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Abstract. This paper addresses the notion of (declarative) goals as used
in agent programming. Goals describe desirable states, and semantics of
these goals in an agent programming context can be defined in various
ways. We focus in this paper on the representation of conflicting goals. In
particular, we define two semantics for goals, one for unconditional goals
and one for conditional goals. The first is based on propositional logic,
and the latter is based on default logic. We establish relations between
and properties of these semantics.

1 Introduction

An important line of research in the agent systems field is research on agent
programming languages and frameworks [3]. In this paper, we are in particular
interested in those languages and frameworks that focus on the programming
of cognitive agents (see, e.g., [54]). Cognitive agents are agents endowed with
high-level mental attitudes, such as beliefs, goals, desires, intentions, plans, etc.

In cognitive agent programming languages, cognitive notions are first class
citizens. Much research in this area thus investigates which cognitive notions
are suitable for use in a programming language, and what kind of language
constructs one could use for implementing them. Most cognitive agent program-
ming languages and frameworks have at least an informational component (of-
ten called “beliefs”) and a procedural component (often called “plans”). In the
past several years, there has been an increasing amount of research concern-
ing frameworks that also have a motivational component (often called “goals”)
[61,28,59,48,50,49,4,55,40,56,32,38,17,57]. The idea is then that an agent exe-
cutes plans in order to reach its goals, depending on what it believes about the
world.

An agent may in general pursue multiple goals at the same time. An issue
that arises in this context, is that some goals are conflicting, in the sense that it is
undesirable to pursue these simultaneously. One reason for not pursuing certain
goals simultaneously, is that the plans for reaching these goals may interfere. For
? This title was inspired by the title of the PhD thesis of Harrenstein: Logic in Conflict:
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example, an agent may try executing plans for reaching the goal to be in Paris
and reaching the goal to be in Amsterdam simultaneously, while the agent is
currently in Brussels. A parallel execution of these plans is not likely to support
the effective achievement of both goals. There can also be other reasons that
an agent should not pursue certain goals simultaneously. For example, an agent
might be hungry, and consequently have the goals to have a pizza and to have
sushi. However, it will only need to achieve one of these goals in order not to be
hungry anymore.

To prevent the simultaneous pursuit of conflicting goals, it is important to
know and to be able to represent which goals are conflicting. One way to do
this, is to reason about the plans that may be used to achieve the agent’s goals
in order to determine conflicts [51,49]. Another way to do it is to determine
conflicts not on the level of plans, but solely on the level of goals [40,56].3 In this
paper, we follow the latter approach.

Such an approach requires that the agent programmer can represent goals and
their mutual conflicts. The investigation of how to do this has not received much
attention in the literature on cognitive agent programming. In [40], the Jadex
cognitive agent framework is extended with an inhibition relation between goals
which explicitly expresses that two goals are conflicting. While Jadex supports
the programming of cognitive agents using XML and Java, we investigate in
this paper the representation of conflicting goals in the context of logic-based
agent programming languages. Not much work has been done yet in this area,
and therefore we believe it is important to study this issue formally and from a
foundational perspective in order to get a better understanding of the various
techniques that may be used, and of their properties.

The main contribution of this paper is the proposal of two ways of repre-
senting conflicting goals, accompanied by the definition of what the goals of the
agent are, given these representations. We provide one definition based on a rep-
resentation of unconditional goals, and one that is based on the representation
of conditional goals. We investigate properties of and relations between these
definitions. This paper builds on our earlier work as published in [56]. The main
differences are that in the present paper we provide more details regarding the
motivations for the definitions, the analysis of the properties, and related work.
Further, we investigate not only the relation between various semantics for un-
conditional goals, but also properties of these semantics. Moreover, we slightly
change the semantics of conditional goals, and consequently consider different
properties.

The paper is organized as follows. In Section 2, we provide some more back-
ground on the role of goals in logic-based cognitive agent programming lan-
guages, and we discuss how conflicting goals have been modeled in agent pro-
gramming frameworks. In Sections 3 and 4, we present the formal definitions and

3 Thangarajah et al. [51,49] also involve goals in their approach, but as an integral
part of the agent’s plans. The reasoning is based on the resources used by the agent’s
plans, and results of the execution of an agent’s plans, respectively.



analysis of unconditional and conditional goals, respectively. Section 5 discusses
related work in normative systems, and in Section 6 we conclude the paper.

2 Modeling Conflicting Goals

In this section, we sketch the context for this work by briefly showing how goals
are used in logic-based cognitive agent programming languages (Section 2.1),
discussing ontological aspects of the notion of goal (Section 2.2), and discussing
which kinds of techniques have been used in other approaches for modeling
conflicting goals and which techniques we will use in this paper (Section 2.3).

2.1 Logic-Based Cognitive Agent Programming

In logic-based cognitive agent programming languages that support the repre-
sentation of goals [28,59,14], goals are typically used to select plans. This is done
by means of rules of the form κ | β ⇒ π, which intuitively represent that plan π
may be executed if the goal condition κ holds, and β is believed to be the case.

The conditions κ and β are logical formulas, by means of which one can
express that the agent has certain goals or beliefs. The formula G(pizza), for
example, expresses that the agent has the goal to have pizza. The truth of these
formulas is evaluated on a representation of the goals of the agent (the goal base
γ) and a representation of the beliefs (the belief base σ), respectively.

In such a setting, one thus needs to determine what γ and σ look like, and
consecutively it needs to be defined when γ or σ satisfy a formula κ or β, i.e.,
when γ |=g κ or σ |=b β hold, respectively.4 In this paper, we investigate various
ways of defining γ and |=g, with a focus on the representation of conflicting
goals.

We build on propositional logic and propositional default logic [46] to define
γ and |=g. We use these relatively simple logics, as we aim to investigate the se-
mantic foundations of (conflicting) goals. For this purpose, it suffices to consider
these simple logics. While we thus do not aim to provide a full-fledged repre-
sentation of goals which can be used directly in a practical agent programming
language, we view the work in this paper as providing a solid foundation for such
an effort. We have shown in previous work how a cognitive agent programming
language based on propositional logic [59] can be extended to a language that
builds on a Prolog-like Horn clause logic with variables [14].5 A platform for the
latter language has been implemented in which beliefs and goals are implemented
using Prolog.6

It is important to note that in this paper we focus on the definition of when
a goal base satisfies a formula κ, i.e., we define when γ |=g κ holds. We will
not address how to implement the relation |=g, i.e., how to derive that κ holds,

4 Sometimes, the belief base is taken into account as well when defining |=g, in which
case one thus defines when 〈σ, γ〉 |=g κ holds.

5 This language does not provide support for the representation of conflicting goals.
6 http://www.cs.uu.nl/3apl/download.html



given a goal base γ. Here, we confine ourselves to remarking that we see in
particular answer set programming as a tool for implementing the ideas presented
in this paper, as there is a close relation between default logic and answer set
programming [21,22]. Several answer set solvers exist (most notably Smodels
[37] and DLV [33]), and we anticipate that the ideas based on default logic as
presented in this paper should be implementable using such solvers.

2.2 Ontological Confusion

In the literature on cognitive agents, several different perspectives on goals have
appeared. The distinction between goals and related motivational attitudes such
as desires and intentions is not always clear (see also [54, Chapter 5] and [58]).
It is beyond the scope of this paper to clear up this ontological confusion. Nev-
ertheless, we briefly discuss the different properties that have been attributed to
motivational attitudes, and explain what perspective we take in this paper.

In [11,44], so-called Belief Desire Intention (BDI) logics are proposed in
which various motivational attitudes, including goals, are formalized. In both
approaches, goals are required to be consistent. Desires are allowed to be incon-
sistent, but these are not formalized. In [45], the goal operator of [44] is replaced
by a desire operator, i.e., desires are required to be consistent in that paper. The
characteristic property of intentions in these logics is that an agent is required
to be committed to its intentions. That is, an agent may not drop intentions for
arbitrary reasons, which means that intentions have a certain persistency. Var-
ious levels of commitment are proposed, such as not dropping intentions until
they are believed to be achieved, or believed to be impossible.

Directly or indirectly inspired by the BDI logics, several cognitive agent pro-
gramming frameworks have been introduced. Each of these frameworks proposes
a particular interpretation of cognitive concepts in a computational context. This
has resulted in a wide variety of different notions. For example, in [27], goals are
procedural and similar to plans, while in other approaches intentions are equated
with plans [43]. In, e.g., [28], goals are declarative, i.e., describe a state that is
to be reached, and other approaches propose a notion of goal that incorporates
both procedural and declarative aspects (see, e.g., [61,49,58]).

Moreover, in [61], goals are required to be non-conflicting. Other approaches,
however, maintain that it is very well possible that an agent has conflicting
goals [28,51,49,40,38] (e.g., because the user of the agent endows the agent with
conflicting goals), and propose ways of handling this. Also, goals are sometimes
persistent in that they are not dropped until they are believed to be achieved
(see, e.g., [28,61,59]). However, other approaches take a more liberal approach
and allow goals to be dropped (or temporarily suspended) also for other reasons
(e.g., because a more important but conflicting goal has been adopted, or because
the reason for adopting the goal is not valid anymore) [44,40,38,58].

We can thus see that there is no consensus as to what properties the vari-
ous motivational attitudes should have. Depending on the context and on the
issue under investigation, different perspectives are taken. The perspective we



take here is the following. We are interested in the modeling of conflicting mo-
tivational attitudes. Since motivational attitudes are typically called “goals” in
agent programming frameworks, we also use this term in this paper.

Especially in the context of conflicting goals, we believe it is important to
make a distinction between the goals that the agent is currently pursuing, and
those that it would in principle like to pursue. The former ones should be free of
conflict, but the latter ones may well be conflicting, and these are the ones we are
concerned with in this paper. We also believe it is important that the behavior
of the agent has a certain stability, and that it is thus important that goals
have some persistency. However, a relatively high level of stability is particularly
important for the goals that the agent is actively pursuing, since those directly
influence the agent’s behavior. For the goals that the agent would in principle
like to pursue, we believe that it is natural to drop goals also if the reason for
adopting the goal is not valid anymore.7 If the reason for adopting a goal is not
valid anymore, and the agent has not started the pursuit of the goal yet, it does
not seem to make sense to keep the goal.

