Programming Organization-Aware Agents
A Research Agenda

M. Birna van Riemsdijk Koen Hindriks Catholijn Jonker

Technische Universiteit Delft, The Netherlands
{m.b.vanriemsdijk,k.v.hindriks,c.m.jonker } @tudelft.nl

Abstract. Organizational notions such as roles, norms (e.g., obligations
and permissions), and services are increasingly viewed as natural con-
cepts to manage the complexity of software development. In particu-
lar in the context of multi-agent systems, agents are expected to be
organization-aware, i.e., to understand and reason about the structure,
work processes, and norms of the agent organization in which they oper-
ate. In this paper, we analyze which kinds of reasoning an agent should
be able to do to function in an organization. We categorize these kinds
of reasoning with respect to several dimensions, and distinguish three
general approaches on how these might be integrated in existing agent
programming languages. Through this, we provide a research agenda on
what needs to be addressed when developing techniques for programming
organization-aware agents.

1 Introduction

Software systems are becoming increasingly complex. One of the main challenges
in the field of software engineering is to develop tools and techniques for manag-
ing this complexity [41]. A central role is played by development methodologies
and programming languages, which can help managing complexity by provid-
ing appropriate concepts and abstractions in terms of which an application can
be analyzed, designed, and implemented. Searching for the “most appropriate”
(most convenient, most natural, most succinct, most efficient, most comprehen-
sible, ...) programming concepts and abstractions is addressed in programming
language design [5, Foreword).

In the field of multi-agent systems (MAS), several dedicated agent program-
ming languages have been proposed [5] to support the implementation of MAS.
The programming abstractions on which many of these languages focus, are
aimed at programming how an agent can reach certain goals, how it should re-
act to events occurring in its environment, and how it should communicate with
other agents.

A line of research in the MAS field that has received increasing attention in
the last years, is to assign an organization to the MAS with the aim of organizing
and regulating it (see, e.g., [17,4,31,3,54]), in a similar way as done in human
organizations. Using an organizational specification to organize a MAS should
make the agents more effective in attaining their purpose, or prevent certain

undesired behavior from occurring. An organizational specification may define
the structure of the agent organization in terms of roles and the relations between
roles, and specify the norms (e.g., obligations and prohibitions) that are to be
followed by the agents of the MAS.

Agents that operate in such an organized MAS are expected to take the
specification of the organization, as well as their own position in the organization,
into account when deciding what to do. For example, an agent playing the role of
supervisor can typically delegate tasks to its subordinates, but not the other way
around. Agents playing the role of supervisor or subordinate should be aware of
this and take this into account when deciding on action, if they are to operate
effectively in the organization. While there is a growing body of work addressing
the modeling and implementation of organizational specifications, little research
has been done on how to program agents that use these specifications for deciding
on action (see [57,11,18,12,31,40] for a few papers that do address various
aspects of this). We call agents that are capable of such organizational reasoning
and decision making organization-aware agents.

It is the aim of this paper to analyze which kinds of reasoning an agent should
be able to do to function in an organization and how this might be programmed,
thereby providing a starting point for research on how to program an agent’s
organizational reasoning.

2 Motivation and Background

In this section, we explain in more detail why we believe that it is important
that agents are capable of organizational reasoning and decision making, and we
provide more background on the subject.

One of the main application areas that we believe would benefit from
organization-aware agents, is simulation and training of human organizations.
Agent-based simulation is important for analyzing and training organizations,
especially where learning is dangerous or where teaching is expensive [50,48,
28,14, 1,42,49]. The more realistic the behavior of the agents is, the better the
training results will most likely be.

For example, since 9/11 a lot of research has been put into the improvement
of crisis management. Agent technology plays an important role in creating com-
puter simulations for analysis support and in developing training environments
for this domain [44, 46, 26,49, 28, 27]. Software agents form a natural program-
ming metaphor: there is a relatively close correspondence between real-world
crisis management organizations and collections of autonomous agents that in-
teract in a dynamic environment, usually with some individual or collective
purpose.

As an example of the kind of organizational reasoning that is required in
crisis management, consider the following scenario:

An explosion has occurred in a chemical plant and hazardous chemicals
have leaked into the area. To prevent further injuries, it is essential that
the emergency response team secures the area by setting up road blocks.

Normally, this is the task of policemen, but firefighters are the first to
arrive on the scene. Should the firefighters set up the road blocks?

The firefighters operate in the context of a larger emergency response orga-
nization, for which operating procedures and role responsibilities are (partly)
described in a disaster plan. The firefighters have to decide whether to take on a
role that is normally played by other members of the organization (according to
the disaster plan), or whether to give priority to their own goal of fighting the
fire. This kind of organizational reasoning and decision making takes place fre-
quently in organizations such as those for crisis management. Endowing agents
with similar capabilities is thus highly relevant.

