
Technical Report 0802
LMU Munich 2008

Service Specification and Matchmaking using
Description Logic?

An Approach Based on Institutions

M. Birna van Riemsdijk Rolf Hennicker Martin Wirsing
Andreas Schroeder

Ludwig-Maximilians-Universität München, Germany

Abstract. We propose a formal specification framework for functional
aspects of services. We define services as operations which are specified
by means of pre- and postconditions, for the specification of which we
use extensions of description logic. The (extensions of) description logic
and the specification framework itself are defined as institutions. This
gives the framework a uniformity of definition and a solid algebraic and
logical foundation. The framework can be used for the specification of
service requests and service providers. Given a signature morphism from
request to provider, we define when a service request is matched by a
service provider, which can be used in service discovery. We provide a
model-theoretic definition of matching and show that matching can be
characterized by a semantic entailment relation which is formulated over
a particular standard description logic. Thus proofs of matching can be
reduced to standard reasoning in description logic for which one can use
description logic reasoners.

1 Introduction

Service-oriented computing is emerging as a new paradigm based on autonomous,
platform-independent computational entities, called services, that can be de-
scribed, published, and dynamically discovered and assembled. An important
part of a service is its public interface, which describes the service and should
be independent of the technique used for implementing it. A service’s interface
can describe various aspects of the service, such as the service’s location and
communication protocols that can be used for interacting with the service.

In this paper, we confine ourselves to the investigation of those parts of a ser-
vice’s interface that describe the functionality offered to a service requester. Not
all service specification approaches support this (see, e.g., WSDL [4]). Services
that are endowed with such functional descriptions are often called semantic web
services [18]. Semantic web services facilitate more effective (semi-)automatic
service discovery and assembly, since the services’ functional descriptions can be

? This work has been sponsored by the project SENSORIA, IST-2005-016004, and by
the GLOWA-Danube project, 01LW0602A2.

taken into account. In particular, such descriptions can be used for matchmaking,
i.e., for finding a matching service provider for a particular service request.

Various techniques have been proposed for specifying semantic web services
(see, e.g., [18, 19, 17, 12, 8, 22]). What most approaches have in common is that
they suggest the use of logical knowledge representation languages for describing
both service providers and service requests. Also, most approaches ([8] is an
exception), including the approach we take in this paper, view semantic web
services as operations, i.e., they can be invoked with some input, perform some
computation and possibly return some output.

Where approaches for specifying semantic web services differ, is mostly the
kind of knowledge representation language proposed, and the level of formality.
In particular, in [12, 22], a formal service specification approach using first-order
logic is presented, and in [18, 19] the use of so-called semantic web markup lan-
guages for service specification is proposed, but no formal specification language
or semantics is defined. In this paper, we are interested in a formal approach to
service specification, based on semantic web markup languages.

Semantic web markup languages are languages for describing the meaning of
information on the web. The most widely used semantic web markup language
is the Web Ontology Language (OWL) [21]. OWL is a family of knowledge
representation languages that can be used for specifying and conceptualizing
domains, describing the classes and relations between concepts in these domains.
Such descriptions are generally called ontologies [9].

The formal underpinnings of the OWL language family are formed by descrip-
tion logics [1]. Description logics are formal ontology specification languages and
form decidable fragments of first-order logic. Research on description logics has
yielded sound and complete reasoners of increasing efficiency for various descrip-
tion logic variants (see [1] for more background). The fact that description logics
come with such reasoners is an important advantage of using description logic
for specifying services, since these reasoners can then be used for matchmaking.

In this paper, we propose a formal framework for specifying the functional-
ity of services. Services are viewed as operations and we specify them using a
particular description logic that corresponds to an expressive fragment of OWL,
called OWL DL. As it turns out, we need to define several extensions of this
description logic for its effective use in service specification. The formal tool
that we use for defining the description logic, its extensions, and also the service
specification framework itself, is institutions [7, 23]. The notion of an institution
abstractly defines a logical system, viewed from a model-theoretic perspective.
Institutions allow to define the description logics and the specification framework
in a uniform and well-structured way.

In addition to defining a service specification framework, we also provide
a model-theoretic definition of when a service request is matched by a service
provider specification, and show that matching can be characterized by a se-
mantic entailment relation which is formulated over our basic description logic.
Proofs of matching can thus be reduced to standard reasoning in description
logic, for which one can use description logic reasoners.

The organization of this paper is as follows. In Section 2, we define the
description logic upon which we base our service specification framework. We
informally describe the approach we take in this paper in some more detail in
Section 3. Then, in Section 4, we define the extensions of the description logic
of Section 2 that are needed for service specification, followed by the definition
of the service specification framework in Section 5. The definition and charac-
terization of matching are presented in Section 6, and we conclude the paper in
Section 7.

2 The Description Logic SHOIN +

In this section, we present the description logic SHOIN+, on which we base our
service specification framework. The logic SHOIN+ is based on SHOIN+(D)
[11]. SHOIN+(D) is the logic SHOIN (D), extended with a particular con-
struct that was needed in [11] to show that OWL DL ontology entailment can
be reduced to knowledge base satisfiability in SHOIN (D). That construct also
turns out to be useful for service specification. In this paper, we will omit
datatypes and corresponding sentences from SHOIN+(D) since it does not
affect the essence of the presented ideas and would only complicate the presen-
tation. This leaves us with the logic SHOIN+.

We will define SHOIN+ as an institution. Loosely speaking, an institution
is a tuple Inst = 〈SigInst ,SenInst ,Mod Inst , |=Inst,Σ〉, where SigInst is a category
of signatures, SenInst is a functor that yields for each signature from SigInst

a set of sentences, Mod Inst is a functor yielding a category of models for each
signature from SigInst , and |=Inst,Σ for each signature Σ ∈ |SigInst | is a satis-
faction relation specifying when a model of |Mod Inst(Σ)| satisfies a sentence
of SenInst(Σ). Moreover, for each signature morphism σ : Σ → Σ′, sentence
φ ∈ SenInst(Σ), and model M′ ∈ |Mod Inst(Σ′)|, the so-called satisfaction con-
dition should hold: M′ |=Inst,Σ′ σ(φ) ⇔ M′|σ |=Inst,Σ φ, where M′|σ is the
reduct of M′ with respect to σ. For details, we refer to [7, 23]. For all institu-
tions defined in this paper, the details, in particular model morphisms and the
proof of the satisfaction condition, are provided in the appendix.

We now define the institution SHOIN+ = 〈SigS+ ,SenS+ ,ModS+ ,
|=S+,Σ〉. The definition is similar to the way OWL DL, the semantic web markup
language corresponding to SHOIN (D), was defined as an institution in [15].
We illustrate our definitions using a running example of a service GA for mak-
ing garage appointments, which allows to make an appointment with a garage
within a given day interval. Such a service is part of the automotive case study
of the SENSORIA project1 on service-oriented computing.

