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Abstract. The core capability of a rational agent is to choose its next
action in a rational fashion, a capability that can be put to good use by a
designer to satisfy the design objectives of an agent system. In agent pro-
gramming languages for rational agents, such choices are derived from the
agent’s beliefs and goals. At any one time, an agent can typically choose
from multiple actions, which may all lead to goal achievement. Existing
approaches usually select one of those actions non-deterministically. In
this paper, we propose the use of goals as hard constraints and qualita-
tive preferences as soft constraints for choosing a most preferred action
among the available ones. We use temporal logic for the representation
of various kinds of goals and preferences, leading to a uniform framework
for integrating goals and preferences into agent programming.

1 Introduction

The core component of a rational agent is its capability to make rational choices
of action, in order to satisfy its design objectives. In agent programming lan-
guages for rational agents, such choices are derived from the agent’s beliefs and
goals. These goals are often achievement goals, i.e., goals that define states that
are to be achieved. Typically, agent programs consist of a number of rules (usu-
ally called action selection or plan rules) that provide the agent with the means
to choose actions that achieve its goals. Such rule sets, however, do not necessar-
ily completely determine the choice of action, and, at any one time, an agent can
typically choose from multiple actions, which may all lead to goal achievement.
Existing approaches usually select one of those actions non-deterministically.

Recent research in both the planning and agent programming field [1, 2, 10,
12, 13, 15] has shown that it can be useful to have additional mechanisms for
further constraining the choice of action in an agent program and thus to re-
duce the non-determinism that would be present in an agent program without
such mechanisms. In [13], for example, we introduced an operational semantics
for so-called maintenance goals which express conditions that must remain true
throughout (some part of) the agent’s lifetime. Adding maintenance goals to
agent programs provides a programmer with a tool to restrict the options for ac-
tion selection that an agent has, since the agent is programmed to avoid selecting
actions that would violate maintenance goals.
? This work has been sponsored by the project SENSORIA, IST-2005-016004



In this paper, we investigate such mechanisms for further constraining an
agent’s choice of action in agent programming languages in a more general and
uniform setting. We distinguish between hard constraints which must be sat-
isfied, and soft constraints or preferences which allow an agent to distinguish
preferred courses of action from those that are less preferred. The main contri-
bution of this paper consists of the layered rational action selection architecture
(RASA for short) that we propose as a conceptual framework for rational action
selection in agent programming. The RASA architecture introduces a uniform
framework based on temporal logic that integrates rule-based action selection
(based on beliefs and goals), hard constraints such as maintenance goals, and
soft constraints such as preferences.

We show how the proposed architecture can be operationalized using the
GOAL agent programming language [7]. For this purpose, we introduce an ex-
tension of the GOAL language that incorporates temporal logic operators used
to represent both goals as well as preferences. A key motivation for integrating
temporal logic into agent programming languages is the potential that the addi-
tional expressiveness thus introduced provides for defining a uniform framework
that naturally allows for the integration of hard and soft constraints, including
such concepts as achievement goals, maintenance goals, as well as temporally
extended preferences. The work reported is inspired among others by work in
planning where temporal logic is used to “guide” planners through the search
space [1] and to select preferred plans [2, 10, 15].

In Section 2, we discuss rational action selection in agent programming, and
informally present the rational action selection architecture. In Section 3, we
present the extension of GOAL with temporal logic, which forms the first layer
of our action selection architecture. Section 4 defines some technical preliminaries
with respect to temporal logic, which are needed in Sections 5 and 6 in which
we introduce the second and third layer, respectively, of the action selection
architecture. In Section 7 we conclude the paper.

2 Rational Action Selection Architecture

An agent program typically does not completely determine the behaviour of the
agent in each state as it allows multiple actions to be executed in such a state.
Agent programs thus typically underspecify an agent’s behaviour.3 For example,
consider a carrier agent that needs to bring parcels to two different locations
A and B. An agent program for such a carrier agent may instruct the agent to
goto(A) and goto(B) but leave unspecified in which order this should be done.

The underspecification of agent behaviour can have benefits from a design
point of view. If it does not matter whether the agent executes one action or
another for reaching a goal, one can argue that it is more natural to let the agent
3 It may be the case that interpreters for agent programs are implemented such that

they produce the same sequence of actions each time the agent program is executed.
However, when read as specifications they typically do not dictate such a unique
course of action.



program reflect this by leaving these choices open. However, recent research in
both the planning and agent programming field [1, 2, 10, 12, 13, 15] has shown
that it can be useful to have additional mechanisms for finding courses of actions
to further constrain the choice of action in an agent program. The idea is that
additional selection mechanisms can be introduced on top of an existing agent
programming semantics which can be used by the agent to further restrict the
selection among actions. For example, one might wish to specify that going to
location A first before going to location B is to be preferred by the carrier
agent. Preferences such as these are difficult to code into an agent program,
and, we argue, are more naturally introduced as an additional constraint in the
agent program. In this particular example, an agent then should check whether a
selected (course of) action satisfies such constraints to optimize its performance.
In this section, we present a layered rational action selection architecture (RASA)
for adding such additional selection mechanisms on top of agent programs.

2.1 An Architecture for Rational Action Selection

Regarding the kinds of additional constraints that may be applied to select
among the possible courses of action, we distinguish between hard constraints
which must be satisfied, and soft constraints or preferences, by means of which
one can distinguish more preferred courses of action from less preferred ones (see
also [15, 10, 13]).