Other application areas where organizational reasoning can be useful, are
human-agent teamwork and open systems. In human-agent teamwork, humans
and agents work together to achieve joint goals. It is essential for the effective
operation of a (human-agent) team to create a shared understanding between
teammates [52, 39, 36]. This is facilitated by making agents understand how to
function as part of an organization. Open systems allow agents to enter and leave
the system as it operates [19,2,15]. Typical examples are e-institutions such as
market places on the internet. An open system is organized by an organizational
specification that is to be followed by the participating agents. Organizational
reasoning and decision making facilitates the functioning of agents as part of an
open system.

Existing research on organizational modeling languages supports the specifi-
cation of organizations using the notion of “role” (see, e.g., [19,21,17, 58, 30, 4,
31,54, 33]). In this way, an organizational specification abstracts from the indi-
vidual agents that will eventually play the roles, comparable to a disaster plan in
crisis management: a disaster plan describes the desired structure and function-
ing of the crisis management organization without specifying which individuals
will play the roles of policeman and firefighter in case of a crisis. Some organi-
zational modeling languages come with implementation frameworks [20, 31, 45]
that, for example, allow agents to access and modify the state of the organiza-
tion and enforce organizational constraints by applying sanctions in case of their
violation.

Given an organizational specification, it is up to the agents to operationalize
it by playing the roles of the organization. A few abstract models exist on how
aspects of an organizational specification may influence agent behavior [16,7,
38,18, 8], but little is understood on how to operationalize and combine them
on the level of agent programming. First steps towards this have been made
[57,11,18,12,31,40]. However, in order to program agents that take reasoned
decisions on how to play their part in the organization, more advanced forms
of organizational reasoning and decision making are needed as discussed in the
rest of this paper.

3 Dimensions of Organizational Reasoning

In this section, we categorize forms of organizational reasoning along three main
dimensions: the phases of organizational participation of the agent, the elements
of organizational specifications that agent should understand, and the direction
of organizational reasoning (top-down starting from an organizational specifica-
tion, or bottom-up where the agents have to figure out amongst themselves how
to organize). It is the aim of this section to provide a reasoned overview of kinds
of organizational reasoning. We have included references that can be used as a
starting point if a certain kind of organizational reasoning is studied, and we
provide several examples of organizational reasoning for each of the categories,
such as deciding whether to take on a role (weighing possibly conflicting interests
as in the firefighter scenario), reasoning about how to fulfill norms imposed by
the organization and deciding when to go against them (even though sanctions
might be applied), reasoning about how to change the organization, etc.

3.1 Phases of Organizational Participation

Organizations are operationalized through the agents that play roles in the or-
ganization. In the case of open organizations where agents may enter and leave
the organization, it seems evident to distinguish three phases of an agent par-
ticipating in an organization: entering the organization, playing roles in the or-
ganization, and leaving the organization. If closed systems are considered, only
the second phase is relevant. In each phase, different kinds of reasoning can be
distinguished.

Entering the Organization In this phase, the agent has to reason about
whether it wants to enter the organization, and whether it has the capabilities
to behave as the organization requires. That is, the agent needs to consider
what it wants from the organization, and what the organization wants from it.!
Since agents typically participate in an organization by playing a role in the
organization, this kind of reasoning will focus on deciding whether to play a
role.

In order to determine this, the agent has to reason about whether playing a
certain role in the organization can help it to fulfill its own goals, and whether
it can come to an agreement, e.g., with respect to the interaction protocols that
will be used. For this, the agent has to understand the specification of the role,
and should be able to relate it to its own goals. For example, if an agents wants
to sell books, it might participate as a seller in an auction if it understands
that playing the seller role will enable it to sell the books. The agent also has to
determine whether it can play the role in the way required from the organization.
For example, the auction might require the agent to have a bank account in the

! See also [8], where the notion of social power is used as a basis for the agent to
decide whether it wants to enter a group, i.e., whether the power it loses by entering
is compensated by the power it gains or not.

country where the auction is held, to enable easy transfer of the money earned
by selling the books. In order to determine whether the agent can fulfill these
norms belonging to a role, the agent has to understand them and relate them
to its own capabilities. For example, if the agent currently does not have a bank
account in the country where the auction is held, but it does know how to obtain
such a bank account, it might decide to play the role and open up the account.