The basic elements of SHOIN+ are concept names NC , role names NR, and
individual names Ni, which together form a SHOIN+ signature 〈NC , NR, Ni〉.
They are interpreted over a domain of elements called individuals. A concept
name is interpreted as a set of individuals, a role name as a set of pairs of
individuals, and an individual name as a single individual.
1 http://sensoria-ist.eu

Definition 1 (SHOIN+ signatures: SigS+) A SHOIN+ signature Σ is a
tuple 〈NC , NR, Ni〉, where NC is a set of concept names, NR = R∪R−, where R
is a set of (basic) role names and R− = {r− | r ∈ R}, is a set of role names, and
Ni is a set of individual names. The sets NC , NR, and Ni are pairwise disjoint.
A SHOIN+ signature morphism σS+ : Σ → Σ′ consists of a mapping of the
concept names of Σ to concept names of Σ′, and similarly for role names and
individual names.

A simplified signature ΣGA for our garage appointment service GA can be spec-
ified as follows: NC = {Appointment,Day,WDay,WEDay,Hour,String}, NR =
{after,before,hasDay,hasHour}, Ni = {1, 2, . . . , 24,mon, tue, . . . , sun}. The role
names “after” and “before” will be used to express that a particular (week or
weekend) day or hour comes before or after another day or hour, and “has-
Day” and “hasHour” will be used to express that an appointment is made for a
particular day and hour, respectively.

The main building blocks of SHOIN+ sentences are (composed) concepts,
which can be constructed using concept names, individual names, and role
names. For example, the concept C1 u C2 can be formed from the concepts
C1 and C2, and is interpreted as the intersection of the interpretations of C1

and C2. Similarly, C1 t C2 denotes the union of the interpretations of C1 and
C2. The concept ∃r.C denotes all the individuals that are related to an individ-
ual from concept C over the role r, and several other composed concepts can be
constructed.

Concepts, individual names, and role names are then used to construct sen-
tences. For example, C1 v C2 denotes that C1 is a subconcept of C2, and a : C
denotes that the individual represented by the individual name a belongs to
concept C. The construct that SHOIN is extended with to form SHOIN+ is
∃C, which means that the interpretation of concept C is not empty. Definition
2 only contains those concepts and sentences that are used in the example. For
a complete definition, we refer to Appendix A.

Definition 2 (SHOIN+ sentences: SenS+) Let Σ = 〈NC , NR, Ni〉 ∈ |SigS+ |
be a SHOIN+ signature, and let A ∈ NC , r ∈ NR, and a, a1, a2 ∈ Ni. The
sentences SenS+(Σ) are then the axioms φ as defined below.

C ::= A | > | ⊥ | ¬C | C1 u C2 | C1 t C2 | {a} | ∃r.C | ∀r.C
φ ::= C1 v C2 | r1 v r2 | a : C | r(a1, a2) | ∃C

A SHOIN+ model or interpretation I is a pair 〈∆I , ·I〉 where ∆I is a domain
of individuals, and ·I is an interpretation function interpreting concept names,
role names, and individual names over the domain.

Definition 3 (SHOIN+ models: ModS+) Let Σ = 〈NC , NR, Ni〉 ∈ |SigS+ |
be a SHOIN+ signature, where NR = R ∪ R− as specified in Definition 1.
A model (or interpretation) I for SHOIN+ is a pair (∆I , ·I) consisting of a
non-empty domain ∆I of individuals and an interpretation function ·I which
maps each concept name A ∈ NC to a subset AI ⊆ ∆I , each basic role name

r ∈ R to a binary relation rI ⊆ ∆I ×∆I , and each individual name a ∈ Ni to
an element aI ∈ ∆I . The interpretation of an inverse role r− ∈ R− is (r−)I =
{(y, x) | (x, y) ∈ rI}.

The SHOIN+ satisfaction relation is defined by first defining the interpreta-
tion of composed concepts, and then defining when an interpretation satisfies a
sentence.

Definition 4 (SHOIN+ satisfaction relation: |=S+,Σ) Let Σ ∈ |SigS+ | be a
SHOIN+ signature and let I = (∆I , ·I) ∈ |ModS+(Σ)| be a Σ-model. The
satisfaction relation |=S+,Σ is then defined as follows, and is lifted to sets of
sentences in the usual way.

>I = ∆I (C1 u C2)I = CI1 ∩ CI2
⊥I = ∅ (C1 t C2)I = CI1 ∪ CI2
(¬C)I = ∆I \ CI ∃r.CI = {x ∈ ∆I | ∃y : (x, y) ∈ rI and y ∈ CI}
{a}I = {aI} ∀r.CI = {x ∈ ∆I | ∀y : (x, y) ∈ rI ⇒ y ∈ CI}

I |=S+,Σ C1 v C2 ⇔ CI1 ⊆ CI2 I |=S+,Σ r(a1, a2)⇔ (aI1 , a
I
2) ∈ rI

I |=S+,Σ a : C ⇔ aI ∈ CI I |=S+,Σ ∃C ⇔ ∃x : x ∈ CI

A set of description logic sentences can be used to specify relationships between
concepts, and properties of individuals. Such a set of sentences is often called an
ontology. We define an ontology formally as a so-called SHOIN+ presentation.
Presentations over an arbitrary institution are defined as follows [23]. If Inst =
〈SigInst ,SenInst ,Mod Inst , |=Inst,Σ〉 is an institution where Σ ∈ |SigInst |, then
the pair 〈Σ,Φ〉 where Φ ⊆ SenInst(Σ) is called a presentation. A model of a
presentation 〈Σ,Φ〉 is a model M ∈ |Mod Inst(Σ)| such that M |=Inst,Σ Φ. Then
ModInst(〈Σ,Φ〉) ⊆ |Mod Inst(Σ)| is the class of all models of 〈Σ,Φ〉.

Definition 5 (SHOIN+ ontology) A SHOIN+ ontology is a presentation
〈Σ,Ω〉, where Σ ∈ |SigS+ | and Ω ⊆ SenS+(Σ). Its semantics is the class of
Σ-models satisfying the axioms in Ω, i.e., ModS+(〈Σ,Ω〉).

Part of the ontology ΩGA for our garage appointment service GA can be spec-
ified as follows, where the SHOIN+ signature is ΣGA as defined above (we
refer to Appendix E for the complete definition of the running example). The
concept “∃hasDay.Day” consists of all individuals that are related to some indi-
vidual of the concept “Day” over the role “hasDay”. The axiom “∃hasDay.Day v
Appointment” specifies that these individuals should belong to the concept “Ap-
pointment”, i.e., only appointments can have a day associated to them. Here and
in the following we use C ≡ C ′ as a shorthand notation for C v C ′, C ′ v C
where C and C ′ are concepts.