2.3 Representing Conflicting Goals

We identify three important aspects that are relevant for a comprehensive ap-
proach for incorporating conflicting goals in agent programming frameworks.
First of all, agent programming languages that support dealing with conflicting
goals should allow to identify that certain goals are conflicting. That is, if an
agent is to deal with conflicting goals in an appropriate way, it is important to
at least know which goals are conflicting. Secondly, given that we know which
goals are conflicting, agent programming frameworks should provide a mecha-
nism to make sure that conflicting goals are dealt with in an appropriate way
during execution. That is, an agent should take into account potential conflicts
when trying to achieve goals. Finally, it will in most cases be useful to be able
to represent priorities amongst goals, as an agent might have to choose between
goals. An agent might, e.g., have to choose between having pizza or having sushi.
It is then important that it chooses to pursue the goal that is most important
to it or that it values most.

While we believe all of these aspects are important for a comprehensive treat-
ment of conflicting goals, we focus in this paper on the investigation of ways of
representing and defining that goals are conflicting. That is, we are solely con-
cerned with the representation of goals that the agent would in principle like
to pursue. We do not address how an agent then chooses the goals that it will
actively pursue such that these are non-conflicting and higher-priority goals are
preferred, nor do we address how these goals are pursued. This is left for future
research.

In agent programming, there are a number of approaches that allow to rep-
resent and deal with conflicting motivational attitudes [40,49,28,15,59,9]. One
can, broadly speaking, distinguish three approaches for the representation of

7 This is in line with the so-called open-minded commitment strategy of [44].



conflicting goals. In the first approach, the programmer represents explicitly that
certain goals are conflicting. This approach is taken in the Jadex framework [40],
in which an inhibition relation between goals is introduced that explicitly ex-
presses that two goals are conflicting. In the second approach, the agent reasons
about the goals and the plans that may be used for achieving these, in order to
determine whether the plans interact in negative ways. This approach is taken
in work by Thangarajah et al. [49]. The third approach is used in particular in
case goals are represented using logic. In this approach, goals are considered to
be conflicting, if they are logically inconsistent. This approach is taken in the
language GOAL [28,15], in the language Dribble [59] which is partly based on
GOAL, and in the BOID framework [9].

The advantage of the first approach is that it involves less reasoning on
the part of the agent, making the approach potentially more computationally
efficient. The advantage of the second approach is that it does not put the burden
on the programmer to determine whether the plans for achieving goals may
interact in negative ways. An advantage of the third approach, i.e., of using logic
for the representation of goals, is that this provides for added expressivity, e.g.,
allowing to represent conjunctive goals. This allows a more flexible mechanism for
selecting plans, as the logical structure of goals can be exploited when selecting
plans (for example, one may define that a plan for reaching a goal to have pizza
can be used if the agent wants to have pizza and a drink)8. Moreover, approaches
based on logic are particularly amenable to a formal analysis and a comparison
with BDI logics, which could potentially lead to a less ad hoc approach with a
more solid foundation.

The approaches we propose in this paper are based on logic. Our first model-
ing of conflicting goals (based on propositional logic) takes goals to be conflicting
iff they are logically inconsistent. The second approach (based on propositional
default logic) additionally allows to define that goals are conflicting even though
they are logically consistent. We think it is important to also allow the latter
possibility, as not all conflicting goals are necessarily logically inconsistent, al-
though, conversely, logical inconsistency does imply that goals are conflicting.
An example of goals that are conflicting but not logically inconsistent, is the
example mentioned above where an agent has the goal to have a pizza and to
have sushi. Eventually, one might want to incorporate also the possibility to let
the agent reason about plans in order to establish whether goals are conflicting,
yielding a framework that combines the three approaches for representing con-
flicting goals. Investigations along these lines are, however, not carried out in
this paper.

We view the proposal for the representation of conditional goals (Section
4) as the main contribution of this paper when it comes purely to modeling
conflicting goals, as it is a more comprehensive approach than the approach
based on unconditional goals (Section 3). Nevertheless, the proposal of Section

8 Although this approach is usable in many cases, it does not always work. For exam-
ple, in case there is no plan which reaches the goal of having a drink, or if the plan
for having a drink “undoes” the goal of having pizza.



3 also has two important purposes. First, the proposal is relevant in its own
right, as it provides a definition of unconditional goals that has some desirable
properties. Secondly, we clarify the relation between our proposal of Section
4 and the semantics of unconditional goals as provided in GOAL, by showing
that our semantics of unconditional goals is a special case of the semantics of
conditional goals of Section 4, and showing how our semantics of unconditional
goals is related to that of GOAL.

3 Unconditional Goals

We are interested in a logic-based representation of goals. In the field of logic,
one typically introduces some kind representation of the underlying system that
one wants to model, together with a logical language in which properties of this
representational structure can be expressed. The semantics of sentences in this
language is defined on the structure.

In propositional logic, for example, the representational structure is formed
by a valuation of propositional variables, and the language of propositional logic
can be used for expressing properties of this structure using the standard log-
ical connectives. In (modal) BDI logics such as [45], the structure is a kind of
Kripke structure. The logical language combines the language of branching time
temporal logic CTL∗ [18] with modal operators for beliefs, desires and intentions.

Given that we aim to investigate the semantic foundations of goals in agent
programming, we use in this section a structure for representing goals which is
based on a structure that has been used for the representation of goals in logic-
based agent programming languages [28,59]. To be more specific, the structure is
a set of propositional formulas, which is called the goal base. We define a logical
language that has a goal operator, in order to be able to express what the goals
of the agent are, given a particular goal base. This logical language is defined
below.

Definition 1 (goal formulas) Throughout this paper, we assume a language
of propositional logic L with negation and conjunction, with typical element φ.
We will use > ∈ L to denote a tautology, ⊥ ∈ L to denote falsum and |= will
be used to denote the standard entailment relation for L. The goal formulas LG

with typical element κ are defined as follows, where φ ∈ L.

κ ::= > | Gφ | ¬κ | κ ∧ κ′

Note that the G operator cannot be nested, i.e., formulas of the form GGφ are
not part of the language. This is common in agent programming languages in
which logical languages are used for specifying goals (see [26] for an exception).
The reason is that it is difficult to establish what the meaning and practical use
of such formulas would be in the context of agent programming languages in
which the goal base is a set of propositional formulas.



3.1 Semantics

Given a goal base, the semantics of goal formulas can be defined in various
ways. One way of defining the semantics would be to focus on the syntactic
representation of the goal base, and define that Gφ holds, given a goal base
γ ⊆ L, iff φ ∈ γ. Such syntactical approaches have been considered in so-
called awareness logics for the representation of explicit beliefs [19]. While such
syntactic approaches may be suitable in some contexts, in this paper we aim for
semantic definitions that exploit the logical structure of the goal base.

Basic Semantics A semantics that exploits the logical structure of the goal
base is the following, which we call the basic semantics. This semantics expresses
that φ is a goal iff φ follows from the goal base (see also [55]).

Definition 2 (basic (|=b)) Let γ ⊆ L be the agent’s goal base. Then the basic
semantics for goal formulas |=b is defined as follows.

γ |=b >
γ |=b Gφ ⇔ γ |= φ
γ |=b ¬κ ⇔ γ 6|=b κ
γ |=b κ ∧ κ′ ⇔ γ |=b κ and γ |=b κ

′

There are several things to note about this semantics. First, we remark that this
semantics does not take into account the beliefs of the agent. Often, this kind of
semantics defines that the agent can have a goal for φ only if it does not believe φ
to be reached [28,59]. This would also prevent an agent from having tautologies
as goals. We, however, omit this for reasons of simplicity.

A second observation about this semantics is that if, e.g., the formula
pizza ∧ sushi is in the goal base, the agent will be able to derive the goal
G(pizza ∧ sushi), as well as the goals G(pizza) and G(sushi). This stems from
the fact that we have defined the semantics such that all logical consequences of
the goal base are goals. We feel that the fact that goals are closed under propo-
sitional logical consequence is in principle an intuitive property. Moreover, this
property is generally attributed to motivational attitudes in BDI logics, which
makes this semantics in line with these logics (see Section 3.2 for a more elabo-
rate discussion). Finally, such a semantics facilitates a more flexible use of plans.
For example, if the agent has the goal cleanRoom ∧ washedDishes, it will often
be the case that it has two plans, i.e., one for cleaning rooms and one for wash-
ing dishes. A semantics in which the agent can derive the two goals cleanRoom
and washedDishes from the one conjunctive goals, facilitates the selection of two
separate plans. Naturally, this does not always have the desired result, e.g., if
washing the dishes makes the room dirty again. However, the technique is of-
ten used in agent programming frameworks that have a logical representation of
goals [28,59,14].

Further, note that this semantics, although it defines that logical conse-
quences of goals are also goals, does not suffer from the well-known “dentist



problem”. The dentist problem is the issue that if an agent has the goal to go to
the dentist and believes that going to the dentist implies feeling pain, the agent
should intuitively not derive the goal to feel pain. Modal BDI logics typically
suffer from this problem, i.e., the goal of feeling pain is derived in these logics.
In our case, it is not a problem, as the implication dentist → pain will typically
be part of the belief base, and not of the goal base. That is, the agent does not
have the goal that if it goes to the dentist, it will feel pain, and will therefore
not be able to derive the goal to feel pain from the goal to go to the dentist.

A third characteristic of this semantics is that the formulas G¬φ and ¬Gφ
are not equivalent. Intuitively, the first formula expresses the presence of a goal
¬φ, while the second formula expresses the absence of a goal φ. Formally, it could
be the case that φ is not derivable from the goal base, in which case ¬Gφ would
hold, while ¬φ is not derivable, in which case G¬φ would not hold. That is, it
does not hold in general that ¬Gφ implies G¬φ. Note that this observation also
explains that this semantics does not adopt the “closed world assumption”. The
closed world assumption is the presumption that what cannot be derived should
be interpreted as being false. Under a closed world assumption, we therefore
would have that ¬Gφ implies G¬φ. If the goal base is consistent, then the
converse of this implication does hold, as expressed in the following proposition.

Proposition 1 Let γ ⊆ L where γ 6|= ⊥. Then the following holds.