In practice, it will often be the case that the agent and the role do not
match exactly [11]. Playing the role might not enable the agent to fulfill its goals
entirely, and the agent might not have all the capabilities in principle required to
play the role. The agent can then negotiate about the terms under which it plays
the role in the organization (see also [36], where goal negotiation is identified
as one of the challenges of human-agent cooperation), and form a contract [17]
with the organization. A related aspect is that conflicts may arise between some
goals of the agent and requirements imposed by the role [11] (see also [53, 47, 56]
for work on conflicting goals). For example, the agent may want to sell its books
to only one buyer because it concerns a book series that the agent feels should
not be separated. However, the auction does not offer the possibility to specify
that the books should be sold to a single buyer. The agent will then have to
reason about priorities between its goals, i.e., whether selling the books is more
important than keeping the books together.

Playing Roles in the Organization When the agent has decided to play a
role in the organization, it has to decide how to do this. In other words, the
abstract specification of the role with accompanying norms and responsibilities
or goals has to be interpreted and translated to concrete actions taken by the
agent. We distinguish three increasingly advanced levels of organizational reason-
ing related to playing roles: behaving according to the specification of the role,
reasoning about violation of the specification, and reasoning about adapting the
specification of the role (or other parts of the organization).

Before we discuss these levels of organizational reasoning, we remark that
an agent may also be designed to fulfill certain roles in an organization (see,
e.g., the Gaia methodology [60])2. An agent may then always behave according
to the specification of the role by design, and no advanced forms of reasoning
are required to make sure the agent complies with the specification. Generation
of agent skeleton code [57] from the organizational specification can be used to
ease agent developed in such a setting.> While this is useful for certain kinds of
applications, it limits the flexibility of the MAS. We aim for domains in which
increased flexibility obtained through organizational reasoning would provide
additional benefits. For example, in the case of open systems it would be benefi-
cial if the agents are capable of entering and functioning in various organizations

2 In [34], the ROADMAP methodology is proposed which extends Gaia, among other
things by allowing agents to change roles at run-time.

3 Although the skeletons make sure the agent behaves according to the specification,
even in this approach reasoning may still be required to choose from several allowed
options.

without the programmer having to specify for each of these organizations exactly
how the agent should do this. Also, in simulation of organizations one may want
to simulate with different norms, organizational structures, and role specifica-
tions, in order to try out what yields better results. If the agents are able to
understand the organizational specification, this provides for additional flexibil-
ity and a kind of separation of concerns: one could modify the organizational
specification independently of the agents, and the agents would be able to adapt
to this. The discussion in the sequel focuses on organizational reasoning in this
sense.

The first level of organizational reasoning that we distinguish, behaving ac-
cording to the specification, requires that the agent understands the role specifi-
cation and is able to translate it into concrete actions that fulfill the goals of the
role and do not violate the norms of the role. One of the main challenges here
is to bridge the gap between the possibly abstract specification of the role, and
concrete actions that the agent has to take (see also [59] for an approach to con-
cretizing norms for electronic institutions). For example, the role specification
of a policeman might specify that he should keep people away from hazardous
situations. The agent playing the role of policeman then has to translate this into
setting up road blocks in case hazardous chemicals have escaped from a plant.
The closer the role specification is to the internal agent architecture (e.g., in [11,
12] they are relatively close), the easier this translation will presumably be. If
a role is specified in an organizational modeling language and the agent is pro-
grammed in an agent programming language that was not designed to work with
the organizational modeling language, bridging this gap will be more difficult.
Another challenge is to let the agent reason about its own behavior to prevent
it from violating norms (see, e.g., [24, 25] for work on how to prevent violation
of goals, and [40] for an approach on how AgentSpeak(L) agents can adapt their
behavior to norms). For example, if the norm is that policemen should always
execute tasks in pairs, this should influence the agents’ actions accordingly.

The second level, reasoning about violation, requires the agent to decide
whether, even though it has decided to play the role, it will nevertheless vio-
late some of the requirements imposed by the role (see also [10, 7]). For example,
the role of policeman might specify that it can only be played by agents that have
the corresponding diploma. However, if road blocks need to be set up and police-
men have not arrived yet, firefighters might decide to play the role of policemen
and set up the road blocks, even though strictly speaking they are not allowed
to do this. Deciding on whether to violate the role specification requires weigh-
ing the benefits of breaking the rules against possible negative consequences or
sanctions resulting from this. Here, it should be noted that there is a difference
between norm enforcement, which makes the violation of norms less desirable
by introducing, e.g., sanctioning mechanisms, and norm regimentation, in which
case it is made impossible to violate a norm (see, e.g., [35,55]). In the former
case, an agent can decide to violate the norm and accept the sanction, while in
the latter case this is not possible. Regimentation can be realized using organi-
zational middleware in which the agent sends requests for actions that it would

like to execute to the middleware, which decides whether the specific action is
indeed executed. For example, in MOISE™ [31] each agent is connected to a so-
called “Orgbox” which forms the interface between agents and middleware, and
in ISLANDER/AMELI [20] governors are used for mediating the participation
of agents in an electronic institution.