{ ∃hasDay.Day v Appointment,∃hasHour.Hour v Appointment,∃¬Appointment,
WDay tWEDay ≡ Day,mon : WDay, . . . , fri : WDay, sat : WEDay,
sun : WEDay, 1 : Hour, . . . , 24 : Hour, after(mon,mon), after(mon, tue), . . . ,
after(1, 1), after(1, 2), after(2, 2), after(1, 3), after(2, 3) . . . ,
before(mon,mon),before(tue,mon), . . .}

3 Overview of the Approach

The description logic SHOIN+ as defined in the previous section forms the basis
for the specification of services in our framework. In this section, we present the
general idea of how we propose to use SHOIN+ for the specification of services.

As in, e.g., [18, 19, 17, 12, 22], we see services as operations with input and
output parameters that may change the state of the service provider if the service
is called. In order to define the semantics of services, we thus need to represent
which state changes occur if the service is called with a given input, and which
output is returned. A semantic domain in which these aspects are conveniently
represented are so-called labeled transition systems with output (LTSO), which
are also used as a semantic domain for the interpretation of operations in [10, 3].

An LTSO consists, roughly speaking, of a set of states and a set of transitions
between these states, labeled by the name of the operation (which is a service
in our case) by which the transition is made, and the actual input and output
parameters. In our setting, the states are SHOIN+ interpretations. That is, we
represent a service provider state as a SHOIN+ interpretation, and interpret
services as operating on these states. The actual inputs and outputs of services
are interpretations of variables (treated here as individuals).

It is important to note that using SHOIN+ for service specification does
not mean that the service provider needs to be implemented using SHOIN+.
Techniques for implementing services and for describing the relation of its im-
plementation with its specification are, however, outside the scope of this paper.

In our framework, states are thus SHOIN+ interpretations. The general idea
is then that the pre- and postconditions of a service are specified in SHOIN+.
However, in order to be able to express pre- and postconditions properly, we
do not use SHOIN+ as it is, but define several extensions. That is, in the
precondition one often wants to specify properties of the input of the service,
and in the postcondition properties of the input and output of the service. For
this, it should be possible to refer to the variables forming the formal input and
output parameters of the service. However, SHOIN+ does not facilitate the use
of variables. For this reason, we use an extension of SHOIN+ with variables,
called SHOIN+

Var , where variables refer to individuals.
Moreover, in the postcondition one typically wants to specify how the state

may change, i.e., to specify properties of a transition. Hence, we need to be able
to refer to the source and target states of a transition. For this purpose, we
define an extension of SHOIN+

Var called SHOIN+bi
Var which allows both the

use of variables and reference to the source and target states of a transition.
All necessary extensions of SHOIN+ are defined as institutions, and we

define their semantics through a reduction to SHOIN+. This reduction allows
us to use description logic reasoners for computing matches between a service
request and service provider, which will be explained in more detail in Section
6. Although the extensions can be reduced to SHOIN+, we use the extensions
rather than (an encoding in) SHOIN+ to let our approach be closer to the
formalisms of [10, 3], and to our intuitive understanding of the semantics of
services.

4 Extensions of SHOIN +

In this section, we present the extensions of SHOIN+ that we use for the
specification of pre- and postconditions of services later on. We do not provide
the complete definitions. Details can be found in Appendix B.

The first extension is SHOIN+
Var , which extends SHOIN+ with variables.

A SHOIN+
Var signature is a pair 〈Σ,X〉 where Σ is a SHOIN+ signature and

X is a set of variables. Sentences of SHOIN+
Var are then defined in terms of

SHOIN+ sentences, by adding X to the individuals of Σ, which is a SHOIN+

signature denoted by ΣX .
Models of a SHOIN+

Var signature 〈Σ,X〉 are pairs (I, ρ), where I is a Σ-
interpretation, and ρ : X → ∆I is a valuation assigning individuals to the
variables. The semantics of SHOIN+

Var sentences is then defined in terms of
the semantics of SHOIN+ sentences by constructing a SHOIN+ interpreta-
tion Iρ from (I, ρ), in which variables are treated as individual names that are
interpreted corresponding to ρ. A similar construction, in which variables are
treated as part of the signature, can be found in the institution-independent
generalization of quantification [5].

The second extension is SHOIN+bi
Var , which is an extension of SHOIN+

Var

and allows both variables and references to source and target states of a transi-
tion. The SHOIN+bi

Var signatures are the SHOIN+
Var signatures, but sentences

of a signature 〈Σ,X〉 are defined in terms of the sentences of SHOIN+ by
adding for each concept name A of Σ a concept name A@pre, and similarly for
role names.

Models are triples (I1, I2, ρ), where I1 and I2 are SHOIN+ interpretations
and ρ is a valuation. We require that the domains and the interpretations of
individual names are the same in I1 and I2, i.e., individual names are constants.
These restrictions are also typical for temporal description logics [16]. The idea
of the semantics is then that a concept name A@pre in a SHOIN+bi

Var sentence
refers to A in I1, and a concept name A refers to A in I2, and similarly for
role names. On this basis we define the satisfaction relation by a reduction to
SHOIN+.

Definition 6 (SHOIN+bi
Var institution) The institution SHOIN+bi

Var =
〈SigS+bi

Var
,SenS+bi

Var
,ModS+bi

Var
, |=S+bi

Var ,Σ
〉 is defined as follows:

– The SHOIN+bi
Var signatures are the SHOIN+

Var signatures, 〈Σ,X〉, i.e.,
SigS+bi

Var
= SigS+

Var
.

– Let 〈Σ,X〉 be a SHOIN+bi
Var signature. The SHOIN+bi

Var sentences are then
defined as SenS+bi

Var
(〈Σ,X〉) , Sen+

S (Σbi
X) where Σbi

X is a SHOIN+ signature
extending ΣX (see above) by concepts names A@pre for all concept names
A in Σ and by role names r@pre for all role names r in Σ.

– A SHOIN+bi
Var model is a triple (I1, I2, ρ) where I1, I2 ∈ |ModS+(Σ)|, I1 =

(∆I1 , ·I1), I2 = (∆I2 , ·I2), ∆I1 = ∆I2 , and aI1 = aI2 for all a ∈ Ni, and
ρ : X → ∆ is a valuation where ∆ , ∆I1(= ∆I2).

– For each SHOIN+bi
Var signature 〈Σ,X〉 ∈ |SigS+bi

Var
|, the satisfaction relation

|=S+bi
Var ,〈Σ,X〉

is defined as follows by means of a reduction to |=S+,Σbi
X

. Let

(I1, I2, ρ) ∈ ModS+bi
Var

(〈Σ,X〉) and let
f
Iρ∈ ModS+(Σbi

X) be defined as follows:

∆
f
Iρ = ∆I1(= ∆I2), ·

f
Iρ = ·(I2)ρ for concept names A, role names r, and

individual names a of Σ, and ·
f
Iρ = ·(I1)ρ for concept names A@pre and

role names r@pre, where (I1)ρ and (I2)ρ are the extension of I1 and I2,
respectively, to variables as defined above.

We now define (I1, I2, ρ) |=S+bi
Var ,〈Σ,X〉

φ ,
f
Iρ |=S+,Σbi

X
φ for φ ∈

SenS+bi
Var

(〈Σ,X〉) and thus by definition also φ ∈ SenS+(Σbi
X).