What one takes as hard constraints varies across approaches. In [15, 10], and
more generally in planning, the (achievement) goals themselves are considered to
be hard constraints.4 In [13], maintenance goals are taken as hard constraints,
i.e., an agent may never violate a maintenance goal. Preferences can be used
to distinguish between optimal and suboptimal courses of action, e.g., in terms
of costs, but may also be used to distinguish courses of action with respect to
which goals are reached (if goals are not considered as hard constraints and not
all goals can be reached).

These considerations lead to the following layered rational action selection
architecture.

– Layer 1: The RASA generates options for courses of action, typically on
the basis of an agent’s beliefs and (achievement) goals.

– Layer 2: The RASA verifies whether the courses of action from layer one
satisfy hard constraints and discards those that do not.

– Layer 3: The RASA selects from the options remaining after the applica-
tion of layer two those courses of action that maximize satisfaction of soft
constraints.

In this paper, we show how this architecture can be made concrete in the context
of the GOAL agent programming language.
4 That is, in that approach the initial goals are the basis for plan generation, while at

the same time being considered as hard constraints. The initial goals are thus not
used as an additional action selection mechanism.



2.2 Rational Action Selection in Agent Programming

This rational action selection architecture is inspired among others by research
on planning with preferences [10, 15, 4, 2]. The classical AI planning problem is
to search for a plan (a sequence of actions) to get from the current state to a goal
state, given a set of action specifications [9, 11]. In agent programming, on the
other hand, the behaviour of the agent is specified by means of a program [5].
One of the main differences between planning and programming approaches, is
that in planning one seeks a complete plan, the execution of which will result in
the agent achieving its goal (given certain assumptions on the environment). An
agent program, on the other hand, is executed step by step, typically without first
checking whether the executed actions will eventually lead to the agent reaching
its goal.5 That is, in our approach we want the agent to execute an action at
each step, even though it does not know for sure that the action is the best one
according to the hard and soft constraints. Nevertheless, we do want the agent
to take into account the constraints to select an action that is at least likely to
be a good one.

The way in which we propose to do this, is partly based on our previous work
on the incorporation of maintenance goals in agent programming languages [13].
The idea is that the agent has a fixed, usually finite, lookahead horizon, i.e.,
the agent can lookahead a certain number of execution steps. The agent then
evaluates the possible courses of action or paths it can take (up to the given
horizon) using its constraints, in order to determine which paths are the best. It
then takes one step along one of these paths, and the process is repeated.

It is important to note that, when the agent takes a step in a particular
direction, it does not have complete knowledge of the outcome of following that
path. It can only look forward until its lookahead horizon, but does not know
what happens beyond this horizon. This means that the agent may take a step
that is suboptimal, i.e., the agent uses its constraints as a heuristic for action
selection. Constraints are also used as a heuristic in some planning approaches
[1, 2], in which they are used to guide the search for an optimal plan.

The technical tool we use for the representation of goals and preferences is
linear temporal logic (LTL) [8]. The idea is that if the agent has a temporal for-
mula as a goal, it should try to produce execution traces on which this temporal
formula holds, and similarly for preferences. This idea is inspired by work on the
representation of goals and qualitative preferences in the context of planning [1,
10, 15, 4, 2]. While LTL formulas are typically evaluated on infinite traces, we
need to evaluate LTL formulas on finite traces, since we use a finite lookahead
horizon. It turns out that the 3-valued semantics of LTL as proposed in [3] pro-
vides a natural solution to this problem, and we use it to incorporate temporal
goals and preferences in GOAL.
5 If the programmer has written a program that is correct (with respect to some

specification), of course, the execution will indeed lead to goal achievement (cf. [7]
for a verification framework of the agent programming language GOAL.). Verifying
agent programs that are executed in dynamic, unpredictable environments, however,
is an unsolved problem and a non-trivial undertaking in practice.



3 RASA Layer 1: Temporalized GOAL

In this section, we define the first layer of the RASA architecture in the context
of the GOAL agent programming language [7, 14]. We extend the original GOAL
language by allowing temporal formulas as goals, rather than only propositional
formulas.

3.1 The General Idea

In the GOAL language, an agent selects actions on the basis of its beliefs and
goals. A program consists of (1) a set of beliefs, collectively called the belief base
of the agent, (2) a set of goals, called the goal base, (3) an action specification
which consists of a specification of the pre- and post-conditions of basic actions
of the agent, and (4) a program section which consists of a set of actions rules.

In the original GOAL language, the belief base and goal base are sets of
propositional formulas. The goals are interpreted as achievement goals. That
is, if a propositional formula φ is in the goal base, this informally means that
the agent wants to reach a situation in which φ is (believed to be) the case.
If a basic action is executed, the agent’s beliefs change as specified in the pre-
and postconditions of the action, and the achievement goals that are believed
to be reached through the execution of the action are removed from the goal
base.6 As an example, an action goto(A) would update the belief base to include
at(A). An action rule consists of a basic action and a condition on the agent’s
beliefs and goals. Such a rule expresses that the basic action may be executed,
if the condition holds. An action rule might specify that the agent only goes
to a location x if a parcel needs to be delivered to x (a goal) and the agent
does not believe it is currently at x. During execution, a GOAL agent selects
non-deterministically any of its enabled action rules, i.e., an action rule of which
the condition holds, and then executes its corresponding basic action. At any
one time, typically multiple action rules are enabled, i.e., a GOAL program
underspecifies an agent’s behaviour.