The third level, reasoning about adaptation, requires the agent to reason
about how possible changes to the specification of the role or organization as a
whole might affect the functioning of the organization (see [30] for an approach
that uses reorganization agents for performing reorganizations). In particular,
the agent should be able to determine which changes will lead to improvements
in the functioning of the organization. This might, for example, be determined
by comparing the actual behavior of the organization against the prescribed
behavior. Discrepancies can indicate that changes are necessary.

Besides reasoning about how to play a role in the organization, the agent
should also reason about whether to take on additional roles in the organization
or change roles. This is largely similar to the kind of reasoning needed when
entering the organization. An additional aspect that needs to be addressed if the
agent decides to take on multiple roles, is that it should reason about possible
conflicts between the requirements imposed by these roles. For example, if an
incident occurs, the mayor of the city might take on the role of coordinator of
the rescue efforts. This role requires him to be at the crisis management centre.
However, this conflicts with his role as mayor, as in that role he should be at
the scene to comfort the injured people.

Leaving the Organization In order to enter this phase, the agent has to
reason about whether it still wants to participate in the organization. Reasons
for leaving the organization (see also [29]) can be that the agent has achieved
the goals it wanted to by being part of the organization. Another reason can
be that it believes it will not be able to achieve its goals. These considerations
are similar to an agent deciding whether to drop a goal in BDI agent languages:
when the goal is achieved or believed to be unachievable. Another reason for the
agent to leave the organization is that it is thrown out, for example because it
has not adhered to the norms of the organization. Alternatively, an agent may
not be allowed to leave the organization, e.g., if it has not payed yet in the case
of an electronic market place.

3.2 Elements of Organizational Specifications

As explained in Section 1, an organizational specification defined in an organiza-
tional modeling language is used to organize and regulate a multi-agent system.
For example, the MOISE™ organizational modeling language [4, 31] specifies an
organization in terms of a structural dimension using the notions of roles and
groups, a functional dimension that describes how global collective goals should
be achieved, and a normative dimension expressing permissions and obligations
for roles, related to the achievement of (sub)goals.

Agents capable of organizational reasoning should be able to understand and
reason about an organizational specification. This requires agents to understand
all elements of the organizational specification, such as the structural dimension,
the functional dimension and the normative dimension in the case of MOISE™.
Different kinds of organizational reasoning are associated with each of these
elements.

For example, the MOISE™ structural dimension is related to the commu-
nication between agents. It specifies that agents playing a certain role should
not communicate with agents playing some other role. Moreover, the structural
dimension allows the specification of authority links between roles. This should
presumably influence how agents handle and pose requests: if a higher ranked
agent requests something from a lower ranked agent, the latter should usually
obey (unless its reasoning determines that there are strong arguments against
obeying).

3.3 Direction of Organizational Reasoning

The third dimension that we distinguish, is the direction of organizational rea-
soning: top down or bottom up. By top down reasoning we mean that the agents
take an organizational specification as the basis for their behavior in the organi-
zation, for example by following the specified work processes. By bottom up rea-
soning we mean that the agents figure out amongst themselves how they should
cooperate, without a predefined organization. Naturally, these can co-exist. In
general, the more is specified in the organizational specification, the less room
there will be for bottom-up reasoning, and vice versa. This dimension is related
to the distinction made between agent-centered and system-centered [31], where
the latter refers to the case where there is an explicit organizational specifica-
tion. The direction of organizational reasoning refers to the kind of reasoning
required from the agents in each of these cases.

In the discussion so far, we have focused mainly on top down reasoning. In
bottom up reasoning, an important kind of reasoning is reasoning about other
agents. This has received relatively little attention in the agent programming
literature. Nevertheless, we mention several approaches in agent programming
and other areas of MAS research that address aspects of reasoning about other
agents. For example, for virtual characters in games, it is important that they
are able to form an internal representation of the mental states of other play-
ers, e.g., for predicting what they might do [37,51]. A related area is plan or
intention recognition [9,13,23]. There, agents try to recognize the plans or in-
tentions of other agents (which might also be humans), based on observations of
their actions and domain knowledge of certain standard procedures. Reasoning
about humans is also an important part of mixed-initiative systems, in which
the system collaborates with a user by sometimes taking initiative to support
the user’s activities (see, e.g., [43,22]). It will have to be investigated whether
techniques developed in these areas can be used in the context of organized MAS
for reasoning about other agents, and how this kind of bottom up reasoning can
be combined with top down reasoning.