5 Service Specification using Description Logic

Having defined suitable extensions of SHOIN+, we continue to define our ser-
vice specification framework. The definitions are inspired by approaches for the
formal specification of operations in the area of object-oriented specification [10,
3], although these approaches are not based on institutions.

In the context of semantic web services specified using description logics,
services are generally assumed to operate within the context of an ontology
(see, e.g., [8]). The ontology defines the domain in which the services operate by
defining the relevant concepts and relations between them. Moreover, a service
provider will often provide multiple services, which all operate in the context of
the same ontology. We call a bundling of services together with an ontology a
service package. We define a service as an operation that has a name and that
may have input and output variables as follows.

Definition 7 (service) A service serv = servName([Xin]) : [Xout] consists of
a service name servName, and sequences of input and output variables [Xin]
and [Xout], respectively, such that all x in [Xin] and [Xout] are distinct. We use
var in(serv) and varout(serv) to denote the sets of input and output variables of
serv , respectively.

A garage appointment service can be represented by
makeAppointment(name, from, to) : app. This service takes a name of a client
and two days in between which the appointment should be made, and returns
the appointment that it has made.

Now, we formally define service packages as an institution, for which we need
the following general preliminaries [23]. Let Inst = 〈SigInst ,SenInst ,Mod Inst ,
|=Inst,Σ〉 be an institution where Σ ∈ |SigInst |. For any classM⊆ |Mod Inst(Σ)|
of Σ-models, the theory of M, ThΣ(M), is the set of all Σ-sentences satisfied
by all Σ-models in M, i.e., ThΣ(M) = {φ ∈ SenInst(Σ) | M |=Inst,Σ φ}. The
closure of a set Φ of Σ-sentences is the set ClΣ(Φ) = ThΣ(ModInst(Φ)). A
theory morphism σ : 〈Σ,Φ〉 → 〈Σ′, Φ′〉 is a signature morphism σ : Σ → Σ′

such that σ(φ) ∈ Φ′ for each φ ∈ Φ.

A service package signature ΣSP is a pair (〈Σ,Ω〉,Servs) where 〈Σ,Ω〉 is a
SHOIN+ ontology and Servs is a set of services. An SP signature morphism
σSP from an SP signature ΣSP to SP signature Σ′SP then defines that there is
a theory morphism from the ontology sentences of ΣSP to those of Σ′SP .

The sentences of an SP institution are used to specify the services and are of
the form 〈serv , pre, post〉. Here, serv is the service that is being specified, and pre
and post are the pre- and postconditions of the service, respectively. We now use
the extensions of SHOIN+ as defined in Section 4 for the definition of pre and
post. That is, the precondition is specified by means of SHOIN+

Var sentences,
where the variables that may be used are the variables of the input of serv . The
postcondition is specified by means of SHOIN+bi

Var sentences, which means that
the postcondition can refer to the source and target states of a transition, and
the variables that may be used are the variables of the input and output of serv .

The models of service packages are non-deterministic total labeled transition
systems with output (see also Section 3). A transition system in our framework
is a pair T = (Q, δ). Q is the set of states, which are in our case SHOIN+

interpretations that satisfy the ontology of the service specification, i.e., the
ontology is treated as an invariant that the specified service always fulfills. The
set δ is the transitions between states. Each transition t ∈ δ has a source and
a target state from Q. Furthermore, t is labeled with the service through which
the transition is made, together with a valuation of the input variables of the
service, expressing which are the actual input parameters of the service call.
Any transition t is equipped with a valuation of the output variables, expressing
which are the actual output parameters of the service call. Loosely speaking,
a transition system T = (Q, δ) satisfies a sentence 〈serv , pre, post〉, if for all
transitions from an interpretation I ∈ Q to some I ′ ∈ Q through service serv ,
if pre holds in I, then the transition to I ′ satisfies post.

Definition 8 (service package (SP) institution) The institution SP = 〈SigSP ,
SenSP ,ModSP , |=SP,(〈Σ,Ω〉,Servs)〉 is defined as follows:

– An SP signature is a pair (〈Σ,Ω〉,Servs) where 〈Σ,Ω〉 is a SHOIN+ on-
tology (see Definition 5), and Servs is a set of services. An SP signature
morphism σSP : (〈Σ,Ω〉,Servs) → (〈Σ′, Ω′〉,Servs ′) consists of a theory
morphism σΩ : 〈Σ,ClΣ(Ω)〉 → 〈Σ′,ClΣ′(Ω′)〉, and a mapping of each ser-
vice serv ∈ Servs to a service serv ′ ∈ Servs ′, such that for each mapping
from serv to serv ′ it holds that serv and serv ′ have the same number of
input variables and the same number of output variables.

– An SP sentence is a triple 〈serv , pre, post〉, where serv is a service, and
pre ⊆ SenS+

Var
(〈Σ,Xin〉), post ⊆ SenSHOIN+bi

Var
(〈Σ,Xin,out〉), where here and

in the following Xin = var in(serv), Xout = varout(serv), and Xin,out =
var in(serv) ∪ varout(serv).

– An SP model for this signature is a non-deterministic total labeled transition
system with outputs T = (Q, δ), where Q ⊆ ModS+(〈Σ,Ω〉) is a set of
states and δ is a set of transitions between states, defined as follows. Let
Label = {(serv , ρin) | serv ∈ Servs, ρin : var in(serv) → ∆}, where ∆ =

⋃
{∆I | I ∈ Q} and let Output be the set of valuations ρout : X → ∆ where

X is an arbitrary set of variables. Then δ ⊆ Q× Label × (Q×Output) such
that for all (I, (serv , ρin), (I ′, ρout)) ∈ δ we have ρin : var in(serv)→ ∆I and
ρout : varout(serv)→ ∆I

′
, and T is total, i.e., for all I ∈ Q it holds that for

all l ∈ Label there is an I ′, ρout such that (I, (serv , ρin), (I ′, ρout)) ∈ δ.
The reduct T ′|σSP where T ′ = (Q′, δ′) is (Q′|σOnt , δ

′|σSP), where Q′|σOnt =
{I ′|σOnt

| I ′ ∈ Q′}, and δ′|σSP
are all transitions

(I1|σOnt
, (serv , ρin |σ

S+
Var

), I2|σOnt
, ρout |σ

S+
Var

) such that there is a transition

(I1, (σSP (serv), ρin), I2, ρout) ∈ δ′.
– Let ΣSP = (〈Σ,Ω〉,Servs) be an SP signature, and let T = (Q, δ) ∈

ModSP ((〈Σ,Ω〉,Servs)). We define T |=SP,ΣSP
〈serv , pre, post〉 iff for all I ∈

Q and for all ρin : Xin → ∆I , if (I, ρin) |=S+
Var ,〈Σ,Xin〉 pre the following holds:

for all (I, (serv , ρin), I ′, ρout) ∈ δ it holds that (I, I ′, ρin,out) |=S+bi
Var ,〈Σ,Xin,out〉

post. We use ρin,out to denote the merging of the two valuations ρin and ρout

to one valuation in the obvious way.