In [13], we have extended the GOAL language with maintenance goals. Just
like achievement goals, maintenance goals were also expressed by propositional
formulas. A maintenance goal φ expresses that the agent wants that φ holds
continuously throughout the execution of the agent. Both achievement goals
and maintenance goals express particular desired properties of the behaviour
of the agent. These properties can be expressed conveniently in LTL. LTL has
computation traces (sequences of states) as models. An achievement goal for
φ can be represented by the LTL formula ♦φ, specifying that φ should hold
eventually, i.e., in some state on the computation trace. A maintenance goal for φ
can be represented by �φ, specifying that φ should always hold. This idea can be

6 The idea is that the agent’s beliefs also represent the environment, and that basic
actions change this environment. However, the environment is not modeled in the
formal specification of GOAL, and consequently basic actions update only the belief
base.



generalized by realizing that in fact any LTL formula can be used for expressing
goals. As an example, ♦at(A) may be used to represent the achievement goal
of being at location A and �fuel(x) ∧ x > 30 may be used to represent a
maintenance goal of having always at least 30 units of fuel in the tank.

In this paper, we make this idea concrete in the context of the GOAL language
by using LTL for the representation of goals. This increases the expressiveness of
the language by allowing the representation of all kinds of goals, and allows for
the representation of goals in a uniform way. For example, the goal φUφ′, which
expresses that the agent wants to ensure that φ while it is trying to achieve φ′,
can now be expressed easily.

3.2 Formalization

First, we define the LTL language that we use for representing goals. For reasons
of simplicity we do not extend the beliefs of an agent in the programming lan-
guage to temporal formulas. For example, it would be more involved to establish
when an agent should drop one of its goals.

The states of the traces on which the LTL formulas are evaluated are belief
bases, i.e., goals express how the belief base of the agent should evolve.7 We
assume a language L0 of propositional logic with typical element φ, and the
standard entailment relation |=. A belief base Σ ⊆ L0 is a set of propositional
formulas. Our LTL language contains the standard (temporal) operators of LTL.
The difference between our LTL language and standard LTL is that the states
of the traces are belief bases, rather than worlds as valuations of propositional
atoms. The semantics of non-temporal propositional formulas is thus defined on
belief bases. We specify that a propositional formula φ holds in a belief base Σ
if Σ |= φ.

Definition 1 (linear temporal logic (LTL))
Let φ ∈ L0. The set of LTL formulas LLTL with typical element χ is defined as
follows.

χ ::= > | φ | ¬χ | χ1 ∧ χ2 | ♦χ | ©χ1 | χUχ2

Let tb = Σ0, Σ1, . . . be an infinite trace of belief bases and let i ∈ N be a position
in a trace. The semantics of LTL formulas is defined on infinite traces tb as
follows.

tb, i |=LTL >
tb, i |=LTL φ ⇔ Σi |= φ
tb, i |=LTL ¬χ ⇔ tb, i 6|=LTL χ
tb, i |=LTL χ1 ∧ χ2 ⇔ tb, i |=LTL χ1 and tb, i |=LTL χ1

tb, i |=LTL ♦χ ⇔ ∃k ≥ i : tb, k |=LTL χ
tb, i |=LTL ©χ ⇔ tb, i+ 1 |=LTL χ
tb, i |=LTL χ1Uχ2 ⇔ ∃k ≥ i : tb, k |=LTL χ2 and ∀i ≤ l < k : tb, l |=LTL χ1

7 As the idea is that the beliefs also represent the environment of the agent, goals also
express desired properties of the environment.



As usual, the always operator is defined in terms of the eventually operator by:
�χ ≡ ¬♦¬χ.

The mental state of a GOAL agent consists of those components that change
during execution. That is, a mental state consists of a belief base and a goal
base. The goal base is typically denoted by Γ and in temporalized GOAL this
is a set of LTL formulas. Mental states should satisfy a number of rationality
constraints.

Definition 2 (Mental States)
A mental state of a GOAL agent, typically denoted by m, is a pair 〈Σ,Γ 〉 with
Σ ⊆ L0 and Γ ⊆ LLTL where Σ is the belief base, and Γ with typical element χ is
the goal base. Additionally, mental states need to satisfy the following rationality
constraints:

(i) The belief base is consistent: Σ 6|= ⊥,
(ii) The goal base is consistent: Γ 6|=LTL ⊥,
(iii) The goal base does not contain goals that have already been achieved.

The third rationality constraint is implemented by means of the progression
operator which will be introduced below (Definition 4).

A GOAL agent derives its choice of action from its beliefs and goals. In order
to do so, a GOAL agent inspects its mental state by evaluating so-called mental
state conditions. The syntax and semantics of these conditions is defined next.

Definition 3 (Mental State Conditions)
Let φ ∈ L0, χ ∈ LLTL. The language LM of mental state conditions, typically
denoted by ψ, is defined as follows.