4 Programming Organization-Aware Agents

In Section 3, we have categorized kinds of organizational reasoning. In this sec-
tion, we discuss general approaches for how agents could be programmed to
perform organizational reasoning. Future research will have to make an effort in
clearly identifying their respective strengths and weaknesses.

The first approach that we identify, is to use existing agent programming
languages for specifying an agent’s organizational reasoning. This is the approach
taken in [31], where Jason is used to program agents that should function in a
MOISE™ organization. Jason is extended by necessary organizational actions,
such as an action for adopting a role. Otherwise, no additions to Jason are
made. The actions do not come with sophisticated reasoning, e.g., the action for
adopting a role does not check whether the agent has the capabilities for playing
the role. Plans are programmed, e.g., to specify when the agent should adopt a
particular role.

The advantage of this approach is that an existing language is used, which
means that a programmer who knows Jason could in principle program Jason
agents that should function in an organization. The disadvantage is that the pro-
grammer is not explicitly supported in programming organization-aware agents.
For example, he will have to program how an agent should determine whether
it can play a role in an organization. This is a non-trivial task. Also, some as-
pects of organizational reasoning have to be repeated for each instance of it. For
example, an agent should notify the organization if it has achieved some goal.
This means that an action has to be included in each plan where a goal of the
organization is reached.

The second approach we discuss here aims for a more generic approach based
on the recognition that in open systems software agents can no longer be com-
pletely hard-coded as this would require the reprogramming of agents every time
a virtual organization changes. The idea is that agents instead need to exchange
information about virtual organizations to be able to adequately coordinate their
activities. Such information exchange needs to be supported by explicitly repre-
senting the structure and norms of the organization in some declarative language.
Current state of the art agent programming languages provide an agent with the
capability to reason with its beliefs and goals. In order to become organization-
aware the second approach would be to suggest adding dedicated capabilities
to an agent that support organizational reasoning. The basic idea here would
be to add an “organizational attitude” to agents besides their epistemic and
motivational attitude. This can be achieved by adding dedicated organizational
reasoning patterns as software components or plugins that will provide agents
with the capability to reason about generic issues related to the organization
they participate in. For example, plugins might be provided (i) for identifying
the benefits of taking part in the organization, (ii) for negotiating about inter-
action protocols, (iii) for monitoring of norm compliance, and possibly other
typical reasoning patterns.

Finally, the third - even more ambitious - approach would be to develop new
programming abstractions for programming an agent’s organizational reasoning

and decision making. In this approach, the organizational reasoning would be
done in a separate layer using the new programming abstractions, and the agent’s
cognitive reasoning and decision making (reasoning about achieving goals) in an-
other. The latter is then programmed in existing agent programming languages.
A semantic connection between both layers would have to be established. For ex-
ample, organizational reasoning and decision making involves deciding whether
to take on a certain role, which typically comes with permissions and obligations
to achieve goals. If the agent takes on the role, this should influence its cognitive
reasoning and decision making on how to reach the accompanying goals. How-
ever, if it turns out that the agent is not able to achieve the goals after all, or
decides to achieve other goals because this is more in line with its own interests,
this should in turn influence its organizational reasoning and decision making.
It may, e.g., have to decide to delegate some goals to other agents (see also [32,
6]). An architecture for this approach is depicted in Figure 1.

S

external
organizational
specification

organizational
communication

practical
reasoning rules

I . V1C N

Fig. 1. Architecture for Organizational Reasoning

' beliefs goals

Programming languages for organization-aware agents would reduce the ef-
fort needed for programming and maintaining agents. We refer to the well-known
rule of thumb that programmers can code a fixed number of lines of code per

hour, independently of the language in which the coding is done. Having pro-
gramming constructs for organization-aware agents would allow the program-
mer to represent the reasoning in a concise way, reducing the amount of time
needed for programming. Moreover, it would provide conceptual support, since
the language would guide the programmer in its thinking about the problem.
For maintenance of programs, programs written in terms of higher programming
abstractions are easier to read and thus to maintain than programs written in
lower-level languages. Maintenance of software is notoriously hard for those that
did not write the programs themselves, and increased understandability of the
code would improve maintenance.

Although we aim for applications in which an agent’s ability to perform
organizational reasoning is beneficial, it may not be necessary for the agent
to perform all of the reasoning required to function in an organization itself.
Some approaches alleviate the agent partly from having to do organizational
reasoning, by letting the organizational middleware take over some aspects of
this. For example, in ISLANDER/AMELI, governors can be posed questions
about the institution [19], in J-MOISE+ events are sent to agents to notify
them, e.g., about whether the agent has an obligation, and in [55] the agent can
delegate tasks to its role, which forms the connection between the agent and
the organization. Although these approaches can help explain the agent what is
expected from it in a certain situation from the perspective of the organization,
the agent will still have to take the decision as to what it will do. That is, either
decide which of several allowed actions it takes in case of regimentation (see, e.g.,
[57]), or decide whether to comply with a norm if the norm is only enforced.