We now define a service package specification as an SP presentation, i.e., it
consists of an SP signature and a set of SP sentences, and its semantics is the
class of all its models.

Definition 9 (service package specification) A service package specification is a
presentation 〈ΣSP , ΨSP 〉 where ΣSP ∈ |SigSP | and ΨSP ⊆ SenSP (ΣSP) such that
for each serv ∈ Servs where ΣSP = 〈Ont ,Servs〉 there is exactly one sentence
of the form 〈serv , pre, post〉 in ΨSP . Its semantics is the class of ΣSP -models
satisfying the axioms in ΨSP , i.e., ModSP (〈ΣSP , ΨSP 〉).

A service package specification where the only service is the service
makeAppointment considered above, then consists of the signature ΣGA and
ontology ΩGA as defined in Section 2, and the following specification ΨGA

SP for the
garage appointment service. We use “String name” instead of only the variable
“name” as input, which is an abbreviation for adding “name: String” to the
precondition, and similarly for the other inputs and for the output (in which
case it abbreviates part of the postcondition).

The specification says that the only appointment made through calling the
service is the appointment app which is returned, the (week)day on which the
appointment should take place is in between from and to which have been passed
as parameters, and the time of day of the appointment is between 8 and 16.

makeAppointment(String name,WDay from,WDay to) : Appointment app
pre after(to, from)
post Appointment u ¬(Appointment@pre) ≡ {app},

app : ∃hasClientName.{name},
app : ∃hasDay.(∃after.{from}), app : ∃hasDay.(∃before.{to}),
app : ∃hasHour.(∃after.{8}), app : ∃hasHour.(∃before.{16})

6 Matching Service Requests and Service Providers

Service package specifications can be used for specifying service providers. These
service provider specifications can then be used by service requesters to deter-
mine whether a particular service provider matches their request, which can also
be formulated as a service package specification. In this section, we make this
matching precise by providing a model-theoretic definition of when a service re-
quest specification is matched by a service provider specification. Moreover, we
provide a characterization of matching by semantic entailment over SHOIN+,
which can be proven using standard description logic reasoners.

Our definition of matching is based on the idea that the service provider
should be a refinement of the service request. That is, the service request specifies
the behavior that the service provider is allowed to exhibit, and the specified
behavior of the service provider should be within these boundaries. The idea is
thus to define matching model-theoretically as inclusion of the model class of
the provider specification in the model class of the request specification.

However, we cannot define this model class inclusion directly in this way,
since we want to allow the request and the provider to be specified over different
signatures. This is naturally facilitated through the use of institutions, by defin-
ing matching on the basis of a signature morphism from request to provider.
In the semantic web community, techniques are being developed for aligning
different ontologies [6], which could be applied in our setting for obtaining a
signature morphism. Given a signature morphism from request to provider spec-
ification, we define matching as the inclusion of the reduct of the model class of
the provider specification in the model class of the request specification.

Definition 10 (matching) Let 〈ΣR
SP , Ψ

R
SP 〉 and 〈ΣP

SP , Ψ
P
SP 〉 be service package

specifications of request and provider, respectively, where σSP : ΣR
SP → ΣP

SP is
an SP signature morphism. Then, the request is matched by the provider under
σSP iff

ModSP (〈ΣP
SP , Ψ

P
SP 〉)|σSP

⊆ModSP (〈ΣR
SP , Ψ

R
SP 〉).

Now that we have defined matching model-theoretically, our aim is to be able
to prove matching by proving particular logical relations between the ontologies
and pre- and postconditions of the provider and request specifications.

The general idea is that for a particular service specification, the precondition
of the provider should be weaker than the precondition of the request if the
specification matches, since it should be possible to call the service at least in
those cases required by the request. For the postcondition it is the other way
around. The provider should at least guarantee what the request requires, i.e.,
the postcondition of the provider should be stronger than that of the request.
These conditions are frequently used in the context of behavioral subtyping in
object-oriented specification [13]. Moreover, we may assume that the provider
ontology holds, because it is the provider’s service which is actually executed.
Also, in order to prove entailment of the request postcondition by the provider
postcondition, we can assume additionally that the request precondition holds.

Intuitively, this is allowed since we can assume that the requester will guarantee
that he satisfies his precondition, if he calls the service. These considerations
lead to the following theorem.

Theorem 1 (characterization of matching by semantic entailment) Let
〈ΣR

SP , Ψ
R
SP 〉 and 〈ΣP

SP , Ψ
P
SP 〉 be service package specifications of request and

provider, respectively, where 〈ΣP
SP , Ψ

P
SP 〉 is consistent, i.e.,

ModSP (〈ΣP
SP , Ψ

P
SP 〉) 6= ∅, and where σSP : ΣR

SP → ΣP
SP is an SP signature

morphism. Then, the request is matched by the provider under σSP according
to Definition 10, if the following holds.

Let ΣR
SP = (〈ΣR, ΩR〉,ServsR) and ΣP

SP = (〈ΣP , ΩP 〉,ServsP). Then for all
〈servR, preR, postR〉 ∈ ΨRSP two conditions hold for 〈servP , preP ,
postP 〉 ∈ ΨPSP , where servP = σSP (servR), σS+ : ΣR → ΣP ,Xin = var in(servP)
and Xin,out = var in(servP) ∪ varout(servP):2

1. σS+(preR) ∪ΩP |=S+,ΣPXin

preP

2. σS+(preR)@pre ∪ΩP@pre ∪ postP ∪ΩP |=S+,ΣP bi
Xin,out

σS+(postR)

The sentences ΩP@pre are obtained from ΩP by adding @pre to all concept
names and role names, and similarly for σS+(preR)@pre.

The proof can be found in Appendix D. Note that we do not use the request
ontology ΩR in this characterization since it is the provider’s service which is ac-
tually executed. However, as mentioned above, ΩR is plays a key role in proving
a match, since a theory morphism from ΩR to the provider ontology ΩP is re-
quired for a signature morphism from request to provider. This theory morphism
can be proven by showing that ΩP |=S+,Σ σS+(ΩR), where Σ is the SHOIN+

signature of ΩP . Also, we require that the provider specification is consistent,
since otherwise it would match with any request specification according to Defi-
nition 10, but the relation between invariants and pre- and postconditions might
be such that no match can be derived according to Theorem 1.

It is also important to note that, while the pre- and postconditions are speci-
fied over the signatures SHOIN+

Var and SHOIN+bi
Var , respectively, we interpret

them here as SHOIN+ sentences over the signatures ΣP
Xin

and ΣP bi
Xin,out

, respec-
tively. This is possible since the sentences and semantics of SHOIN+

Var and
SHOIN+bi

Var have been defined by a reduction to SHOIN+ over the respective
SHOIN+ signatures. SHOIN+(D) entailment can further be reduced to sat-
isfiability in SHOIN (D) [11], for which a sound and complete reasoner with
acceptable to very good performance exists [20].