ψ ::= Bφ | Gχ | ¬ψ | ψ1 ∧ ψ2

The truth conditions of mental state conditions ψ, relative to a mental state
m = 〈Σ,Γ 〉, are defined as follows.

m |=m Bφ iff Σ |= φ
m |=m Gχ iff Γ |=LTL χ
m |=m ¬ψ iff m 6|=m ψ
m |=m ψ1 ∧ ψ2 iff m |=m ψ1 and m |=m ψ2

The semantics of Bφ is defined relative to a given belief base: Bφ holds iff
φ follows from the belief base under a standard propositional logic entailment
relation. The semantics of the G operator is different from original GOAL, where
the goal base is a set of propositional formulas. Here, we use the LTL entailment
relation to generalize the operator to be able to express arbitrary types of goals.
¬B(at(x)) ∧ G(♦at(x)) is a simple example of a mental state condition that
expresses that the agent does not belief it is at location x although it wants to
be. Such a condition can be used to determine whether to goto a location x (see
below).



Before we can move on to defining how the execution of a basic action changes
the agent’s mental state, we need to explain how the goal base is updated. In the
original GOAL language, achievement goals that are believed to be achieved after
the execution of a basic action are removed from the goal base. Checking whether
an achievement goal is achieved is simple if these are represented as propositional
formulas: an achievement goal φ is achieved in a mental state if it follows from
the belief base in that mental state. In temporalized GOAL, goals are temporal
formulas. In order to be able to evaluate the achievement of temporal formulas
in a mental state, we use a technique from [1] for “progressing” LTL formulas.

Progression of an LTL formula is a transformation of this formula, which
should be performed at each execution step. The idea is that the transformation
yields a new formula in which those “parts” of the formula which have already
been achieved are set to >, leaving an LTL formula which expresses what still
has to be satisfied.

For example, if the agent has a goal ♦φ (φ ∈ L0) in a particular mental state
and φ is achieved in that mental state, i.e., follows from the belief base, then the
progression of this formula is “>”, as the agent has produced an execution trace
on which the formula holds. If φ does not hold, then the progression is the formula
“♦φ” itself, since it still needs to be satisfied. If a formula has progressed to a
formula equivalent to >, it means the agent has produced an execution trace on
which the formula holds. Note that formulas of the form �χ can never progress
to >, since it needs to be checked continuously whether χ holds.

The progression operator can be defined inductively for general LTL formulas,
as specified in the next definition. We adapt the definition of [1] slightly, as we
want a formula which is reached in a mental state to be true already in that
state, rather than one mental state later. For this, we define the progression of
©χ′ as Progress(χ′), rather than as χ′.

Definition 4 (progression of LTL formulas)
Let Σ be a belief base, let χ ∈ LLTL be an LTL formula, and let φ ∈ L0. The

progression of χ in Σ, Progress(χ,Σ) is then defined as follows.

form of χ is Progress(χ,Σ) =
> >
φ > if Σ |= φ,⊥ otherwise
¬χ′ ¬Progress(χ′, Σ)

χ1 ∧ χ2 Progress(χ1, Σ) ∧ Progress(χ2, Σ)
♦χ′ Progress(χ′, Σ) ∨ χ
©χ′ Progress(χ′)
χ1Uχ2 Progress(χ2, Σ) ∨ (Progress(χ1, Σ) ∧ χ)
�χ′ Progress(χ′, Σ) ∧ χ

We lift the progression function of Definition 4 to sets of LTL formulas Γ ⊆ LLTL

as follows: Progress(Γ,Σ) =
⋃
χ∈Γ Progress(χ,Σ).

The next definition specifies how the execution of a basic action changes an
agent’s mental state. In the formal definition of GOAL, we use a transition



function T to model the effects of basic actions for technical convenience, rather
than a specification of pre- and postconditions. The function T maps a basic
action a and a belief base Σ to an updated belief base T (a, Σ) = Σ′. The
transition function is undefined if an action is not enabled in a mental state. For
example, the transition function may specify that an atom at(A) is added to the
belief base, if a basic action goto(A) is executed, while the action is undefined
if the agent is already at location A. The GOAL language also includes special
actions for adding and removing goals from the goal base, but we do not discuss
these actions here (see e.g. [7]). The change of the goal base is defined by means of
the progression operator. At each step, all goals of the goal base are progressed.

Definition 5 (Mental State Transformer M)
Let a be a basic action, φ ∈ L0 and T be a transition function for basic actions.
Then the mental state transformer function M is defined as a mapping from
actions and mental states to updated mental states as follows:

M(a, 〈Σ,Γ 〉) =
{
〈Σ′,Progress(Γ,Σ′)〉 if T (a, Σ) = Σ′

undefined otherwise

As is noted in [1], the progression operator has to a certain extent the ability
to model check formulas used here to express maintenance goals such as �χ. In
particular it is able to detect that a finite prefix of an execution path falsifies
such goals. The progression operator however is not complete and will not always
be able to detect for a particular goal that it can never be satisfied on extensions
of all finite prefixes of all execution paths generated by the agent program.
Similarly, it cannot be detected that an achievement goal ♦χ might never be
achieved on an extension of a course of actions taken so far, nor can we use
the operator to detect that a formula is unsatisfiable. The advantage, however,
of giving up this component of completeness is computational efficiency; the
progression of a formula can be computed in time linear in the size of the formula
[1]. In addition, in the context of agent programming the expressivity gained by
allowing temporal formulas arguably also provides for a more natural means of
designing declarative agent programs. We see the investigation of the properties
of the progression operator as an important issue for future research.