5 Conclusion

In this paper, we have identified kinds of organizational reasoning along three
dimensions: phases of organizational participation, elements of organizational
specifications, and direction of organizational reasoning. Moreover, we have iden-
tified three approaches for programming organization-aware agents: using ex-
isting agent programming languages, developing components for organizational
reasoning, and developing dedicated programming abstractions for supporting
organizational reasoning. Through this, we have provided a research agenda
on what needs to be addressed when developing techniques for programming
organization-aware agents.

Acknowledgements

We would like to thank the anonymous referees for their useful comments.

References

1. AOS group. Jack: an agent infrastructure for providing the decision-making capa-
bility for autonomous systems (whitepaper). http://www.aosgrp.com/downloads/
JACK\ _WhitePaper_UKAUS.pdf.

10.

11.

12.

13.

14.

15.

16.

J. L. Arcos, M. Esteva, P. Noriega, J. A. Rodriguez-Aguilar, and C. Sierra. Engi-
neering open environments with electronic institutions. Engineering applications
of artificial intelligence., 18(2):191-204, 2005.

. M. Baldoni, G. Boella, V. Genovese, R. Grenna, and L. van der Torre. How to

program organizations and roles in the JADE framework. In 6th German Con-
ference on Multiagent System Technologies (MATES 08), volume 5244 of LNCS,
pages 25-36. Springer, 2008.

. O. Boissier, J. F. Hiibner, and J. S. Sichman. Organization oriented programming:

From closed to open organizations. In Proceedings of the 7th International Work-
shop on Engineering Societies in the Agents World (ESAW’07), volume 4457 of
LNCS, pages 86-105. Springer, 2007.

. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Multi-Agent

Programming: Languages, Platforms and Applications. Springer, Berlin, 2005.

. F. Brazier, C. Jonker, and J. Treur. Formalization of a cooperation model based

on joint intentions. In J. Mueller, M. Wooldridge, and N. Jennings, editors, Pro-
ceedings of the Third International Workshop on Agent Theories, Architectures
and Languages (ATAL’96), volume 1193 of LNAI, pages 141-155. Springer-Verlag,
1997.

. J. Broersen, M. Dastani, J. Hulstijn, and L. van der Torre. Goal generation in the

BOID architecture. Cognitive Science Quarterly, 2(3-4):428-447, 2002.

. C. Carabelea, O. Boissier, and C. Castelfranchi. Using social power to enable

agents to reason about being part of a group. In Proceedings of 5th International
Workshop on Engineering Societies in the Agents World (ESAW’04), volume 3451
of LNCS, pages 166—177. Springer, 2005.

. S. Carberry. Techniques for plan recognition. User Modeling and User-Adapted

Interaction, 11:31-48, 2001.

C. Castelfranchi, F. Dignum, C. Jonker, and J. Treur. Deliberative normative
agents: Principles and architecture. In 6th International Workshop on Intelligent
Agents VI, Agent Theories, Architectures, and Languages (ATAL’99), volume 1757
of LNCS, pages 364-378. Springer, 2000.

M. Dastani, V. Dignum, and F. Dignum. Role-assignment in open agent societies.
In Proceedings of the second international joint conference on autonomous agents
and multiagent systems (AAMAS’03), pages 489-496, Melbourne, 2003.

M. Dastani, M. B. van Riemsdijk, J. Hulstijn, F. Dignum, and J.-J. Ch. Meyer.
Enacting and deacting roles in agent programming. In J. Odell, P. Giorgini, and
J. Miiller, editors, Agent-Oriented Software Engineering V, volume 3382 of LNCS,
pages 189—204. Springer-Verlag, 2005.

R. Demolombe and A. M. O. Fernandez. Intention recognition in the situation
calculus and probability theory frameworks. In 6th International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA’05), volume 3900 of LNCS,
pages 358-372. Springer, 2006.

F. Dignum, V. Dignum, and C. Jonker. Towards agents for policy making. In
Proceedings of the 9th International Workshop on Multi-Agent-Based Simulation
(MABS’08), 2008.

F. Dignum, V. Dignum, J. Thangarajah, L. Padgham, and M. Winikoff. Open
agent systems??? In Proceedings of the 8th International Workshop on Agent-
Oriented Software Engineering (AOSE’07), volume 4951 of LNCS, pages 73-87.
Springer, 2008.