γ |=b G¬φ⇒ γ |=b ¬Gφ

Proof: Assume γ |=b G¬φ. This means that γ |= ¬φ (Definition 2). Given that
γ is consistent, we have that γ 6|= φ. This means that γ |=b ¬Gφ, yielding the
desired result. 2

Another issue worth discussing regarding Definition 2, is the structure of the
goal base. One might consider to let the goal base be a set of formulas from LG,
rather than from L. Such a goal base would represent explicitly which goals the
agent has. Nevertheless, one would still need a definition of what the goals of
the agent are, given such a goal base.

Providing such a definition for a goal base γ ⊆ LG in a similar way as was
done for the basic semantics of Definition 2, however, leads to problems. This has
to do with the fact that if the semantics of negation is defined for γ in the way as
was done in that definition, this would be a definition of closed world assumption.
The distinction with the semantics of Definition 2 which does not define a closed
world assumption, is somewhat subtle. Given a goal base {Gφ∨Gψ}, one would
be able to derive ¬Gφ and ¬Gψ, which is inconsistent with this goal base. This
is the same issue that arises when closed world assumption is adopted in case
of, e.g., a knowledge base {p∨ q}. This unwanted behavior does not occur in the
case of Definition 2.

An alternative to defining the semantics for a goal base γ ⊆ LG in the way
just discussed, would be to regard the formulas in the goal base as modal formu-
las, and to use a modal logic consequence relation for deriving goals on the basis



of the goal base. Such a definition would, however, imply the need of using modal
logic theorem provers or similar tools if it is going to be used in an agent pro-
gramming language. Moreover, the underlying Kripke semantics of modal logic is
(arguably) relatively complex. The use of modal formulas for representing goals
would thus not necessarily make the language more practically usable. Moreover,
(normal) modal logics are not particularly suitable for dealing with conflicting
goals, as will be explained in Section 3.2. We thus argue that the way we define
the goal base, i.e., as a set of propositional formulas, nicely circumvents these
problems. Moreover, such a structure is closely related to existing approaches to
the modeling of goals in logic-based agent programming languages.

Our final observation regarding the basic semantics, is one that will lead us
up to our next definition of semantics of goals. This observation concerns the case
where γ is inconsistent, e.g., if there is a formula φ ∈ γ and a formula ¬φ ∈ γ.
The definition of the basic semantics for goals is such that any (propositional)
logical consequence of the goal base is a goal. If the goal base is inconsistent,
this then means that the agent has the goal falsum, i.e., we have G⊥. Worse
still, anything becomes a goal, i.e., any formula Gφ holds on such a goal base.

If the goal base is inconsistent, the semantics is thus such that the logic is
trivialized. This essentially means that the agent cannot deal with inconsistent
goals. We, however, want our agent to be able to deal with inconsistent goals,
which is why we are interested in alternative definitions.

As an aside, we remark that the issue of trivialization of the logic in case
of inconsistency is also discussed in the context of paraconsistent logics [2]. In
that work, it is argued that being able to reason with inconsistent information
without trivializing the logic is central to practical reasoning. In [20], Gabbay
and Hunter also argue that inconsistency should be viewed as a “good” thing,
rather than as a “bad” thing.

Semantics of Hindriks et al. Hindriks et al. have proposed a semantics
of goals that allows the goal base to be inconsistent, without trivializing the
logic [28,15]. To be more accurate, their semantics does not trivialize the logic
if individual formulas in the goal base are consistent. Their semantics of goals
defines that φ is a goal, iff there is a formula in the goal base from which φ
follows.

Definition 3 (Hindriks et al. (|=h))

γ |=h Gφ⇔ ∃φ′ ∈ γ : φ′ |= φ

The semantics of >, negation, and conjunction are as in Definition 2, but we
leave them out here and in definitions in the sequel for reasons of presentation.

Intuitively, this semantics does not trivialize the logic in case of an inconsis-
tent goal base (assuming that individual formulas in the goal base are consistent),
as it does not combine multiple (possibly inconsistent) formulas from the goal
base to derive a goal. Formally, if each formula in the goal base is consistent, the
goal G⊥ cannot be derived.



While this is a desired property, this semantics does not fully exploit the log-
ical structure of the goal base. In particular, goals are not closed under proposi-
tional logical consequence under this semantics. We have argued in the context
of the basic semantics for goals that we consider this to be in principle a desired
property. As we have seen, however, this leads to problems if the goal base is
inconsistent.

Consistent Subset Semantics Our next semantics now aims to combine the
features of the semantics of Hindriks et al. when it comes to handling an in-
consistent goal base, with the desired characteristic that goals are closed under
logical consequence. The intuitive idea is that formulas in the goal base should
be combined to derive a goal on their basis, if these formulas can be combined,
i.e., if these formulas are consistent. For example, if we have a goal base {p, q},
we would like to be able to derive the goal G(p∧q), which would not be possible
in the semantics of Hindriks et al. Moreover, if we have a goal base {p, q,¬q}, we
would also like to derive this goal, but we do not want to derive the goal G⊥.

Given these considerations, we propose the following semantic definition,
which specifies that Gφ holds iff there is a consistent subset of the goal base
from which φ follows. A nice feature of this semantics is that it is equivalent
with the basic semantics if the goal base is consistent (see Proposition 3).

Definition 4 (consistent subset (|=s))

γ |=s Gφ⇔ ∃γ′ ⊆ γ : (γ′ 6|= ⊥ and γ′ |= φ)

Note that, in contrast with the semantics of Hindriks’ et al., the consistent subset
semantics does not trivialize the logic, even if there are inconsistent formulas
in the goal base. Inconsistent formulas in the goal base are “ignored” by this
definition, because we only consider subsets γ′ of γ which are consistent (γ′ 6|=
⊥).9 An inconsistent formula such as p ∧ ¬p, for example, cannot be used to
derive G⊥, or any other goal for that matter.

This semantics can be viewed as related to a proposal by Poole [41] in the
area of non-monotonic reasoning. He proposes to reason on the basis of a theory
consisting of a set of facts, and a set of hypotheses (both being sets of first order
formulas). A formula is then explainable on the basis of this theory, if it follows
from the set of facts, and a consistent subset of the hypotheses.

Alternative Structures for the Goal Base One might consider to “wrap”
(mutually inconsistent) formulas in the goal base such that a consistent set
results, in order to get rid of the issues that come with an inconsistent goal base.
One could, e.g., consider to have a goal base {G(p),G(¬p)}, instead of a goal
base {p,¬p}. However, this also leads to problems as was already discussed above.

9 A similar behavior could be obtained in Definition 3 if the condition φ′ 6|= ⊥ would
be added to the righthand side of the definition, yielding a close resemblance with
Definition 4. Definition 3 is however the one provided by Hindriks et al. in [28].



In particular, if a normal modal logic consequence relation is used to derive
goals, it will be the case that G⊥ can be derived on the basis of these formulas.
Wrapping the propositional formulas in this way thus does not immediately solve
the question of how to deal with inconsistencies.

Alternatively, one could consider the use of temporal logic in a similar man-
ner, resulting in a goal base {�p, �(¬p)} which expresses that the agent has the
goal to reach p eventually, and to reach ¬p eventually. These formulas are not
inconsistent, and would normally not lead to the derivation of �⊥. However,
“hiding” the inconsistency in this way is not necessarily beneficial when goals
are incorporated into an agent programming framework. The representation of
conflicting goals should facilitate the agent to refrain from pursuing conflicting
goals simultaneously. In order to do this appropriately, it is important to have
a notion of when goals are conflicting. Presumably, this can be defined more
clearly if inconsistencies are not hidden. Moreover, using temporal logic would
most likely also require to perform temporal logic reasoning.

3.2 Properties

In this section, we investigate properties of the semantics of Section 3.1, and
compare these semantics to one another.

Properties of the Semantics The kind of properties we are interested in, are
axioms of modal logics. That is, we want to compare the goal operator of our
logic with modal operators. The particular axioms that we consider are listed
below (see [36,10] for more details on modal logics).

K : G(φ→ ψ) → (Gφ→ Gψ)
D1 : ¬G⊥
D2 : ¬(Gφ ∧G¬φ)
M : G(φ ∧ ψ) → (Gφ ∧Gψ)
C : (Gφ ∧Gψ) → G(φ ∧ ψ)

In modal logics, φ and ψ are modal logic formulas, possibly containing modal
operators. As we do not have a nesting of goal operators in this paper, we consider
φ and ψ to be propositional here.

The K axiom is the basic axiom that all normal modal logics adhere to, and
expresses that goals are closed under propositional logical consequence. That is,
if Gφ holds, than Gψ holds if ψ follows from φ under the standard consequence
relation of proposition logic. The D axiom expresses that goals are consistent.
It comes in two forms (D1 and D2), which are equivalent if the K axiom is
adopted. Axiom M expresses that conjunctive goals can be “taken apart” to
yield goals for the separate conjuncts. Axiom C expresses the opposite, i.e., it
says that separate goals can be combined into one. Axioms M and C together
are equivalent with the K axiom. The axioms M and C are used to axiomatize
so-called non-normal modal logics, which are logics that do not adopt the K
axiom but a weaker axiom such as M or C instead [10].



The following proposition expresses which of these axioms of modal logics
hold for our various semantics for goals. We distinguish three cases, i.e., the case
in which the goal base is an arbitrary one, the case in which each formula in
the goal base is consistent, and the case in which the entire goal base is consis-
tent. Note that these conditions on the goal base get increasingly restrictive. If
a semantics satisfies an axiom in a particular case, we can immediately conclude
that the axiom is satisfied in a more restrictive case. This is not explicitly incor-
porated in the proposition. We use, e.g., the notation γ |=b K,M to abbreviate
γ |=b K and γ |=b M.

Proposition 2
Let γ be an arbitrary goal base.

γ |=b K,M,C γ |=h M γ |=s D1,M (3.1)

Let ∀φ ∈ γ : φ 6|= ⊥.

γ |=h D1 (3.2)

Let γ 6|= ⊥.

γ |=b D1,D2 γ |=h D2 γ |=s K,D2,C (3.3)

Proof: (3.1) We show that γ |=b K. We have to show that γ |=b G(φ→ ψ) →
(Gφ → Gψ). This means we have to show that γ |=b G(φ → ψ) ⇒ (γ |=b

Gφ⇒ γ |=b Gψ). Assume that γ |=b G(φ→ ψ) and γ |=b Gφ. This means that
γ |= φ → ψ and γ |= φ. From this we can conclude that γ |= ψ, which is the
definition of γ |=b Gψ, yielding the desired result.