The specification of when a basic action may be executed, is done by means
of action rules. An action rule c has the form if ψ then a, with a a basic action.
This action rule specifies that a may be performed if the mental state condition
ψ holds and the transition function is defined for a. In that case we say that
action c is enabled. As an example, we can now formally write the action rule
to goto a location as: if¬B(at(x)) ∧ G(♦at(x)) then goto(x). Given that the
agent believes it is still at its base location at(Base) which implies ¬at(A) and
has a goal ♦at(A) the agent can derive from this rule that goto(A) is an action
it might perform (is enabled). During execution, a GOAL agent selects non-
deterministically any of its enabled actions. This is expressed in the following
transition rule, describing how an agent gets from one mental state to another.

Definition 6 (Action Semantics)
Let m be a mental state, and c = if ψ then a be an action. The transition



relation c−→ is the smallest relation induced by the following transition rule.

m |= ψ M(a,m) is defined

m
c−→M(a,m)

The execution of a GOAL agent results in a computation trace. We define
a trace as a sequence of mental states, such that each mental state can be
obtained from the previous by applying the transition rule of Definition 6. As
GOAL agents are non-deterministic, the semantics of a GOAL agent is defined
as the set of possible computations of the GOAL agent, where all computations
start in the initial mental state of the agent.

Definition 7 (Agent Computation) A computation trace, typically denoted by
t, is an infinite sequence of mental states m0,m1,m2, . . . such that for each i
there is an action ci and mi

ci−→ mi+1 can be derived using the transition rule
of Definition 6, or mi 6

ci−→ and for all j > i, mj = mi. The meaning RA(m0) of a
GOAL agent named A with initial mental state m0 is the set of all computations
starting in that state.

Observe that a computation is infinite by definition, even if the agent is not
able to perform any action anymore from some point in time on. Also note that
the concept of a computation trace is a general notion in program semantics
that is not particular to GOAL. The notion of a computation trace can be
defined for any agent programming language that is provided with a well-defined
operational semantics. The semantics RA(m0) thus consists of all traces that
may be generated by the agent program. These traces form the first layer of the
RASA architecture.

4 Evaluating Temporal Formulas on Prefixes of Traces

In Sections 5 and 6, we will show how to define the second layer (hard con-
straints) and third layer (soft constraints) on top of the first layer as defined in
the previous section. Both hard constraints and soft constraints will be repre-
sented using LTL. In standard LTL, formulas are evaluated on infinite traces. As
explained in Section 2.2, however, in our setting an agent can lookahead a finite
number of steps and we want to evaluate LTL formulas on such finite traces. We
thus need to define the semantics of LTL formulas on such finite traces. This
introduces several issues, one of which is the definition of the semantics of the
next operator ©. It is not immediately clear what the semantics of a formula
©φ should be if it is evaluated in the last state of a finite trace.

For explaining our approach, it is important to realize that the finite trace
on which we evaluate LTL formulas is only a prefix of a trace which will be
continued beyond the lookahead horizon. Intuitively, the truth of a formula ©φ
evaluated in the last state of such a finite prefix cannot be established. Its truth
depends on how the trace continues beyond the finite prefix under consideration.
A formula ♦φ, on the other hand, clearly holds on a finite prefix if φ holds on



some state of this prefix. Similarly, a formula �φ is clearly false on a finite prefix
if ¬φ holds in some state of this prefix.

From these examples, we can see that the truth of an LTL formula evaluated
on a finite prefix of a trace depends on how this trace progresses beyond the finite
prefix. If a formula is false on any progression, it is also false on the finite prefix.
Similarly, if it is true on any progression, it is true on the finite prefix. In all other
cases, we cannot determine the truth of the formula. This intuition is reflected
by a 3-valued semantics of LTL as presented in [3] in the context of monitoring.
In the 3-valued semantics, the truth value of an LTL formula evaluated on a
finite trace is > (true), ⊥ (false), or “?” (unknown). We use (a slightly adapted
version of) the definition of [3] for evaluating LTL formulas on finite prefixes.
We define the semantics of LTL formulas over traces of mental states in terms of
the semantics over belief bases as follows, where tb is derived from t by keeping
only the belief bases of each mental state: t, i |=LTL χ⇔ tb, i |=LTL χ.

Definition 8 (3-valued LTL semantics)
Let M be a set of mental states. Finite traces over M are elements of M∗ and
infinite traces are elements of Mω. Both are typically denoted by t. Let t, t′ ∈
M∗ ∪Mω be (finite or infinite) traces. Concatenation of traces t, t′ is defined as
usual and simply denoted as tt′; we stipulate that if t ∈ Mω, then tt′ = t. The
truth value of an LTL3 formula ϕ with respect to a trace t ∈M∗ ∪Mω, denoted
by [t |= χ], is an element of {>,⊥, ?} and defined as follows.

[t |= χ] =

> if ∀t′ ∈Mω : tt′ |=LTL χ,
⊥ if ∀t′ ∈Mω : tt′ 6|=LTL χ,
? otherwise.

Corollary 1. If t = ε, [t |= ϕ] = ? if ϕ 6≡ ⊥ and ϕ 6≡ >.

The only difference between our definition and the one of [3] is that in our
definition t can also be infinite. This allows us to investigate our semantics also
for an infinite lookahead horizon in a uniform way. In [3], a technique based on
the construction of a finite state machine from an LTL formula and a finite trace
is presented for determining the truth value of an LTL3 formula at runtime in
implemented systems, which provides a basis for implementing Layers 2 and 3
of our architecture explained in the next sections.

