlockForTower([Y|S],X), (clear(X); holding(X)).
constructiveMove(X,table) :- (clear(X); holding(X)), not(on(X,table)),
isgoal (tower(T)), last(T,X).

unpileMove(X) :- not(constructiveMove(P,Q)),
(towerContainsNeededBlock([X[S]); towerWithBadTop([X|S])).

goodMove (X,Y) :- constructiveMove(X,Y).
goodMove (X,table) :- unpileMove(X).

isgoal(tower([a,b,c])).
isgoal(tower([d,e,f]1)).

}
beliefs{
goals{
program{
if bel(goodMove(X,Y)) then pickup(X).
if bel(goodMove(X,Y)) then putdown(X,Y).

if bel(holding(X), not(goodMove(X,Y))) then putdown(X,table). %(2b), (2c), and (2e)

B Program B

knowledge{
clear(X) :- block(X), not(on(Y,X)).
clear(table).
tower ([X]) :- on(X,table).
tower ([X,YIL]) :- on(X,Y), tower([Y|L]).

}
beliefs{

goals{
on(a,b), on(b,c), on(c,table), on(d,e), on(e,f), on(f,table).
}

program{
if bel(on(X,Y), not(clear(X))), a-goal(on(X,Z)) then adopt(clear(X)).
if bel(on(X,Y)), a-goal(on(X,Z)), bel(not(clear(Z))) then adopt(clear(Z)).
if bel(on(X,Y), not(clear(X))), a-goal(clear(Y)) then adopt(clear(X)).
if bel(on(X,Y), clear(X), not(holding(B))), a-goal(clear(Y)),
not (a-goal(holding(S))) then adopt(holding(X)).
if bel(on(X,Y), clear(X), not(holding(B))), a-goal(clear(Y)),
not (a-goal(on(X,table))) then adopt(on(X,table)).
if bel(holding(X)), a-goal(on(X,table)) then putdown(X,table).

if a-goal(holding(X)), a-goal(on(X,Y)) then pickup(X).

if bel(on(X,Y), clear(X), not(holding(B))), a-goal(on(X,Z)), bel(tower([ZIL])),
a-goal (tower ([X,Z|L])), not(a-goal(holding(S))) then adopt(holding(X)).
if bel(holding(X), clear(Z), tower([Z|L])), a-goal(tower([X,Z|L])),
not (a-goal (on(X,table))) then putdown(X,Z).

if bel(holding(X)), a-goal(on(X,Z)), bel(not(clear(Z))),
not (a-goal(on(X,table))) then putdown(X,table). % (2c)
if bel(holding(X)), not(a-goal(on(X,Y))) then putdown(X,table). % (2e)
if a-goal(holding(X)), bel(not(clear(X))) then drop(holding(X)). % (2a)
if a-goal(holding(X)), bel(holding(Y)) then drop(holding(X)). % (2b)
if a-goal(holding(X)), not(a-goal(on(X,Y))) then drop(holding(X)). % (3a)

C Program C

knowledge{
clear(table).
clear(X) :- not(X=table), not(on(Y,X)), not(holding(X)).
clear ([X|_]) :- clear(X).

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).
above(X, [YIT]) :- above(X,Y).

tower ([X]) :- on(X,table).
tower ([X,YIT]) :- on(X,Y), tower([YIT]).

}
beliefs{
do(move(X,Y)) :- on(X,Y).

goals{
on(a,b), on(b,c), on(c,table), on(d,e), on(e,f), on(f,table).

program{
if a-goal(tower([X,Y|T])), bel(tower([Y|T]), (clear(X);holding(X)), clear(Y)),
not (goal(do(_))) then adopt(do(move(X,Y))).
if a-goal(tower([XIT])), bel((above(Z,X);Z=X), (clear(Z);holding(Z))),
not(goal(do(_))) then adopt(do(move(Z,table))).
if goal(tower(T)), bel(above(Y,T), clear(Y)), not(goal(above(Y,T))),
not(goal(do(_))) then adopt(do(move(Y,table))).