We show that γ |=b M. We have to show that γ |=b G(φ ∧ ψ) ⇒ γ |=b Gφ ∧
Gψ. This means we have to show that γ |=b G(φ ∧ ψ) ⇒ (γ |=b Gφ and γ |=b

Gψ), which is defined as γ |= φ∧ψ ⇒ (γ |= φ and γ |= ψ). The latter is obviously
the case.

We have to show that γ |=b C. The proof is analogous to the proof of γ |=b M.
We show that γ |=h M. We have to show that γ |=h G(φ ∧ ψ) ⇒ (γ |=h

Gφ and γ |=h Gψ). Assume that γ |=h G(φ ∧ ψ), which is defined as: ∃φ′ ∈
γ : φ′ |= φ ∧ ψ. From the latter we can conclude that ∃φ′ ∈ γ : φ′ |= φ and
∃φ′ ∈ γ : φ′ |= ψ, which is the definition of γ |=h Gφ and γ |=h Gψ.

We show that γ |=s D1. We have to show that γ 6|=s G⊥, i.e., that ¬∃γ′ ⊆
γ : γ′ 6|= ⊥ and γ′ |= ⊥. This is obviously the case.

The proof for γ |=s M is analogous to the proof for γ |=h M.

(3.2) We show that γ |=h D1. We have to show that γ 6|=h G⊥, i.e., that
¬∃φ ∈ γ : φ |= ⊥. Since each φ ∈ γ is consistent by assumption, this follows
immediately.

(3.3) We show that γ |=b D1. We have to show that γ |=b ¬G⊥, i.e., that
γ 6|=b G⊥, i.e., that γ 6|= ⊥. This follows immediately, since γ is assumed to be
consistent.



We show that γ |=b D2. We have to show that γ |=b ¬(Gφ∧G¬φ), i.e., that
γ 6|=b Gφ ∧ G¬φ, i.e., that it is not the case that γ |=b Gφ and γ |=b G¬φ,
i.e., that it is not the case that γ |= φ and γ |= ¬φ. This is the case, since γ is
assumed to be consistent.

We show that γ |=h D2. We have to show that γ |=h ¬(Gφ∧G¬φ), i.e., that
γ 6|=h Gφ∧G¬φ, i.e., that it is not the case that γ |=h Gφ and γ |=h G¬φ, i.e.,
that it is not the case that ∃φ′ ∈ γ : φ′ |= φ and ∃φ′ ∈ γ : φ′ |= ¬φ. This is the
case, since γ is assumed to be consistent.

We show that γ |=s K. We have to show that γ |=s G(φ → ψ) → (Gφ →
Gψ). This means we have to show that γ |=s G(φ → ψ) ⇒ (γ |=s Gφ ⇒
γ |=s Gψ). Assume that γ |=s G(φ → ψ) and γ |=s Gφ. This means that
∃γ′ ⊆ γ : (γ′ 6|= ⊥ and γ′ |= φ→ ψ) and ∃γ′ ⊆ γ : (γ′ 6|= ⊥ and γ′ |= φ). As γ is
assumed to be consistent, we can conclude that ∃γ′ ⊆ γ : (γ′ 6|= ⊥ and γ′ |= φ→
ψ and γ′ |= φ). From this we can conclude that ∃γ′ ⊆ γ : (γ′ 6|= ⊥ and γ′ |= ψ),
which is the definition of γ |=s Gψ, yielding the desired result.

We have to show that γ |=s M and γ |=s C. The proofs are analogous to the
proof of γ |=s K. 2

There are several important things to note about this proposition. First, we can
see that the basic semantics does not satisfy D1 in the general case. This means
that G⊥ is satisfiable, namely, in case γ |= ⊥. We consider this to be undesirable
for a semantics of goals, as we want to allow the goal base to be inconsistent
without the logic being trivialized. The consistent subset semantics and the
semantics of Hindriks et al. do satisfy the axiom D1 (although in case of the
semantics of Hindriks et al., we need the additional assumption that individual
formulas in the goal base are consistent).

Second, we can see that in the general case, the semantics of Hindriks et
al. and the consistent subset semantics do not satisfy the K axiom, but only
the weaker M axiom, while the basic semantics does satisfy K. We consider
the satisfaction of the K axiom in principle desirable. However, it results in
the logic being trivialized, i.e., in the satisfiability of G⊥, in case the goal base
is inconsistent. We view the satisfaction of D1 as more important than the
satisfaction of K for modeling goals, as a failure to satisfy D1 means that the
semantics cannot handle inconsistent goals. This is the main reason that we
consider the semantics of Hindriks et al. and the consistent subset semantics to
be more suitable for modeling conflicting goals than the basic semantics.

Third, the proposition shows that if the goal base is assumed to be consistent,
the consistent subset semantics does satisfy K, in contrast with the semantics
of Hindriks et al. Given that we see the satisfaction of K as desirable, this
is one reason that we consider the consistent subset semantics to have better
properties than the semantics of Hindriks et al. Recall that a reason for our point
of view that the satisfaction of K is desirable, is the fact that this property is
satisfied by motivational attitudes in BDI logics [11,44,45]. In fact, the consistent
subset semantics satisfies both K and D1 and D2 if the goal base is consistent,
which corresponds exactly with these logics. That is, in these logics motivational
attitudes are assumed to be consistent, and satisfy the K axiom and the D axiom.



Fourth, we can conclude that under the semantics of Hindriks et al. and
the consistent subset semantics, the axioms D1 and D2 are not equivalent. The
axiom D1 is satisfied in the general case (that is, with one additional constraint
in the case of the semantics of Hindriks et al.), while D2 is not. As mentioned, in
normal modal logics the axioms D1 and D2 are equivalent. This is not surprising,
as in normal modal logics we have the K axiom, which means we have the C
axiom. This axiom tells us in particular that if Gφ and G¬φ hold, we can derive
G(φ∧¬φ), i.e., we can derive G⊥. Given that the C axiom does not hold for the
semantics of Hindriks et al. and the consistent subset semantics in the general
case, it is perhaps not surprising that the two axioms are not equivalent. In
fact, these two semantics were particularly designed to allow the satisfiability of
Gφ ∧G¬φ, without making G⊥ satisfiable.

Our final observation regarding this proposition is that in case we assume
that each formula in the goal base is consistent, the semantics of Hindriks et
al. and the consistent subset semantics satisfy the same axioms (with respect to
the axioms K,D1,D2,C, and M considered here). However, as we will see next,
these semantics are not equivalent.

Relations between the Semantics The investigation of which axioms are
satisfied by our semantics already tells us a little about how they are related. In
this section, we investigate the relations between the semantics more directly.

Proposition 3
Let ∀φ ∈ γ : φ 6|= ⊥.

γ |=h Gφ⇒ γ |=s Gφ (3.4)

Let γ 6|= ⊥.

γ |=b Gφ⇔ γ |=s Gφ (3.5)

Proof: (3.4) Assume γ |=h Gφ, i.e., ∃φ′ ∈ γ : φ′ |= φ. We have that φ′ 6|= ⊥ by
assumption. Then we also have that ∃γ′ ⊆ γ : (γ′ 6|= ⊥ and γ′ |= φ), as we know
that there is a φ′ ∈ γ such that φ′ |= φ, and we can take γ′ = {φ′}. This yields
the desired result. (3.5) If γ 6|= ⊥, we have that ∃γ′ ⊆ γ : (γ′ 6|= ⊥ and γ′ |= φ)
is equivalent with ∃γ′ ⊆ γ : γ′ |= φ, which is equivalent with γ |= φ. 2

Comparing the consistent subset semantics with the semantics of Hindriks et al.,
we see that the set of goals derivable under the semantics of Hindriks et al. is a
subset of those derivable under the consistent subset semantics (3.4) (under the
assumption that the formulas in the goal base are consistent)10. The opposite
of (3.4) does not hold in general. Take, e.g., a goal base {p, q}. In that case,

10 Note that the property does not hold for goal bases in general, as it can then be the
case that G⊥ holds in case of the semantics of Hindriks et al., while this never holds
for the consistent subset semantics. This occurs if there is an inconsistent formula
in the goal base.



G(p ∧ q) holds under the consistent subset semantics, but does not hold under
the semantics of Hindriks et al.

We thus have that the consistent subset semantics allows the derivation of
strictly more goals than the semantics of Hindriks et al. if the formulas in the
goal base are consistent. However, the properties considered in Proposition 2 do
not distinguish the two. That is, under the condition that the formulas in the
goal base are consistent both semantics satisfy axioms D1 and M, although we
have just argued that the semantics are not equivalent.

Finding a discriminating property is not a trivial task. It seems that a weaker
version of the axiom C might be what we are looking for to characterize the
consistent subset semantics, since in this semantics two goals may sometimes be
combined into one, but not always. For example, given a goal base {p, q}, we
have that Gp and Gq hold under the consistent subset semantics, and G(p∧ q)
also holds (but G(p ∧ q) does not hold under the semantics of Hindriks et al.).
Given a goal base {p ∧ r, q ∧ ¬r}, we have that Gp and Gq hold, but G(p ∧ q)
does not hold under the consistent subset semantics, i.e., in this case, p and q
may not be combined.

Since p and q may be combined in some but not all cases, it is not very
likely that we can use a version of axiom C in which we put conditions on φ
and ψ only. We might end up concluding that the strongest property we can
come up with, is that axiom C holds iff there is a consistent subset of γ from
which both φ and ψ follow. This property is however not very informative, since
it essentially repeats the semantic definition. Also, it is a property which is not
very general, since it does not depend on general properties of γ or of φ and ψ.
Further investigations along these lines are left for future research.

A nice property that is worth noting regarding the consistent subset seman-
tics, is expressed in Corollary 1 below. That is, Property (3.6) states that under
the assumption of consistency of the goal base, the basic semantics and the con-
sistent subset semantics are equivalent. This is in line with Proposition 2, as in
this case the semantics satisfy the same axioms. We thus have that consistent
subset semantics fully exploits the logical structure of the goal base in case the
goal base is consistent, while this is not the case for the semantics of Hindriks et
al. This is expressed by Property (3.7), which says that the set of goals derivable
under the semantics of Hindriks et al. is a subset of those derivable under the
basic semantics, in case the goal base is consistent. The implication does not
hold in the other direction.