The need for a 3-valued semantics in our approach highlights an important
difference with the use of LTL in planning approaches such as [10, 15]. In a
planning context, the plans under consideration are always complete. That is,
it is not taken into account that these plans might progress beyond their final
state. This means that, e.g., a formula ♦φ in those approaches is considered to
be false if φ does not hold in some state resulting from execution of the plan,
and true otherwise. In our semantics, on the other hand, the truth value of the
formula is unknown if φ does not hold on some state of the finite prefix.



5 RASA Layer 2: Goals as Hard Constraints

Goals of an agent are temporal formulas. The semantics of agent programs pro-
vided in Section 3 accounts for the role such goals have in selecting actions using
action selection rules. Action selection rules allow an agent to derive actions
from its beliefs and goals in a reactive manner, but we argue that this layer in
the architecture does not yet account for the full role that such goals can have
in the action selection mechanism of a rational agent.

If an agent has the ability to lookahead a (finite) number of steps, it can also
use its goals to avoid selecting those actions that prevent the realization of (some
of) the agent’s goals. In this section we define the second layer of RASA which
accounts for this role of goals. Goals thus viewed introduce additional constraints
on action selection to the effect of excluding those actions of which the agent
foresees that they will not satisfy its goals. Here we consider such constraints to
be hard constraints, meaning that any foreseen violation of goals by performing
an action will force a rational agent to choose an alternative action (if possible)
or become inactive (in line with previous work, cf. [13]). That is, actions will
only be selected if for all that is known the action may still eventually allow
satisfaction of the goals of the agent.

In this view of goals as hard constraints, achievement goals of the form ♦φ per
se do not add any additional constraints on action selection since an agent with a
finite lookahead horizon will not be able to conclude that an action will prohibit
realizing such a goal. Achievement goals thus may be said to have no “selective
force” beyond the rule-based mechanism of the action selection architecture.
The role of a goal such as being at location A, ♦at(A), thus is mainly to guide
this selection process and, in order to avoid wasting resources, to remove such
goals as reasons for action when they have been achieved (see the Progress
operator of Section 3.2). Other types of goals such as maintenance goals do have
a selective force in this sense; for example, if �φ is a goal of the agent, an agent
can conclude that it is no longer possible to satisfy this goal if φ does not hold
in some state within the lookahead horizon. An agent thus can use such goals
to filter certain options for action generated by the rule-based layer one.8 For
example, the maintenance goal of having a minimum level of fuel in the tank of
an agent will prevent selection of an action goto(A) in case this would drop fuel
levels below this minimum, assuming that going somewhere consumes fuel.

Of course, the agent needs to consider possible future effects of a course of
action allowed by the agent program to check such constraints, which is why
a lookahead horizon needs to be defined to do so. The lookahead horizon is an
integer specifying the length of a prefix of a possible trace of the agent program.
Here the 3-valued semantics for LTL discussed in the previous section is par-
ticularly useful since it allows us to evaluate goals on finite prefixes of traces.
8 One could argue that layer one should also make sure that such maintenance goals

are not violated. However, trying to account for such general constraints on agent
behaviour in the rules in an ad hoc manner will often lead to less understandable
programs, which is why we argue for the separation of concerns provided by the
proposed RASA.



The fact that an achievement goal ♦φ does not have selective force, is reflected
by the fact that its truth value in the 3-valued LTL semantics will be “?” (the
“unknown” value).

The filtering of action options by means of verifying whether finite prefixes of
a trace of an agent program satisfy the goals of an agent changes the meaning of
that agent program. It does not change the fact that an agent can continue per-
forming actions infinitely. We next show how the semantics of an agent program
can be defined to capture the effects of the second layer of the RASA formally
in the context of GOAL. A prefix of a computation t is an initial finite sequence
of t or t itself. A prefix of length n of a computation t is denoted by t〈n〉 with
n ∈ N∪{∞}, where t〈∞〉 is defined as t. N is the set of natural numbers including
0, and ∞ is the first infinite ordinal. The lookahead horizon, i.e., the number of
execution steps that an agent can lookahead, is denoted by h. The idea is that
we take the set of possible execution traces RA that may be selected according
to the first layer, and filter out those traces that do not satisfy one or more of
the agent’s goals, when looking ahead h steps from some state on the trace.

We define a filter function σhA inductively on the set of traces RA and on
the time point i on such a trace. An agent will use its goals to restrict selection
of actions from the start, i.e. time 0, which explains why the base case of the
inductive definition starts at −1. The base case defines the starting point of
traces RA that need to be filtered. For technical reasons the filter function is
defined as two different components, and in addition to σ we define a function
ς. The idea is that the filter function σh(i) returns all (infinite) traces that do
not violate the goals of the agent on a finite prefix of length h starting from
state i, while the function ςh(i) returns all (finite) prefixes of traces that do not
violate the goals of an agent given a lookahead capability of h until the end of
that prefix but that do violate some goal in any possible next state.