To illustrate matching, we take the garage appointment service package spec-
ification of Section 5 as a service provider specification. We define a service
request specification CA, representing a car requesting a garage appointment,
as follows. The signature ΣCA is defined by NC = {Termin,Tag,Zeichenkette},
NR = {nach, vor,hatTag}, Ni = {1, 2, . . . , 24,montag,dienstag, . . . , sonntag}.
2 We use σS+(Ω) as a shorthand notation for SenS+(σS+)(Ω).

These are the notions also occurring in ΣCA in German. Part of the sentences of
the ontology, ΩCA, are the following:

{ ∃hatTag.Tag v Termin,montag : Tag,dienstag : Tag, . . . , sonntag : Tag,
nach(montag,montag), after(montag,dienstag), . . . ,
nach(1, 1),nach(1, 2),nach(2, 2),nach(1, 3),nach(2, 3) . . . ,
vor(montag,montag), vor(dienstag,montag), . . .}

The requester is looking for a service terminV ereinbaren(name, von, bis) : ter,
specified as follows:

terminVereinbaren(Zeichenkette name,Tag von,Tag bis) : Termin ter
pre nach(dienstag, von),nach(bis,dienstag)
post hatTag(ter ,dienstag)

In order to determine whether the service request CA is matched by the service
provider GA, we need to define a signature morphism σ : ΣCA

SP → ΣGA
SP . Using

an appropriate signature morphism from the German notions of ΣCA to the
corresponding English ones of ΣGA,3 it can be shown that the request is matched
by the service provider (see Appendix E). The request specifies a service that
makes an appointment on Tuesday if from and to are set to Tuesday, but it does
not matter at what time.

7 Related Work and Concluding Remarks

Regarding related work, we mention that in [2], an approach to service specifi-
cation using description logic is presented that is also based on a specification
of pre- and postconditions using description logic. That paper, however, consid-
ers services for which the input parameters have already been instantiated by
individual names, it does not consider output of services, and it requires strong
restrictions on the kind of description logic formulas used in pre- and postcondi-
tions. Moreover, it does not provide a (model-theoretic) definition of matching
with accompanying characterization. Rather, it investigates several reasoning
tasks that are indispensable subtasks of matching, and focuses on solving the
frame problem in this context.

In this paper, we have proposed a formal specification framework for specify-
ing the functionality of services using description logic, based on institutions. We
have defined extensions of description logic and the service specification frame-
work itself as institutions. Using this framework, we have provided a model-
theoretic definition of when a service request specification is matched by a ser-
vice provider specification, allowing the request and provider specification to be
defined over different signatures. We have shown that matching can be charac-
terized by a semantic entailment relation which is formulated over a particu-
lar standard description logic. Therefore, proofs of matching can be reduced to

3 And using the complete ontologies.

standard reasoning in description logic for which one can use efficient, sound and
complete description logic reasoners.

In future work, we would like to investigate adding a more abstract layer for
facilitating service discovery, where not all details with respect to input and out-
put of the service are specified. Such more abstract specifications could be used
in the first phase of a two-phase approach to service discovery (see also [22]),
and the approach presented in this paper would be used in the second phase.
Another topic for future research is investigating an institution-independent gen-
eralization of this approach, which allows the service specification framework to
be based on arbitrary institutions, rather than on description logic. Also, the
integration of our approach with specifications of dynamic interaction protocols
of services can be investigated.

Moreover, more extensive experimentation with the framework will have to
show what kind of services are effectively specifiable using description logic.
In particular, we aim to relate our approach to the well-known OWL-S [17]
ontology for service specification, which is defined in the OWL language. As in
this work, OWL-S views services as operations and proposes the use of pre- and
postconditions for their specification. However, OWL-S does not specify how
and in what language to define pre- and postconditions, it does not come with
a model-theoretic interpretation of service specifications, and matching is not
formally defined and characterized.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider.
The description logic handbook: Theory, implementation, and applications. Cam-
bridge University Press, 2003.

2. F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. A description logic
based approach to reasoning about web services. In Proceedings of the WWW
2005 Workshop on Web Service Semantics (WSS2005), 2005.

3. M. Bidoit, R. Hennicker, A. Knapp, and H. Baumeister. Glass-box and black-box
views on object-oriented specifications. In Proceedings of the 2nd International
Conference on Software Engineering and Formal Methods (SEFM’04), pages 208–
217, 2004.

4. R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web services descrip-
tion language (WSDL) version 2.0 part 1: Core language, W3C recommendation
26 June 2007, 2007. http://www.w3.org/TR/wsdl20/.

5. R. Diaconescu. Herbrand theorems in arbitrary institutions. Information Process-
ing Letters, 90:29–37, 2004.

6. J. Euzenat and P. Shvaiko. Ontology Matching. Springer, Berlin, 2007.

7. J. Goguen and R. Burstall. Institutions: Abstract model theory for specification
and programming. Journ. of the ACM, 39(1), 1992.

8. S. Grimm, B. Motik, and C. Preist. Matching semantic service descriptions with
local closed-world reasoning. In Proceedings of The Semantic Web: Research and
Applications, 3rd European Semantic Web Conference (ESWC’06), pages 575–589,
2006.

9. T. R. Gruber. Towards principles for the design of ontologies used for knowl-
edge sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual
Analysis and Knowledge Representation, Deventer, The Netherlands, 1993. Kluwer
Academic Publishers.

10. R. Hennicker, A. Knapp, and H. Baumeister. Semantics of OCL operation specifi-
cations. Electronic Notes in Theoretical Computer Science, Workshop OCL 2.0:In-
dustry Standard or Scientific Playground, 102:111–132, 2004.

11. I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description
logic satisfiability. Journal of Web Semantics, 1(4):345–357, 2004.

12. U. Keller, H. Lausen, and M. Stollberg. On the semantics of functional descrip-
tions of web services. In The Semantic Web: Research and Applications, 3rd Euro-
pean Semantic Web Conference (ESWC’06), volume 4011 of LNCS, pages 605–619.
Springer, 2006.

13. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, 1994.

14. D. Lucanu, Y. F. Li, and J. S. Dong. Web Ontology Verification and Analysis in
the Z Framework. Technical Report TR 05-01, University “Alexandru Ioan Cuza”
of Iaşi, Romania, 2005. http://thor.info.uaic.ro/~tr/tr05-01.ps.

15. D. Lucanu, Y. F. Li, and J. S. Dong. Semantic web languages – towards an insti-
tutional perspective. In K. F. et al., editor, Algebra, Meaning and Computation,
Festschrift in Honor of Prof. Joseph Goguen, volume 4060 of LNCS, pages 99–123.
Springer-Verlag, 2006.

16. C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A survey.
In Proceedings of the Fifteenth International Symposium on Temporal Representa-
tion and Reasoning. IEEE Computer Society Press, 2008.