F. Dignum, D. Kinny, and L. Sonenberg. From desires, obligations and norms to
goals. Cognitive Science Quarterly, 2(3-4):407-430, 2002.

17

18.

19.

20.

21.

22.

23.

24.

253.

26.

27.

28.

29.

30.

31.

V. Dignum. A Model for Organizational Interaction: Based on Agents, Founded in
Logic. PhD thesis, 2004.

V. Dignum and F. Dignum. What’s in it for me? Agent deliberation on taking
up social roles. In Proceedings of the second FEuropean Workshop on Multi-Agent
Systems (EUMAS’04), 2004.

M. Esteva, J. Padget, and C. Sierra. Formalizing a language for institutions and
norms. volume 2333 of LNCS, pages 348-366. Springer, 2002.

M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, and J. L. Arcos. AMELI: An
agent-based middleware for electronic institutions. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’04), pages 236-243. IEEE Computer Society, 2004.

J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: An organi-
zational view of multi-agent systems. In Proceedings of 4th International Workshop
on Agent-Oriented Software Engineering (AOSE’08), volume 2935 of LNCS, pages
214-230. Springer, 2003.

G. Ferguson and J. Allen. Mixed-initiative systems for collaborative problem solv-
ing. AI Magazine, 28(2), 2009.

A. Goultiaeva and Y. Lespérance. Incremental plan recognition in an agent pro-
gramming framework. In Workshop on Plan, Activity, and Intent Recognition
(PAIR’07), 2007.

K. Hindriks and M. B. van Riemsdijk. Satisfying maintenance goals. In Declarative
Agent Languages and Technologies V (DALT’07), volume 4897 of LNAI pages 86—
103. Springer, 2008.

K. Hindriks and M. B. van Riemsdijk. Using temporal logic to integrate goals and
qualitative preferences into agent programming. In Declarative Agent Languages
and Technologies VI (DALT’08), volume 5397 of LNAI, pages 215-232. Springer,
20009.

M. Hoogendoorn, C. Jonker, V. Popova, A. Sharpaskykh, and L. Xu. Formal
modelling and comparing of disaster plans. In Proceedings of the Second Interna-
tional Conference on Information Systems for Crisis Response and Management
(ISCRAM’05), pages 97-107, 2005.

M. Hoogendoorn, C. Jonker, P. van Maanen, and A. Sharpanskykh. Formal analysis
of empirical traces in incident management. Reliability Engineering and System
Safety, 93:1422-1433, 2008.

M. Hoogendoorn and J. Treur. An adaptive multi-agent organization model based
on dynamic role allocation. In Proceedings of the 2006 IEEE/WIC/ACM Interna-
tional Conference on Intelligent Agent Technology (IAT’06), pages 474-481. IEEE
Computer Society, 2006.

N. Hormazdbal, H. L. Cardoso, J. L. de la Rosa, and E. Oliveira. An ap-
proach for virtual organizations’ dissolution. In Proceedings of the international
workshop on coordination, organization, institutions and norms in agent systems
(COIN09@QAAMAS), pages 93-108, 2009.

J. F. Hiibner, J. S. Sichman, and O. Boissier. Using MOISE+ for a cooperative
framework of MAS reorganisation. In Proceedings of the 17th Brazilian Sympo-
stum on Artificial Intelligence (SBIA’04), volume 3171 of LNAI, pages 506-515.
Springer, 2004.

J. F. Hiibner, J. S. Sichman, and O. Boissier. Developing organised multiagent
systems using the MOISE+ model: programming issues at the system and agent
levels. International Journal of Agent-Oriented Software Engineering, 1(3/4):370—
395, 2007.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48

N. Jennings. Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence Journal, 74(2), 1995.

C. Jonker and J. Treur. From organisational structure to organisational behaviour
formalisation. International Journal of Agent-Oriented Software Engineering, 2009.
To appear.

T. Juan, A. R. Pearce, and L. Sterling. ROADMAP: extending the Gaia method-
ology for complex open systems. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS’02), pages
3-10. ACM, 2002.

L. Kamara, J. Pitt, and M. Sergot. Norm-aware agents for ad hoc networks:
A position paper. In Proceedings of the AAMAS’04 Workshop on Agents and
Ubiquitous Computing, 2004.

G. Klein, D. D. Woods, J. M. Bradshaw, R. R. Hoffman, and P. J. Feltovich. Ten
challenges for making automation a “team player” in joint human-agent activity.
IEEEFE Intelligent Systems, 19(6):91-95, 2004.

J. E. Laird. It knows what you're going to do: adding anticipation to a quakebot.
In Proceedings of the fifth international conference on Autonomous Agents, pages
385-392. ACM, 2001.