Corollary 1 Let γ 6|= ⊥.

γ |=b κ⇔ γ |=s κ (3.6)
γ |=h Gφ⇒ γ |=b Gφ (3.7)

Proof: (3.6) Immediate from (3.5) and Definitions 2 and 4. (3.7) Immediate
from (3.4) and (3.5). 2



4 Conditional Goals

In Section 3, we presented a number of semantics for goals which were based on a
goal base consisting of a set of propositional formulas. In this section, we propose
another structure for the representation of goals with an accompanying logical
language and semantics. This new structure has two main advantages over the
goal base of Section 3. First, it allows to represent that goals are conflicting,
even though they are logically consistent. Second, it allows the representation
of conditional goals, that is, goals that are conditional on beliefs and/or other
goals.

Being able to represent conditional goals seems intuitively desirable. One is
then able to represent that, e.g., an agent wants to have a pizza if it is hun-
gry. This intuition that the representation of conditional goals is important, is
also backed by research in philosophical logic [24] in which mental attitudes
are argued to be conditional by nature, and it forms the basis for the BOID
architecture (see Section 5.2 for more details on that work).

The logical language of goals that we use in this section, is the same as
the one that we have used in Section 3 (Definition 1). The semantics of goal
formulas and the structure on which the formulas are evaluated, however, differs
from the previous section. To be more specific, the construct that we propose for
representing conditional goals are goal inference rules. A goal inference rule has
the form β, κ+, κ− ⇒ φ, where φ represents the goal that can be inferred using
the rule, β is a condition on the agent’s beliefs, κ+ represents the goals on the
basis of which φ can be inferred, and κ− represents the goals that are conflicting
with φ. That is, β and κ+ allow the representation of conditional goals, and κ−

allows to represent that goals are conflicting. The set of goal inference rules is
formally defined below.

Definition 5 (goal inference rule) The set of goal inference rules RGI is defined
as follows: {β, κ+, κ− ⇒ φ | β ⊆ L, κ+ ⊆ L, κ− ⊆ L, φ ∈ L}.

A goal inference rule {source}β , {target}κ+ ⇒ waypoint,11 for example, intu-
itively expresses that if the agent is at some source location and has the goal to
be at a target location, it may infer the goal to be at a waypoint in between the
source and the target. This rule shows how goals can be conditional on beliefs
and other goals. An example of a goal inference rule that represents conflicting
goals is {hungry}β , {sushi}κ− ⇒ pizza, which intuitively expresses that if the
agent is hungry, it may derive the goal to have pizza, but the goal to have sushi
is in conflict with the goal to have pizza.

The semantics of goals based on goal inference rules is defined through a
translation of goal inference rules into so-called default rules of default logic. In
Section 4.1, we introduce default logic. In Section 4.2, we present the semantics

11 For reasons of presentation, we use superscripts to indicate whether a set of propo-
sitional formulas is a condition on beliefs, on goals, or represents conflicting goals,
and if a set is empty, it is left out from the rule.



of goals, and in Section 4.3 we investigate properties of this semantics, and show
how it is related to the consistent subset semantics of goals of Definition 4.

4.1 Default Logic

In this section, we briefly sketch the ideas of default logic. For more elaborate
treatments of this topic, the reader can for example consult [1,7]. In this paper,
we consider a purely propositional variant of default logic without variables.

Default logic distinguishes facts, representing certain but incomplete informa-
tion about the world, and default rules or defaults, representing rules of thumb,
by means of which conclusions can be drawn that are plausible, but not necessar-
ily true. This means that some conclusions may have to be revised when more
information becomes available. Given the propositional language L, a default
rule has the form φ : ψ1, . . . , ψn/χ, where φ, ψ1, . . . , ψn, χ ∈ L and n > 0. The
intuitive reading of a default rule of this form is the following: if φ is provable and
for all 1 ≤ i ≤ n, ¬ψi is not provable, i.e., if it is consistent to assume ψi, then
derive χ. The formula φ is called the prerequisite and the formulas ψ1, . . . , ψn

are called the justifications of the default rule.
A default theory [7] is a pair 〈W,D〉, where W ⊆ L is the set of facts and D

is a set of default rules. The semantics of a default theory 〈W,D〉 can be defined
through so-called extensions of the theory. If E ⊆ L is a set of propositional
formulas, then a sequence of sets of formulas E0, E1, . . . is defined as follows,
where |= is the standard entailment relation for L and Th(Ei) is the closure
under classical logical consequence of Ei.

E0 = W
Ei+1 = Th(Ei) ∪ {χ | φ : ψ1, . . . , ψn/χ ∈ D, Ei |= φ, 1 ≤ j ≤ n, ∀j : E 6|= ¬ψj}

A set E ⊆ L is then an extension of 〈W,D〉 iff E =
⋃∞

i=0Ei. In the sequel, we
will sometimes be somewhat imprecise and say that, e.g., {p} is an extension,
where we should, strictly speaking, say that Th({p}) is an extension.

It is important to note that extensions are always consistent sets12 that are
closed under the application of default rules. A rule φ : ψ1, . . . , ψn/χ is applicable
to an extension E iff E |= φ and E 6|= ¬ψi for 1 ≤ i ≤ n. An extension E of
a default theory 〈W,D〉 is closed under the application of default rules, iff it
holds for all rules φ : ψ1, . . . , ψn/χ ∈ D, that if the rule is applicable to E, then
E |= χ. Moreover, an extension may not entail the negation of a justification of
a default rule applicable to it (specified by the last requirement of the definition
above).

Example 1 Let W = {a}, let d1 = a : ¬b/d and d2 = > : c/b and let D =
{d1, d2}. The default theory 〈W,D〉 then has one extension: {a, b}. This extension
can be generated by applying d2 to W . The set {a, d, b}, which might seem to
be possible to generate by applying d1 and then d2, is not an extension: b is
derivable from this set, whereas b should not be derivable because the default rule
12 Assuming W is consistent.



d1 with justification ¬b was applied. An extension may not entail the negation
of a justification of any default rule applicable to it. The set {a, d} is neither an
extension, because it is not closed under the application of defaults. The rule d2

is applicable, although application will yield a set that is not an extension. 4

In the so-called credulous semantics for default logic a formula φ is said to
follow from a default theory iff φ is in one of the extensions of this theory. The
sceptical semantics defines that φ follows from a default theory iff φ is in all of
the extensions of this theory.

4.2 Semantics

Given a set of goal inference rules, we want to define the semantics of goal for-
mulas. We have found that an appropriate translation of goal inference rules into
default rules can be used for defining a semantics that has intuitive character-
istics. We believe it to be an advantage that goal inference rules are translated
into default logic rather than defining the semantics “directly”, as default logic
is well investigated. As remarked in Section 2.1, results regarding the relation
between default logic and answer set programming [21,22], can be used as a ba-
sis for implementing the ideas presented in this paper in an agent programming
language using existing answer set solvers [37,33]. Moreover, work on prioritized
default logic (see, e.g., [34,6,16,8]) can be used as a basis for the representation
of priorities among goals.

The semantics is based on the idea of default logic that each extension rep-
resents a possible view on the world, while extensions are mutually conflicting,
i.e., a default theory represents that the world cannot be in a state that corre-
sponds to multiple extensions of the theory. In the context of goals, we similarly
take each extension to represent a non-conflicting set of goals.13 We define the
semantics of goals based on the (extensions of the) default theory that result(s)
from translating the goal inference rules into a set of default rules.

Translating Goal Inference Rules into Default Rules The general idea of
the translation is that κ+ is translated into the prerequisite of the default rule,
κ− is translated into the justification of the default rule, and the consequent of
the goal inference rule is translated into the consequent of the default rule. We
will provide the explanation of why such a translation has desired characteristics
after giving the formal definition of the translation. The belief condition β is dealt
with separately, which will also be explained in the sequel. We define a function
f that takes a set of goal inference rules without belief condition and yields a
set of propositional default rules.

Definition 6 (goal inference rules to default rules) Let DR denote the set
of propositional default rules. The function t : RGI → ℘(DR), taking a goal
13 A difference with default logic for representing knowledge is that different extensions

in the context of goals intuitively represent conflicting sets of goals, but all goals
represented by the various extensions can exist simultaneously.



inference rule and yielding a default rule, is then defined as follows, where
κ+, κ− ⇒ χ is a goal inference rule without belief condition, κ+ = {φ1, . . . , φm}
and κ− = {ψ1, . . . , ψn}, and m,n ≥ 1. If κ+ = ∅, κ+ is translated to >, and if
κ− = ∅, the sequence ¬ψ1, . . . ,¬ψn is empty.

t(κ+, κ− ⇒ χ) = {φ1 ∧ . . . ∧ φm : ¬ψ1, . . . ,¬ψn, χ/χ}

The function f : ℘(RGI) → ℘(DR) taking a set of goal inference rules of the form
κ+, κ− ⇒ χ and yielding a set of default rules, is defined as follows.

f(GI) =
⋃

r∈GI

t(r)

We explain this definition using an (abstract) example. Consider the goal infer-
ence rules

(g1) {p}κ+
, {q}κ− ⇒ r

(g2) ⇒ p

(g3) {r}κ+ ⇒ q

which respectively correspond with the default rules

(d1) p : ¬q, r / r
(d2) > : p / p
(d3) r : q / q

When transforming a goal inference rule κ+, κ− ⇒ χ, the condition κ+ is mapped
onto the prerequisite of a default rule, and the formulas in κ− are negated and
mapped onto the justification of the default rule. Considering goal inference rules
g1 and g2, the set {p, r} is an extension of their corresponding default rules d1

and d2. This reflects our intuition about goal inference rules: p can be derived on
the basis rule g2, and if p is a goal we can derive goal r, but not in combination
with the conflicting goal q (rule g1). If we consider the default rules d1, d2 and d3,
we have that the set {p, r, q} is not an extension of these rules. This is due to the
fact that q, which was derived using rule d3, is inconsistent with the justification
¬q of rule d1. This corresponds to our intuition about goal inference rules: given
rule g1, r can only be a goal if q is not, since q conflicts with r. The goals r and
q thus cannot be part of the same extension.