Definition 9 (Goal Filter Functions σ and ς)
Let A be some agent with meaning RA and let h ∈ N be a horizon. Let t[i] be
the tail of trace t starting in the i-th state of t. Then the goal filter functions σhA
and ςhA are defined by simultaneous induction as follows:

σhA(−1) = RA,
σhA(i) = {t ∈ σhA(i− 1) | ∀χ ∈ Γ ti : [t[i]〈h〉 |=LTL χ] 6= ⊥}

ςhA(−1) = ∅,
ςhA(i) = ςhA(i− 1) ∪ {t〈i〉 | t ∈ σhA(i− 1),∃χ ∈ Γ ti : [t[i]〈h〉 |= χ] = ⊥}, for i ≥ 0

To avoid complicating the definition of the function ς it is defined slightly
too general and includes prefixes that do have continuations that satisfy all
of an agent’s goals. In order to eliminate these prefixes and keep only maximal
prefixes of traces that cannot be extended given the agent’s goals we additionally
introduce a function maxPrefix. Let t @ t′ denote that t is a strict prefix of t′

and T a set of (in)finite traces. Then t ∈ maxPrefix(T ) iff there is no t′ ∈ T
such that t @ t′. Using the definitions of the goal filter function(s), we can now



provide a simple definition of the semantics of traces induced by the second
layer in the action selection architecture. The meaning of an agent at this layer
is denoted by HA and defined as the maximal elements of the limit of the filter
functions.

Definition 10 (Semantics of GOAL Agent with Goals as Hard Constraints)
The meaning of a GOAL agent HA that applies hard constraints in addition to
its rule-based action selection is defined by:

HA = maxPrefix
( ∞⋂
i=−1

σhA(i) ∪
∞⋃

i=−1

ςhA(i)
)

It should be clear from the definition of the meaning of a GOAL agent that
the semantics introduced clearly distinguishes between the different layers of
RASA. Moreover, given the computational properties of LTL3 the semantics of
the second layer can be realized computationally if the initial prefixes of length
h of the traces induced by the first layer can be efficiently generated. In the
next section we introduce the third layer to complete our formal picture of the
informal RASA discussed in Section 2.

6 RASA Layer 3: Preferences as Soft Constraints

In the third layer of RASA an agent aims to select those traces that maximize
satisfaction of its preferences. Whereas the second layer eliminates any action
options that would lead to violation of a goal, the third layer only eliminates
action options if more preferred alternatives are available. An agent thus might
prefer to have 60 units of fuel minimally in its tank but in case there are no
actions enabled (as determined by the agent program) that would allow the
agent to satisfy this preference it would still select one of these actions; contrast
this with a maintenance goal which would prevent the agent from doing anything
at all in this case (in case there would not be an option to refuel). Similarly to
goals, preferences are expressed using LTL. For example, preferring to go first to
location A before going to location B can be expressed by ¬(¬at(A)Uat(B)) ∧
♦at(B). Since LTL formulas express properties of traces, this allows an agent
to express that it prefers one way of achieving a goal, i.e., one particular trace,
over another, if multiple courses of action for realizing the goal are available.
Such preferences are represented by a so-called preference structure. A preference
structure consists of a sequence of LTL formulas.

Definition 11 (Preference Structure)
A preference structure Ψ is a sequence (χ1, . . . , χn) of LTL formulas.

This preference structure expresses that traces on which some χi is satisfied are
preferred over traces on which χi is not satisfied, and the satisfaction of χi is
preferred over the satisfaction of χj for j > i. That is, if χ1 is satisfied on a
trace t but not on another trace t′, t is preferred over t′. If both t and t′ do not



satisfy χ1, but t satisfies χ2 and t′ does not, t is again preferred over t′, etc. This
interpretation of the preference structure thus induces a lexicographic ordering
on traces.

This ordering can formally be defined as follows. We use Ψt to denote the
sequence (b1, . . . , bn), where bi = [t |= χi] for 1 ≤ i ≤ n, i.e., bi ∈ {>,⊥, ?}; we
use Ψ it to denote bi. We now use the ordering ⊥ < ? < > to define a lexicographic
preference ordering on traces on the basis of a preferences structure. That is, if
for a χi of the preference structure we have [t |= χi] = >, this is better than
when [t |= χi] = ?, which is again better than when [t |= χi] = ⊥.

Definition 12 (Lexicographic Preference Ordering)
Let Ψ = (χ1, . . . , χn) be a preference structure and t, t′ ∈M∗ ∪Mω be finite or
infinite traces. Then we say that trace t is (lexicographically) preferred over t′

with respect to Ψ , written t ≺ψ t′, iff:

∃1 ≤ j ≤ n : ∀1 ≤ i < m : (lit = lit′ and ljt < ljt′)

We also write t 4ψ t
′ if t ≺ψ t′ or ψt = ψt′ .

The main advantage of using a lexicographic preference order ≺ψ is that such
a preference order on traces is a total preorder, which means that any two traces
are either equally good with respect to the preference order, or one is better
than the other. Other kinds of preference orderings such as those discussed in
[6] may be considered, but investigating this is left for future research.

As an example, given that the preference to go first to location A before
goint to B is ranked higher than the preference to keep a minimum fuel level
of 60, even if refuelling would be possible while going to B and not while going
to A, the agent would choose to first go to A using the lexicographic preference
ordering.