F. Lépez y Lépez. Social Power and Norms: Impact on Agent Behaviour. PhD
thesis, 2003.

E. Mathieu, T. S. Heffner, G. Goodwin, E. Salas, and J. Cannon-Bowers. The
influence of shared mental models on team process and performance. The Journal
of Applied Psychology, 85(2):273-283, 2000.

F. Meneguzzi and M. Luck. Norm-based behaviour modification in BDI agents. In
Proceedings of the eighth international joint conference on autonomous agents and
multiagent systems (AAMAS’09), pages 177-184, Budapest, 2009.

R. J. Mitchell, editor. Managing Complezity in Software Engineering. Institution
of Electrical Engineers, UK, 1990.

S. Munroe, T. Miller, R. A. Belecheanu, M. Pechoucek, P. McBurney, and M. Luck.
Crossing the agent technology chasm: Experiences and challenges in commercial
applications of agents. Knowledge Engineering Review, 21(4):345-392, 2006.

K. Myers and N. Yorke-Smith. Proactivity in an intentionally helpful personal
assistive agent. In Proceedings of AAAI 2007 Spring Symposium on Intentions in
Intelligent Systems, 2007.

R. Nair, M. Tambe, and S. Marsella. Team formation for reformation in mul-
tiagent domains like RoboCupRescue. In International Symposium on RoboCup
(RoboCup’02), 2002.

D. Okouya and V. Dignum. OperettA: a prototype tool for the design, analy-
sis and development of multi-agent organizations. In Proceedings of the 7Tth in-
ternational joint conference on Autonomous agents and multiagent systems (AA-
MAS’08), pages 1677-1678, Richland, SC, 2008. International Foundation for Au-
tonomous Agents and Multiagent Systems.

A. Oomes. Organization awareness in crisis management: dynamic organigrams for
more effective disaster response. In Proceedings of the First International Confer-
ence on Information Systems for Crisis Response and Management (ISCRAM’04),
pages 63—68, 2004.

A. Pokahr, L. Braubach, and W. Lamersdorf. A goal deliberation strategy for BDI
agent systems. In MATES 2005, volume 3550 of LNAI, pages 82-93. Springer-
Verlag, 2005.

W. B. Rouse and K. R. Boff. Organizational Simulation. Wiley, 2005.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

N. Schurr, P. Patil, F. Pighin, and M. Tambe. Using multiagent teams to improve
the training of incident commanders. In Proceedings of the fifth international joint
conference on autonomous agents and multiagent systems (AAMAS’06), Industry
Track, Hakodate, 2006.

M. Sierhuis. Modeling and Simulating Work Practice; Brahms: A multiagent mod-
eling and simulation language for work system analysis and design. PhD thesis,
2001.

M. Sindlar, M. Dastani, F. Dignum, and J.-J. Ch. Meyer. Mental state abduction of
bdi-based agents. In Declarative Agent Languages and Technologies VI (DALT08),
volume 5397 of LNAI, pages 161-178. Springer, 2009.

K. Sycara and G. Sukthankar. Literature review of teamwork models. Technical
Report CMU-RI-TR-06-50, Carnegie Mellon University, 2006.

J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and avoiding interference
between goals in intelligent agents. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI 2008), 2003.

N. A. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer. Orwell’s nightmare for agents?
Programming multi-agent organisations. In Proceedings of the Fifth International
Workshop on Programming Multiagent Systems (ProMAS’08), 2008.

N. A. Tinnemeier, M. Dastani, and J.-J. Ch. Meyer. Roles and norms for program-
ming agent organizations. In Proceedings of the eighth international joint confer-
ence on autonomous agents and multiagent systems (AAMAS’09), pages 121128,
Budapest, 2009.

M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Goals in conflict: Semantic
foundations of goals in agent programming. Autonomous Agents and Multi- Agent
Systems, 18(3):471-500, 2009.

W. W. Vasconcelos, J. Sabater, C. Sierra, and J. Querol. Skeleton-based agent
development for electronic institutions. In Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’02),
pages 696-703. ACM, 2002.

J. Vazquez-Salceda. The Role of Norms and Electronic Institutions in Multi- Agent
Systems: The HARMONIA Framework. Whitestein Series in Software Agent Tech-
nologies and Autonomic Computing. Birkh&user, 2004.

J. Vazquez-Salceda, H. Aldewereld, D. Grossi, and F. Dignum. From human reg-
ulations to regulated software agents’ behavior. Journal of Artificial Intelligence
and Law, 16(1):73-87, 2008.

F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent sys-
tems: The Gaia methodology. ACM Transactions on Software Engineering and
Methodology (TOSEM), 12(3):317-370, 2003.