The conflicting goals in κ− are mapped to a sequence of justifications, rather
than to one conjunctive justification. The reason is, that we want to allow goal
inference rules such as {p,¬p}κ− ⇒ q, specifying that goal q can be derived
but that both p and ¬p are conflicting with q. If we would map this rule to the
default rule > : p ∧ ¬p ∧ q/q, we would get an inconsistent justification and the
rule would never be applicable. The rule > : p,¬p, q/q on the other hand does
the job.

The consequent χ of a goal inference rule is added to the justification, because
we only want to derive a new goal if it is consistent with the already derived
ones. Further, goal inference rules for which κ− = ∅ then yield so-called normal
default rules, i.e., rules of the form φ : χ/χ. Normal default rules have a number
of desirable characteristics, such as the fact that normal default theories always
have extensions [7].



Semantic Definition We define the semantics of goals on the basis of a struc-
ture consisting of a belief base and a set of goal inference rules (the rule base). In
order to define the semantics, we transform only those goal inference rules into
default rules of which the belief condition holds, given the belief base. The goal
inference rules can be transformed into default rules by means of the function
f of Definition 6, after removing the (true) belief condition. Given an extension
of the generated default rules, we define that Gφ holds iff φ follows from one of
the extensions of the resulting default theory.

Definition 7 (semantics of goals) Let GI ⊆ RGI be a finite set of goal inference
rules, and let σ be a belief base. Let GIσ be defined as follows, where |=L is the
standard entailment relation of propositional logic, lifted to sets of sentences on
the right-hand side of |=L.

GIσ = {κ+, κ− ⇒ φ | ∃(β, κ+, κ− ⇒ φ) ∈ GI : σ |=L β}.

The default semantics |=d for goal formulas is then defined as follows on the
basis of belief base σ and set of goal inference rules GI.

〈σ,GI〉 |=d Gφ ⇔ ∃E : E is an extension of 〈∅, f(GIσ)〉 and E |= φ
〈σ,GI〉 |=d ¬κ ⇔ 〈σ,GI〉 6|=d κ

〈σ,GI〉 |=d κ ∧ κ′ ⇔ 〈σ,GI〉 |=d κ and 〈σ,GI〉 |=d κ
′

Note that the set of facts of the default theory used in the definition above,
i.e., of 〈∅, f(GIσ)〉, is empty in our case. This means that we do not have an
“indisputable” set of goals. The framework could be easily extended to include
such a set of indisputable goals by adding these as facts to the default theory.
However, the semantics as defined above has a close relation with the consistent
subset semantics, as will be shown in Section 4.3. In the sequel, we will omit the
set of facts and speak of extensions of a set of default rules.

We have defined the semantics of goals using a credulous interpretation. If
one would define a skeptical semantics, one would specify that Gφ holds, iff φ
follows from all extensions. This would mean that only the non-conflicting parts
of the extensions are used for deriving goals. This is not what we want, as an
agent may have conflicting goals, but it should take care that it handles these
appropriately during execution.

The idea that goals have a credulous semantics is also supported by [42].
That paper proposes “an argument-based semantics for combined epistemic and
practical reasoning, taking seriously the idea that in certain contexts epistemic
reasoning is sceptical while practical reasoning is credulous”. Practical reasoning
here means reasoning about which of multiple, possibly conflicting, objectives to
pursue, which is argued to be generally a credulous form of reasoning.

We illustrate the difference between a credulous and skeptical semantics us-
ing a simple example. The two goal inference rules {sushi}κ− ⇒ pizza and
{pizza}κ− ⇒ sushi express that sushi and pizza are conflicting. These goal
inference rules have > : ¬sushi , pizza/pizza and > : ¬pizza, sushi/sushi as cor-
responding default rules, with the extensions {sushi} and {pizza}, which reflects



that sushi and pizza are conflicting. We would like to have that G(sushi) ∧
G(pizza) holds, given these goal inference rules, since, even though the goals
sushi and pizza are conflicting, they are both goals. This is achieved by taking
the credulous interpretation, i.e., the credulous interpretation allows the agent
to have conflicting goals. In the skeptical interpretation, the agent would not
have any goals in this example.

Note that the fact that the agent has both sushi and pizza as goals does not
mean that it will also pursue both of these goals. In this paper, we are concerned
with the representation of goals that the agent would in principle like to pursue
as opposed to those that the agent is currently pursuing (see Section 2.2). The
former ones may be conflicting, while the latter ones should be conflict-free.
Once the agent starts the pursuit of goals, it will have to take into account the
conflicts between goals and make sure that it does not pursue conflicting goals
simultaneously, e.g., that it chooses between pursuing sushi or pursuing pizza.
The latter is, however, not addressed in this paper.

Another related important point to note is that the formula G(sushi ∧pizza)
does not hold in the example. The semantics of goal formulas thus prevents the
conjunction of two conflicting goals. This is important, since the fact that these
goals are conflicting would otherwise not be reflected in the semantics. This is
analogous to the consistent subset semantics, in which the semantics does not
allow to derive, e.g., G(sushi ∧ ¬sushi) from the conflicting goals G(sushi) and
G(¬sushi). In the consistent subset semantics we aimed for two mutually incon-
sistent goals not leading to the derivation of one inconsistent goal. We believe it
to be intuitive that the same kind of behavior, i.e., the behavior that mutually
conflicting goals φ and ψ do not lead to the derivation of one conjunctive goal
φ ∧ ψ, is exhibited by the default semantics.

Another aspect worth mentioning about this semantics is the following. Since
goals may be conditional on the agent’s beliefs, the goals may change as the
beliefs change. For example, assume that the agent has a goal inference rule
{sunny}β ⇒ sunscreen saying that if it is sunny, the agent may derive the goal
of putting on sunscreen. Now assume the agent first believes it is sunny, and
then the sun disappears (and the agent’s beliefs are updated accordingly). In
this case, the agent first can derive the goal to put on sunscreen, and after the
sun has gone, it will no longer be able to derive this goal. That is, one could say
that the agent has dropped the goal of putting on sunscreen.

In some approaches to goals, goals are required to have a certain persistency
in that they are not dropped until they are believed to be achieved (see Section
2.2). As illustrated by the example above, goals do not have this kind of persis-
tency in our approach since goals are conditional on beliefs. That is, goals may
be dropped if the beliefs change, even though they have not yet been reached.

We believe it is desirable that the goals change in this way as the beliefs of the
agent change, when considering the goals that the agent would in principle like to
pursue, as we do in this paper (see Section 2.2). If the agent has not yet started
to put on sunscreen, we find it intuitive that the goal of putting on sunscreen
is dropped if it is no longer sunny. For the goals that the agent is currently



pursuing, it makes more sense to require that these have more persistency, to
get a certain stability in the agent’s behavior. In our example, this would mean
that if the agent has started to put on sunscreen, it should not stop because the
sun has disappeared for a moment.

Examples We present two simple examples, in order to provide a better idea
of the kinds of situations which can be modeled using goal inference rules. The
first example is about an agent which has to carry cargo from a source location
to a target location.

Example 2 (carrying cargo) Consider that one wants to express that if the
agent is at the location of the source, it should have the goal to have cargo, and
if it is at the target, it should have the goal not to have cargo. Further, if the
agent believes he is at the source and he has cargo, he should have the goal to
be at the target. Finally, if he believes he is at the source, and has the goal to be
at the target, he should have the goal to be at some waypoint14 in-between the
source and the target. This can be useful if the agent only has plans to get from
the source to the waypoint, and from the waypoint to the target. This could be
modeled using the following goal inference rules.

{source,¬haveCargo}β ⇒ haveCargo
{target, haveCargo}β ⇒ ¬haveCargo
{source, haveCargo}β ⇒ target
{source}β , {target}κ+ ⇒ waypoint

If we assume the agent believes he is at the source and has cargo, then G(target)
and G(waypoint) will hold. Also, the formula G(target∧waypoint) holds, as the
two goals are not conflicting. 4

This example illustrates that goals might be conditional on beliefs, and also on
other goals. The fourth rule is an example of the specification of the derivation
of landmarks, as it was called in [55]. A landmark is a goal which the agent has
to achieve, on its way to achieving another goal. In this example, the waypoint
can be viewed as a landmark, which the agent has to achieve in order to achieve
the goal of being at the target.

The next example, which we have already mentioned above, is about an agent
wanting either sushi or pizza, if he is hungry.

Example 3 (sushi or pizza) Consider that one wants to express that if an
agent is hungry, he may have pizza or sushi, but should not simultaneously
pursue these goals, i.e., the goals pizza and sushi are conflicting. Moreover, if an
agent has sushi, he wants to drink tea with it, and if he has pizza, he wants to

14 According to The American Heritage: Dictionary of the English Language, a way-
point is a point between major points on a route, as along a track.



drink soda. This could be modeled using the following goal inference rules.

{hungry}β , {sushi}κ− ⇒ pizza
{hungry}β , {pizza}κ− ⇒ sushi

{sushi}κ+ ⇒ tea
{pizza}κ+ ⇒ soda

Assuming the agent indeed believes he is hungry, the default rules corresponding
with these goal inference rules are > : ¬sushi, pizza/pizza,
> : ¬pizza, sushi/sushi, sushi : tea/tea, and pizza : soda/soda. There are two
extensions of these default rules, i.e., {pizza,soda} and {sushi, tea}. This means
we have G(sushi∧ tea) and G(pizza∧soda), but we do not have G(sushi∧pizza),
G(tea ∧ soda), G(pizza ∧ tea), nor G(sushi ∧ soda). 4

This example illustrates how to express that the goals {sushi} and {pizza} are
conflicting, and how to use this in combination with the derivation of other goals
on the basis of these goals. The conflict between {sushi} and {pizza} is reflected
by the fact that they are not part of the same extension, and by the fact that the
conjunctive goal G(sushi∧pizza) cannot be derived. Using goal inference rules, we
can thus express that certain goals are conflicting, even though they are logically
consistent. Since the derivation of tea and soda depends on the derivation of
{sushi} and {pizza}, the conflict between the latter two is “transferred” to the
former two.