17. D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness,
B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara. Bringing
semantics to web services: The OWL-S approach. In Proceedings of the First
International Workshop on Semantic Web Services and Web Process Composition
(SWSWPC 2004), volume 3387 of LNCS, pages 26–42, San Diego, California, USA,
2005. Springer, Berlin.

18. S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

19. M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic matching
of web services capabilities. In Proceedings of the First International Semantic
Web Conference on The Semantic Web (ISWC’02), volume 2342 of LNCS, pages
333–347. Springer-Verlag, 2002.

20. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

21. M. K. Smith, C. Welty, and D. L. McGuinness. OWL web ontology language
guide: W3c recommendation 10 february 2004, 2004. http://www.w3.org/TR/

owl-guide/.
22. M. Stollberg, U. Keller, H. Lausen, and S. Heymans. Two-phase web service dis-

covery based on rich functional descriptions. In The Semantic Web: Research and
Applications, 4th European Semantic Web Conference (ESWC’07), volume 4519
of LNCS, pages 99–113. Springer, 2007.

23. A. Tarlecki. Institutions: An abstract framework for formal specifications. In
E. Astesiano, H.-J. Kreowski, and B. Krieg-Brueckner, editors, Algebraic Foun-
dations of Systems Specification, pages 105–130. Springer-Verlag New York, Inc.,
1999.

A The Description Logic SHOIN +

Definition 11 (SHOIN+ institution) The institution SHOIN+ =
〈SigS+ ,SenS+ ,ModS+ , |=S+,Σ〉 is defined as follows:

– SigS+ is the category of SHOIN+ signatures.
• A SHOIN+ signature Σ is a tuple 〈NC , NR, Ni〉, where NC with typical

element A is a set of concept names, NR = R ∪R−, where R is a set of
(basic) role names and R− = {r− | r ∈ R}, is a set of role names with
typical element r, and Ni with typical element a is a set of individual
names. The sets NC , NR, and Ni are pairwise disjoint.

• Let Σ = 〈NC , NR, Ni〉 and Σ′ = 〈N ′C , N ′R, N ′i〉 be SHOIN+ signatures.
A SHOIN+ signature morphism σS+ : Σ → Σ′ consists of a mapping
of the concept names of NC to concept names of N ′C , a mapping of the
role names of NR to role names of N ′R, and a mapping of the individual
names of Ni to individual names of N ′i .

– The functor SenS+ : SigS+ → Set maps
• each SHOIN+ signature Σ = 〈NC , NR, Ni〉 to the set of SHOIN+

sentences, as specified in Definition 12.
• each SHOIN+ signature morphism σS+ : Σ → Σ′ to the obvious

translation function SenS+(σS+) which transforms Σ-sentences to Σ′-
sentences.

– The functor ModS+ : (SigS+)op → Cat maps
• each SHOIN+ signatureΣ = 〈NC , NR, Ni〉 to the category of SHOIN+

models as specified in Definition 13, and Σ-homomorphisms for each
Σ ∈ |SigS+ |.

• each SHOIN+ signature morphism σS+ : Σ → Σ′ to the reduct functor
ModS+(σS+) : ModS+(Σ′)→ ModS+(Σ), as specified in Definition 13.

– For each SHOIN+ signature Σ ∈ |SigS+ |, the satisfaction relation |=S+,Σ

⊆ ModS+(Σ)× SenS+(Σ) is as specified in Definition 14.

This definition of SHOIN+ as an institution is similar to the way OWL DL,
the semantic web markup language corresponding to SHOIN (D), was defined
as an institution in [14, 15]. The proof of the satisfaction condition can be found
in [14].

Definition 12 (SHOIN+ sentences) Let Σ = 〈NC , NR, Ni〉 ∈ |SigS+ | be a
SHOIN+ signature, and let A ∈ NC , r ∈ NR, and a, a1, a2 ∈ Ni. The sentences
SenS+(Σ) are then the axioms φ as defined below.

C ::= A | > | ⊥ | ¬C | C1 u C2 | C1 t C2 | {a} | ∃r.C | ∀r.C | ≥ n r | ≤ n r
φ ::= C1 v C2 | r1 v r2 | a : C | r(a1, a2) | ∃C | Trans(r) | a1 = a2 | a1 6= a2

Definition 13 (SHOIN+ models) Let Σ = 〈NC , NR, Ni〉 ∈ |SigS+ | be a
SHOIN+ signature, where NR = R∪R− as specified in Definition 11. A model
or interpretation I for SHOIN+ consists of a non-empty domain ∆I of individ-
uals and an interpretation function ·I which maps each concept name A ∈ NC

to a subset AI ⊆ ∆I of the domain, each basic role name r ∈ R to a binary
relation rI ⊆ ∆I ×∆I on the domain, and each individual name a ∈ Ni to an
element aI ∈ ∆I . The interpretation of an inverse role r− ∈ R− is defined as
follows: (r−)I = {(y, x) | (x, y) ∈ rI}.

The σ-reduct ModS+(σS+) : ModS+(Σ′)→ ModS+(Σ) for SHOIN+ signa-
ture morphism σS+ : Σ → Σ′ is denoted by −|σS+ and defined as follows. Let
I ′ = (∆I

′
, ·I′) ∈ |ModS+(Σ′)| be a Σ′-model. The reduct of I ′ is defined in two

steps. The reduct of ∆I
′
, denoted by ∆I

′ |σS+ , is defined as ∆I
′
. The reduct of

·I′ , denoted by ·I′ |σS+ , is defined as follows, where A ∈ NC , r ∈ NR, and a ∈ Ni.

A
I′|σS+ = σ(A)I

′

r
I′|σS+ = σ(r)I

′

a
I′|σS+ = σ(a)I

′

Definition 14 (SHOIN+ satisfaction relation) Let Σ ∈ |SigS+ | be a
SHOIN+ signature and let I = (∆I , ·I) ∈ |ModS+(Σ)| be a Σ-model. The
satisfaction relation |=S+,Σ is defined by first lifting the interpretation function
·I to composed concepts as follows.

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI
(C1 u C2)I = CI1 ∩ CI2
(C1 t C2)I = CI1 ∪ CI2
{a}I = {aI}
∃r.CI = {x ∈ ∆I | ∃y : (x, y) ∈ rI and y ∈ CI}
∀r.CI = {x ∈ ∆I | ∀y : (x, y) ∈ rI ⇒ y ∈ CI}
≥ n rI = {x ∈ ∆I |]({y ∈ ∆I | (x, y) ∈ rI}) ≥ n}
≤ n rI = {x ∈ ∆I |]({y ∈ ∆I | (x, y) ∈ rI}) ≤ n}

We can now define the satisfaction of an axiom by an interpretation I.