Our use of a lexicographic preference order is inspired by the work of [10, 15].
There are, however, many differences with [10, 15] and our approach. Instead of
integrating preferences into the situation calculus as in [10] we propose a uni-
form framework for goals and preferences that is integrated into a programming
framework for rational agents, and instead of compiling preferences into certain
programs we have taken a more direct approach by defining a layered action
selection architecture that is made precise by means of a formal semantics. Fi-
nally, we use three-valued LTL to evaluate goals and preferences on (prefixes of)
traces.

Preferences are progressed or updated through time, just like goals. The idea
is that a preference such as p ∧ ©q ∧ ♦r has been satisfied when now p holds,
in the next state q and possibly sometime thereafter r holds. Such a preference
cannot be satisfied anymore when p is not true currently, and to express this we
use the Progression operator of Section 3.2 to keep track of such facts. Since
preferences are progressed during execution of the agent, we extend mental states
of an agent with the agent’s preference structure.



Definition 13 (Mental State with Preferences)
Let m = 〈Σ,Γ 〉 be a mental state, and Ψ a preference structure. A mental state
with preferences then simply is the tuple 〈Σ,Γ, Ψ〉.

Definition 14 (Progression of Preference structure)
The progression of a preference structure Ψ = (χ1, . . . , χn) from a mental state
〈Σ,Γ, Ψ〉 to a new state 〈Σ′, Γ ′,Progress(Ψ,Σ′)〉 is simply defined as the pro-
gression of each of the individual preference in the structure, i.e.

Progress(Ψ,Σ′) = (Progress(χ1, Σ
′), . . . ,Progress(χn, Σ′))

The semantics of action execution of Definition 6 is changed accordingly as
follows, where m = 〈Σ,Γ, Ψ〉 and c = if ψ then a is an action:

m |= ψ M(a,m) = 〈Σ′, Γ ′〉

〈Σ,Γ, Ψ〉 c−→ 〈Σ′, Γ ′,Progress(Ψ,Σ′)〉

The main difference between goals and preferences in our approach is that
goals are used as hard constraints to guide action selection whereas preferences
are used as soft constraints. That is, an agent would like to satisfy all of its
preferences but if this is not possible it will simply choose to satisfy those that
are most preferred, if any can be satisfied at all. The preference order introduced
above can be used for this purpose. In the third layer of RASA those traces are
selected from the remaining ones (those that survived filtering by layer 2) that
are maximal elements in this order. As with the second layer, the third layer of
RASA modifies the meaning of an agent program. In order to specify the effects
of this layer on the semantics of agent programs, we introduce some notation
again. We use max (T,≺ψ) to denote the maximal elements of a set of traces T
under the lexicographic preference order ≺ψ, induced by the preference structure
Ψ . The preference filter function of layer 3 in our action selection architecture
can then be defined similarly to that of the goal filter function.

Definition 15 (Preference Filter Function ψ)
Let A be some agent using layer 2 goal filtering with meaning HA and let h ∈ N
be a horizon. Then the preference function ψhA is defined by induction as follows:

ψhA(−1) = HA,
ψhA(i) = {t | t〈i+h〉 ∈ max ({t[i]〈h〉 | t ∈ ψhA(i− 1)},≺ψ)}

Similar to Section 5, the semantics of an agent that uses all three layers of the
action selection architecture is defined as the limit of the preference filter function
over the traces obtained from layer 2. The definition is somewhat simpler since
an agent can always continue on a given trace since it only needs to select a
maximum continuation of its past action performance but does not have to stop
acting altogether due to a potential violation of a hard constraint. This is one
of the main differences between layer 2 and 3.



Definition 16 (Semantics of GOAL with Preferences)
The meaning of a GOAL agent PA that applies soft constraints with horizon h
in addition to the action selection mechanisms of layer 1 and 2 is defined by:

PA =
∞⋂

i=−1

ψhA(i)

Definition 16 completes the specification of each of the three layers of the
rational action selection architecture. The informal discussion of the architec-
ture in which we distinguished three layers of action selection is mirrored in
respectively Definitions 7, 10, and 16. The formal approach has shown that it
is feasible to define a transparent and rich RASA into an agent programming
language, that integrates beliefs, goals and preferences as tools for choosing the
right action. In particular, the approach offers a uniform framework based on
temporal logic to express goals and preferences.

7 Conclusion and Related Work

In this paper, we have proposed a layered rational action selection architecture
which specifies a rational action selection mechanism in which hard and soft
constraints are integrated. We have shown how the proposed architecture can
be formalized in the context of the GOAL agent programming language and
how it modifies the semantics of agent programs. In order to obtain a uniform
framework that naturally allows for the integration of hard and soft constraints
including such concepts as achievement goals, maintenance goals, as well as
(temporally extended) preferences, we have used linear temporal logic for the
representation of goals and preferences.

The way in which we use temporal logic is inspired by work in planning where
temporal logic is used to “guide” planners through the search space [1] and to
select preferred plans [10, 2, 15]. One of the differences is that the RASA is de-
fined for agent programming languages and, in contrast with planners that would
compare complete plans against the available constraints, these constraints are
taken into account continuously during execution of an agent program. Techni-
cally, this has resulted in the use of 3-valued LTL for the realization of RASA
in GOAL.

The practical realizability of our approach is partly facilitated by the use of
techniques, in particular the progression algorithm of [1] and the implementa-
tion of 3-valued LTL of [3], that have been shown to be implementable. The
investigation of restrictions of the LTL language for representing goals to make
checking of entailment of a goal from the goal base feasible, is left for future
research.
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