Note that in order to express that two goals are mutually conflicting, one
needs to incorporate a condition to express this conflict in both rules. Replacing
the second rule by the rule {hungry}β ⇒ sushi does not yield the same behavior,
for the following reason. The new rule would have > : sushi/sushi as its corre-
sponding default rule. When deriving extensions, we can apply this second rule,
which yields the extension {sushi}. The first default rule is not applicable any-
more, due to its justification. Alternatively, we can apply the first rule, yielding
the set {pizza}. The second rule is applicable, as sushi is consistent with this set.
The resulting set {pizza, sushi}, however, is not an extension, as the justification
of the first rule is violated. We thus have only the extension {sushi} in this case,
and consequently G(sushi) holds and G(pizza) does not hold.

That is, if one does not express that pizza is in conflict with sushi in the
second rule, it means that sushi can always be derived as a goal, preventing the
derivation of the goal pizza using the first rule since sushi should occur in all
extensions. We expect that in most cases in which one goal conflicts with another,
the other goal also conflicts with the first, i.e., that if goals conflict they are
mutually conflicting. In a practical setting, one could support the programmer
by automatically defining goals as mutually conflicting, or giving a warning if
the programmer has nog programmed this himself.

4.3 Properties

In this section, we investigate properties of the default semantics, and we show
how it is related to the consistent subset semantics. The first kind of property



we are interested in, is how the antecedent of goal inference rules is related to its
consequent, i.e., the question is whether we can say anything about whether the
consequent of a rule is a goal, given certain assumptions about the antecedent.

For a goal inference rule κ+ ⇒ φ ∈ GI it does not hold in general that if the
formulas in κ+ can be derived to be goals (on the basis of a belief base and GI),
that φ can then also be derived to be a goal. This only holds if the formulas in
κ+ have not been defined as conflicting using other rules of GI. If the formulas in
κ+ are conflicting, they cannot be used to derive the goal φ, since these would
then not be part of the same extension, and the default rule corresponding to
this goal inference rule would not be applicable. We formally define when goals
are non-conflicting and, using this, formulate the property that φ can be derived
as a goal on the basis of a set of goal inference rules GI if the formulas in κ+ are
non-conflicting with respect to GI.

Proposition 4 Goals φ1, . . . , φn ∈ L are non-conflicting with respect to a
belief base σ and set of goal inference rules GI, iff 〈σ,GI〉 |=d G(φ1 ∧ . . . ∧ φn).
Let {φ1, . . . , φn}κ+ ⇒ χ ∈ GI be a goal inference rule. Then the following holds:
if φ1, . . . , φn are non-conflicting with respect to a belief base σ and set of goal
inference rules GI, and 〈σ,GI〉 |=d ¬G¬χ, then we have 〈σ,GI〉 |=d Gχ.

Proof: Let E be an extension of 〈∅, f(GIσ)〉. Assume φ1, . . . , φn are non-
conflicting with respect to a belief base σ and set of goal inference rules GI. This
means that 〈σ,GI〉 |=d G(φ1 ∧ . . .∧φn). This means that ∃E : E |= φ1 ∧ . . .∧φn

(Definition 7). Assume 〈σ,GI〉 |=d ¬G¬χ, which means that ¬∃E : E |= ¬χ.
The default rule corresponding with the goal inference rule {φ1, . . . , φn}κ+ ⇒ χ
is φ1 ∧ . . . ∧ φn : χ/χ. This default rule is applicable to the extension E for
which E |= φ1 ∧ . . . ∧ φn, as we know that E 6|= ¬χ. As extensions are closed
under the application of default rules, we have that E |= χ, which means that
〈σ,GI〉 |=d Gχ, yielding the desired result. 2

In Proposition 4, we have shown how the antecedent κ+ is related to the conse-
quent of its goal inference rule. We now show how κ− is related to the consequent
of its goal inference rule. A goal inference rule κ− ⇒ φ expresses that φ can in
principle always be inferred as a goal, but it conflicts with the goals of κ−. This
means that φ can always be inferred as a goal, with the exception of the case
where the formulas of κ− are part of all extensions. If that is the case, the de-
fault rule corresponding with this goal inference rule can never be applied to
derive φ. This property is formulated formally as follows, where we use the no-
tion of “definite goal” to indicate that a goal can be derived on the basis of every
extension.

Proposition 5 A definite goal φ, represented as Gdφ, is defined as follows.

〈σ,GI〉 |=dd Gdφ⇔ ∀E : E is an extension of 〈∅, f(GIσ)〉 and E |= φ

Let {ψ1, . . . , ψm}κ− ⇒ χ ∈ GI be a goal inference rule. Then the following holds:
if 〈σ,GI〉 |=dd ¬Gd(ψ1 ∧ . . . ∧ ψm) and 〈σ,GI〉 |=d ¬G¬χ hold, then we have
〈σ,GI〉 |=d Gχ.



Proof: Let E be an extension of 〈∅, f(GIσ)〉. Assume 〈σ,GI〉 |=dd ¬Gd(ψ1 ∧
. . . ∧ ψm) and 〈σ,GI〉 |=d ¬G¬χ hold. This means that ∃E : E 6|= ψ1 ∧ . . . ∧ ψm

and ¬∃E : E |= ¬χ. The default rule corresponding with the goal inference
rule {ψ1, . . . , ψm}κ− ⇒ χ is > : ¬ψ1, . . . ,¬ψm/χ. This rule is applicable to the
extension E for which E 6|= ψ1∧. . .∧ψm, as we know that E 6|= ¬χ. As extensions
are closed under the application of default rules, we have that E |= χ, which
means that 〈σ,GI〉 |=d Gχ, yielding the desired result. 2

The next proposition establishes which axioms of modal logic are satisfied by
the default semantics. For ease of reference, we repeat the axioms below.

K : G(φ→ ψ) → (Gφ→ Gψ)
D1 : ¬G⊥
D2 : ¬(Gφ ∧G¬φ)
M : G(φ ∧ ψ) → (Gφ ∧Gψ)
C : (Gφ ∧Gψ) → G(φ ∧ ψ)

The proposition shows that in the general case, the default semantics satisfies
the same axioms (from the ones stated above) as the consistent subset semantics
(Proposition 2). Also, if there is only one extension, it satisfies the same axioms
as the consistent subset semantics in case the goal base was consistent and
therefore also of the basic semantics.

Proposition 6 Let σ be an arbitrary belief base and let GI be an arbitrary
set of goal inference rules. Then the following holds.

〈σ,GI〉 |=d D1,M

Let f(GIσ) have only one extension. Then the following holds.

〈σ,GI〉 |=d D2,C,K

Proof: As we do not have a set of facts in the default theory resulting from
the goal inference rules, extensions are always consistent. Therefore, we have
〈σ,GI〉 |=d D1. If 〈σ,GI〉 |=d G(φ ∧ ψ), it means there is an extension of f(GIσ)
from which φ∧ψ follows. This means there is an extension from which φ and ψ
follow, which means that 〈σ,GI〉 |=d Gφ ∧Gψ, yielding 〈σ,GI〉 |=d M.

If there is only one extension, it means that the existential quantification in
the definition of the default semantics always refers to the same extension. This
means that if 〈σ,GI〉 |=d Gφ ∧Gψ, we have that φ and ψ follow from the same
single extension. This means that we also have 〈σ,GI〉 |=d G(φ ∧ ψ), yielding
〈σ,GI〉 |=d C, and for similar reasons we also have K. Further, if there is only
one extension, we have that it cannot be the case that both φ and ¬φ follow from
this extension, as the extension is consistent. Therefore, we have 〈σ,GI〉 |=d D2.

2

We continue to investigate how the default semantics is related to the consistent
subset semantics. As we will see, the two can be related if we transform the goal



base into goal inference rules in the appropriate way, i.e., by transforming each
formula φ in the goal base into a goal inference rule > ⇒ φ, as formally defined
below.

Definition 8 (goal base to goal inference rules) The function g : ℘(L) →
℘(RGI), taking a goal base and yielding a set of goal inference rules, is defined
as follows: g(γ) = {> ⇒ φ | φ ∈ γ}.

Note that the default rules corresponding with these goal inference rules of the
form > ⇒ φ, have the form > : φ/φ. Default rules of this form are often called
Poole-type defaults, or supernormal defaults (see, e.g., [41,5]).

We now have the following theorem, which specifies that if the goal base is
transformed into goal inference rules in this way, the consistent subset semantics
and the default semantics are equivalent. The consistent subset semantics can
thus be considered as a special case of the default semantics, i.e., the case where
only goal inference rules are used that correspond to Poole-type defaults.

Theorem 1 Let GI = g(γ) and let σ be an arbitrary belief base. Then the
following holds.

γ |=s κ⇔ 〈σ,GI〉 |=d κ

In the proof of this theorem we use the following lemma, in which the notion
of a maximal consistent subset is used. A set of propositional formulas γ′ is
a maximal consistent subset of a set of formulas γ iff γ′ ⊆ γ, γ′ 6|= ⊥ and
¬∃φ ∈ γ : φ 6∈ γ′ and {φ} ∪ γ′ 6|= ⊥.

Lemma 1 There is a consistent subset γ′ of γ such that γ′ |= φ iff there is a
maximal consistent subset γ′ of γ such that γ′ |= φ. Further, γ′ is a maximal
consistent subset of γ iff γ′ is an extension of {> : φ/φ | φ ∈ γ} [7].

Proof: Assume there is a consistent subset γ′ of γ such that γ′ |= φ. If γ′ is a
maximal consistent subset, we are done. If γ′ is not a maximal consistent subset,
we add formulas φ′ ∈ γ with γ′ ∪ {φ′} 6|= ⊥ to γ′ until γ′ becomes maximally
consistent. A maximal consistent subset is also a consistent subset, yielding the
proof in the other direction. The second part of the lemma is proven in [7]. 2

Proof of Theorem 1: We prove the result be induction on the structure of κ.
Let κ be of the form Gφ. We then have γ |=s Gφ iff there is a consistent subset
γ′ of γ such that γ′ |= φ (Definition 4). By Lemma 1, this is equivalent to there
being a maximal consistent subset γ′ of γ such that γ′ |= φ.

We have that 〈σ,GI〉 |=d Gφ iff ∃E : E is an extension of 〈∅, f(GIσ)〉 and E |=
φ (Definition 7). As GI = g(γ), goal adoption rules are not conditional on the
beliefs, and therefore GIσ = GI.