if a-goal(do(move(X,Y))) then pickup(X).
if a-goal(do(move(X,Y))) then putdown(X,Y).
if goal(do(move(X,_))), bel(holding(Y), not(X=Y)) then putdown(Y,table). % (2b,2e)

if a-goal(do(move(X,Y))), bel(not(holding(X)) ,not(clear(X)))
then drop(do(move(X,Y))). % (2a)
if a-goal(do(move(X,Y))), bel(not(clear(Y))) then drop(do(move(X,Y))). % (2c)
if goal(do(move(X,Y))), a-goal(tower([YIT])) then drop(do(move(X,Y))). % (3b)
if goal(do(move(X,Z))), a-goal(tower([X,Y|T])), bel(tower([Y|T]), clear(Y),
not(Y=Z)) then drop(do(move(X,Z2))). % (3c)
if goal(do(move(X,Z))), goal-a(tower([X|T])) then drop(do(move(X,Z))). % (3a)
if goal(do(move(X,_))), bel(holding(Y), not(X=Y)), a-goal(tower([Y,Z|T])),
bel(tower ([ZIT]), clear(Z)) then drop(do(move(X,_))). % (3d)

SRS BN S U R

o
o ©

11
12
13
14
15
16
17
18
19
20

D Action Specification and Percept Rules

All programs included these action specification and percept rules, except that
A made a slight modification by making use of a percept changed, that specifies
whether something has been changed in the environment by the user.

actionspec{
pickup(X) {
pre{ clear(X), not(holding(Y)) }
post{ true }
putdown(X,Y) {
pre { holding(X), clear(Y) }
post { true }
perceptrules{
when input{ block(X) } do insert(not(block(X))).
when input{ percept(block(X)) } do insert(block(X)).
when input{ holding(X) } do insert(not(holding(X))).
when input{ percept(holding(X)) } do insert(holding(X)).
when input{ on(X,Y) } do insert(not(on(X,Y))).
when input{ percept(on(X,Y)) } do insert(on(X,Y)).
¥
Table 4. Action Specification and Percept Rules
E Kinds of Dynamics

1. No influence: A block is moved that does not influence the agent. This can
be the case if a block not part of the goal configuration is moved from a
tower not containing blocks of the goal configuration (or from the table) to
a tower not containing blocks of the goal configuration (or to the table).

2. Problematic situation: A block is moved that prevents the execution of an
action that could be executed before the move, or the agent holds a block
that it does not want to move. A pickup action can no longer be executed
if a block is moved on top of the block that the agent wanted to pick up
(2a), or if a block is moved into the gripper that is not the one the agent
wanted to pick up (2b). A putdown action can no longer be executed with
the intended result if a block is moved on top of the block on which the
agent wanted to put down the block that it is holding (2c¢), or if the block is
taken away from the gripper (2d). If a block is moved into the gripper while
the agent did not want to move this block at all, it can be the case that the
agent holds a block that it does not want to move (2e).

3. Efficiency: A block is moved that makes the ezecution of an action super-

fluous or that results in the fact that a better action could be executed. The

former occurs if the move corresponds to the move that the agent wanted to
execute (3a), if the block onto which the agent wanted to move the block, is
no longer placed in the right position in the tower (no longer a constructive
move) (3b), or if the move makes it possible to make a constructive move,
rather than a move to the table (3c). The latter can be the case if a block
is moved into the gripper, through which a constructive move can be made,
even though the agent wanted to execute a different move (3d).

Test Cases

. The goal is “a on b on ¢ on table”, the initial state is “a on table, b on table,
c on table”.

. The goal is “a on b on ¢ on d on table, e on f on g on table, h on i on j on
table”, the initial state is “k on 1 on f on table, h on a on b on d on table, j
on i on m on c on table, g on e on table”.

. The goal is “a on b on c on d on table”, the initial state is “c on b on table, a
on table, d on table”. Wait until the gripper has picked up ¢, and has moved
to the top of the screen. Then use the mouse to put a onto d.

. The goal is “a on b on c on d on table”, the initial state is “c on b on table,
a on table, d on table, e on table”. Wait until the gripper moves downwards
in order to pick up c. Before it can pick up ¢, move block e into the gripper.