We thus have to show that there is a maximal consistent subset γ′ of γ
such that γ′ |= φ iff there is an extension E of f(g(γ)) such that E |= φ.15 By

15 A similar proposition was used, although not proven, by Reiter in [47].



Definition 8, we have that g(γ) = {> ⇒ φ | φ ∈ γ} and therefore f(g(γ)) =
{> : φ/φ | φ ∈ γ}. By Lemma 1, we then have that γ′ is a maximal consistent
subset of γ iff γ′ is an extension of f(g(γ)), yielding the desired result for the
case where κ is of the form Gφ.

If κ is of the form κ1∧κ2, we have that γ |=s κ1∧κ2 iff γ |=s κ1 and γ |=s κ2,
and analogously for the default semantics by definition. By induction, we have
that γ |=s κ1 iff 〈σ,GI〉 |=d κ1 and analogously for κ2, yielding the desired result
for the case where κ is of the form κ1 ∧ κ2. The case for negation is analogous.

2

5 Related Work in Normative Systems

Normative systems are systems in the behavior of which norms play a role and
which need normative concepts in order to be described or specified [35]. There
are different kinds of norms, such as permissions, prohibitions and obligations. In
particular obligations seem to be related to goals, as they express that a certain
state of affairs should be achieved, or that certain actions need to be executed.
In this section, we discuss work in the context of normative systems that is based
on default logic or other defeasible logics.

5.1 Van Fraassen and Horty

In this section, we discuss the relation of our work with work on deontic logic by
Horty [29,30,31], and with the work of Van Fraassen [53], which Horty addresses
in his work. Our work as presented in this paper has been developed indepen-
dently from the work of Horty and Van Fraassen. It however turns out that some
of it is closely related to their work.

Deontic logics are logics for describing normative reasoning. Since its incep-
tion in the work of Von Wright [60], deontic logic has been developed primarily
as a species of modal logic. In [29], Horty however argues that these modal de-
ontic logics do not allow normative conflicts. He argues that normative conflicts
occur often in everyday life, and that it is thus important that deontic logics are
designed that can be used to represent and reason with these conflicts.

A situation gives rise to a normative conflict, if two conflicting propositions
can both be said to be obligatory in that situation. Horty considers propositions
to be conflicting if they are logically inconsistent. A situation of normative con-
flict thus occurs if both ©φ and ©¬φ hold for some proposition φ, where ©
stands for “obligation” or “obliged to”. As discussed in Section 3.2, in a normal
modal logic K, this would imply ©(φ∧¬φ) and therefore ©⊥, thereby trivializ-
ing the logic. In standard deontic logic, besides the axiom K, also the axiom D,
i.e., ¬(©φ ∧©¬φ), is adopted. By adopting this axiom, standard deontic logic
thus rules out normative conflicts [29].

In [29] and the follow-up papers [30,31], Horty discusses an approach to rea-
soning in the presence of normative conflicts which was first proposed by Van
Fraassen [53]. The latter paper contains two suggestions, where the second is a



refinement of the first. Departing from modal logic and its possible world seman-
tics, Van Fraassen defines obligations on the basis of a set of so-called background
imperatives. These background imperatives are essentially propositional formu-
las, and are supposed to represent the (possibly conflicting) obligations as arising
from various sources.

Van Fraassen’s initial suggestion is to define the obligations that can be
derived from a set of background imperatives γ, as follows:

γ |=F1 ©φ⇔def ∃φ′ ∈ γ : φ′ |= φ.16

Comparing this definition to Hindriks’ definition for the semantics of goals (Def-
inition 3), we can see that it is completely analogous. That is, with the exception
that Hindriks requires each individual goal in γ to be consistent. Van Fraassen’s
definition will allow the derivation of any obligation if there is an inconsistent
obligation in the set of background imperatives, while Hindriks prevents this by
requiring that each goal in the goal base is consistent. The motivations provided
by both authors for their definitions are also very similar: φ is a goal or obli-
gation if it is a necessary condition for fulfilling a goal or obligation in the goal
base or set of background imperatives, respectively.

As noted by Horty [30], this initial suggestion runs into difficulties, however,
when it comes to logical interconnections among imperatives. The example pro-
vided by Van Fraassen and Horty to illustrate these difficulties, is the following.
Suppose that γ = {p ∨ q,¬p} is the set of background imperatives. Intuitively,
one would want to conclude from this that ©q. This however does not follow
under Van Fraassen’s initial definition, as there is no single imperative from
which q follows. To remedy this problem, Van Fraassen provides another and
somewhat involved model theoretic definition, which we will refer to using |=F2.
We do not repeat that definition here, since this would require the introduction
of a number of auxiliary notions, and the definition itself is not important for
the current discussion.

What is important, is that Horty provides an equivalent definition by trans-
lating the set of background imperatives of Van Fraassen into default rules [29].
To be more specific, each formula φ in the set of background imperatives γ is
translated into a default rule > : φ/φ. Horty then shows the following, where
Dγ is the resulting set of default rules:

γ |=F2 ©φ⇔ ∃E : E is an extension of 〈∅, Dγ〉 and E |= φ.

By Theorem 1, we then have that |=F2 is equivalent to our consistent subset
semantics. This analysis thus suggests that goals and obligations are indeed
similar. It also shows, using the results of Horty, that the second proposal of
Van Fraassen is a special case of our default semantics of goals. Moreover, our
analysis of the relation between Hindriks’ semantics and the consistent subset
semantics also shows how the proposals of Van Fraassen are related, as we have
16 We rephrase the definition as given in [30] for reasons of comparison, which in turn

rephrases the definition given in [53].



that his first proposal is equivalent to that of Hindriks et al., and his second
proposal is equivalent to the consistent subset semantics.

5.2 BOID and Related Approaches

The idea of using default logic to define the semantics of goal inference rules was
inspired by the BOID framework [9,13], which uses default logic for representing
beliefs, obligations, intentions and desires. This framework was in turn inspired
by Thomason [52], who uses default logic to develop a formalism to integrate
reasoning about desires with planning, and Horty [30], and it is related to work
in the area of defeasible logic by Governatori and Rotolo [23]. In this section,
we discuss the main differences between our work and these approaches. We
will refer to the first variant of BOID [9] as BOID’02 and to the second [13] as
BOID’04.

The main difference between our work and the other approaches mentioned
above, is that we introduce a logical language of goals of which we define the
semantics. In the work of Thomason and BOID’02, sets of formulas (extensions)
are generated on the basis of (normal) default rules. The formulas (or part of
them) are intended to represent the goals (or desires) of the agent. However,
these approaches do not come with a logical language of goals. Such a language
provides the means for unambiguously expressing that a formula is a goal, and
also that a formula is not a goal. This kind of expressivity is exploited in the
goal inference rules, which can be used to express that two goals are incompat-
ible (even though logically consistent) by using negative goal literals. Also, our
logics of goals have allowed us to compare properties of our goal operator with
properties of operators from modal logics.

In BOID’04, sets of modal formulas with B, O, I, and D operators are gen-
erated on the basis of rules comparable to normal default rules. In contrast with
normal default rules, however, these rules contain modal formulas rather than
propositional (or first order) formulas. These modal formulas are used to express
whether the agent has a belief, obligation, intention, or desire. The authors as-
sume some modal logic consequence relation for establishing whether a rule can
be applied. BOID’04 thus does not define the semantics of a logical language
of goals like we do, but the semantics of their operators is stated to be that of
standard modal operators. Governatori and Rotolo [23] build on work on defea-
sible logic by Nute [39] (see also [12] for a follow-up paper). Their logic allows
to derive tagged literals, where the tags express whether the literal is a belief,
obligation, etc. They thus do not define the semantics of a logical language of
goals.

Another difference is that we exploit the full power of default rules, including
the justification of the default rules, while in Thomason and BOID only normal
default rules are considered. The work of Governatori and Rotolo is an extension
of defeasible logic. Defeasible logic has a skeptical semantics, while we have ar-
gued that a credulous semantics is more appropriate in the context of conflicting
goals. Other differences between our work and BOID’04 are that we use stan-
dard propositional default logic to interpret our rules, while BOID’04 defines its



own procedures for generating extensions, in which a modal logic consequence
relation is assumed. Further, in BOID’04, the extensions which are computed
are explicitly stored in the agent configurations, including the extension which is
chosen to form the agent’s intention base. BOID’04 could thus be viewed as tak-
ing the addition perspective, while we take the satisfaction perspective (Section
4.2).

6 Conclusion

We have explored semantics of a logical language of goals that support the
representation of conflicting goals, in the context of logic-based cognitive agent
programming languages. We have investigated semantics based unconditional
and conditional goals, and have examined their properties and interrelations.
The former are based on propositional logic, and the latter is based on default
logic.

Regarding the unconditional semantics, we have considered a basic semantics,
the semantics of Hindriks et al., and our own consistent subset semantics. We
have shown that the logic of goals is trivialized under the basic semantics if
the goal base is inconsistent. Also, we have shown that the consistent subset
semantics allows the derivation of more goals than the semantics of Hindriks et
al., and that it is equivalent with the basic semantics in case of a consistent goal
base. The semantics of Hindriks et al. and the consistent subset semantics turn
out to be equivalent to proposals by Van Fraassen in the area of deontic logic.

The main advantages of the default semantics is that it allows the representa-
tion of conditional goals, and it allows to express that goals are conflicting, even
though they are logically consistent. We have shown that the consistent subset
semantics is a special case of the default semantics. The main difference between
our work and BOID-like approaches is that, in contrast to those approaches, we
introduce a logical language of goals of which we define the semantics in various
ways. This facilitates the investigation of properties of the semantics and their
comparison, and provides for added expressivity.

We see two main directions of future work. First, we aim to investigate how
we can implement our semantics of goals using answer set programming (see
Section 2.1). Second, we plan to investigate in more detail how our approach
can be embedded into existing agent programming languages. The main issue to
address will be the relation between the goals that the agent would in principle
like to pursue as considered in this paper (see Section 2.2), and goals the agent
is actively pursuing.

Concluding, we maintain that a systematic analysis of semantics of goals in
agent programming is essential, in order to be able to understand how we can
best incorporate these in agent programming languages. This paper contributes
to this effort.
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