I |=S+,Σ C1 v C2 ⇔ CI1 ⊆ CI2
I |=S+,Σ a : C ⇔ aI ∈ CI
I |=S+,Σ r(a1, a2) ⇔ (aI1 , a

I
2) ∈ rI

I |=S+,Σ ∃C ⇔ ∃i : i ∈ CI
I |=S+,Σ Trans(r)⇔ rI is transitive
I |=S+,Σ a1 = a2 ⇔ aI1 = aI2
I |=S+,Σ a1 6= a2 ⇔ aI1 6= aI2

The satisfaction relation |=S+,Σ is lifted to sets of axioms in the usual way.

Definition 15 (SHOIN+ ontology) We define a SHOIN+ ontology as a
presentation 〈Σ,Ω〉, where Σ ∈ |SigS+ | and Ω ⊆ SenS+(Σ). Its semantics is the
class of Σ-models satisfying the axioms in Ω, i.e., ModS+(〈Σ,Ω〉).

B Extensions of SHOIN +

Definition 16 (SHOIN+
Var institution) The institution SHOIN+

Var =
〈SigS+

Var
,SenS+

Var
,ModS+

Var
, |=S+

Var ,ΣX
〉 is defined as follows:

– SigS+
Var

is the category of SHOIN+
Var signatures.

• A SHOIN+
Var signature is a pair 〈Σ,X〉 where Σ = 〈NC , NR, Ni〉 ∈

|SigS+ | and X is a set of variables such that X ∩Ni = ∅.
• Let 〈Σ,X〉 and 〈Σ′, X ′〉 be SHOIN+

Var signatures. A SHOIN+
Var sig-

nature morphism σS+
Var

: 〈Σ,X〉 → 〈Σ′, X ′〉 consists of the signature
morphism σS+ : Σ → Σ′, and a mapping of the variables of X to vari-
ables of X ′.

– The functor SenS+
Var

: SigS+
Var
→ Set maps

• each SHOIN+
Var signature 〈Σ,X〉 to the set of SHOIN+

Var sentences
as follows. Let Σ = 〈NC , NR, Ni〉 and let ΣX = 〈NC , NR, Ni ∪X〉. We
now define SenS+

Var
(〈Σ,X〉) , SenS+(ΣX).

• each SHOIN+
Var signature morphism σS+

Var
: 〈Σ,X〉 → 〈Σ′, X ′〉 to the

obvious translation function SenS+
Var

(σS+
Var

) which transforms 〈Σ,X〉-
sentences to 〈Σ′, X ′〉-sentences.

– The functor ModS+
Var

: (SigS+
Var

)op → Cat maps
• each SHOIN+

Var signature 〈Σ,X〉 to the category of SHOIN+
Var mod-

els. A SHOIN+
Var model is a pair (I, ρ) where I = (∆I , ·I)

∈ |ModS+(Σ)| and ρ : X → ∆I is a valuation, and the morphisms
are the 〈Σ,X〉-homomorphisms for each 〈Σ,X〉 ∈ |SigS+

Var
|.

• each SHOIN+
Var signature morphism σS+

Var
: 〈Σ,X〉 → 〈Σ′, X ′〉 to the

reduct functor ModS+
Var

(σS+
Var

) : ModS+
Var

(〈Σ′, X ′〉) → ModS+
Var

(〈Σ,X〉).
The reduct (I ′, ρ′)|σ

S+
Var

consists of I ′|σS+ and ρ′|σ
S+

Var

, where

ρ′|σ
S+

Var

(x) = ρ′(σS+
Var

(x)) with x ∈ X.

– For each SHOIN+
Var signature 〈Σ,X〉 ∈ |SigS+

Var
|, the satisfaction relation

|=S+
Var ,〈Σ,X〉

⊆ ModS+
Var

(〈Σ,X〉) × SenS+
Var

(〈Σ,X〉) is defined as follows by
means of a reduction to |=S+,ΣX . Let (I, ρ) ∈ ModS+

Var
(〈Σ,X〉) and let Iρ ∈

ModS+(ΣX) where ∆Iρ , ∆I , and ·Iρ , ·I for concept names, role names,
and individual names of Σ, and ·Iρ(x) , ρ(x) for x ∈ X.
We now define (I, ρ) |=S+

Var ,〈Σ,X〉
φ , Iρ |=S+,ΣX φ for φ ∈ SenS+

Var
(〈Σ,X〉)

and thus by definition also φ ∈ SenS+(ΣX).

Proposition 1 (satisfaction condition of SHOIN+
Var) The satisfaction con-

dition of SHOIN+
Var holds.

Proof: The satisfaction condition holds, since SHOIN+
Var signatures and mod-

els can be reduced to SHOIN+ signatures and models, where SHOIN+
Var sen-

tences over the SHOIN+
Var signature are interpreted as SHOIN+ sentences

over the corresponding SHOIN+ signature.

To be more specific, let 〈Σ,X〉 and 〈Σ′, X ′〉 be SHOIN+
Var sig-

natures with σS+
Var

: 〈Σ,X〉 → 〈Σ′, X ′〉 a signature morphism, let
φ ∈ SenS+

Var
(〈Σ,X〉), and let (I ′, ρ′) ∈ |ModS+

Var
(〈Σ′, X ′〉)|. Then, we

have (I ′, ρ′) |=S+
Var ,〈Σ′,X′〉

σ(φ) ⇔ (I ′, ρ′)|σ
S+

Var

|=S+
Var ,〈Σ,X〉

φ iff

I ′ρ′ |=S+,Σ′
X′
σ(φ)⇔ I ′ρ′ |σS+ |=S+,ΣX φ, by Definition 16. 2

Definition 17 (SHOIN+bi
Var institution) The institution SHOIN+bi

Var =
〈SigS+bi

Var
,SenS+bi

Var
,ModS+bi

Var
, |=S+bi

Var ,Σ
〉 is defined as follows:

– The SHOIN+bi
Var signatures are the SHOIN+

Var signatures, i.e., SigS+bi
Var

=
SigS+

Var
, with corresponding morphisms.

– The functor SenS+bi
Var

: SigS+bi
Var
→ Set maps

• each SHOIN+bi
Var signature 〈Σ,X〉 to the set of SHOIN+bi

Var sentences as
follows. Let Σ = 〈NC , NR, Ni〉 and let Σbi = 〈NC ∪Nbi

C , NR ∪Nbi
R , Ni〉

where Nbi
C = {A@pre | A ∈ NC} and Nbi

R = {r@pre | r ∈ NR}. We
define SenS+bi

Var
(〈Σ,X〉) , SenS+

Var
(〈Σbi , X〉) = SenS+(Σbi

X).

• each SHOIN+bi
Var signature morphism σS+bi

Var
: 〈Σ,X〉 → 〈Σ′, X ′〉 to the

obvious translation function SenS+bi
Var

(σS+bi
Var

).
– The functor ModSHOIN+bi

Var
: (SigSHOIN+bi

Var
)op → Cat maps

• each SHOIN+bi
Var signature 〈Σ,X〉 to the category of SHOIN+bi

Var mod-
els. A SHOIN+bi

Var model is a triple (I1, I2, ρ) where I1, I2 ∈ |ModS+(Σ)|,
I1 = (∆I1 , ·I1), I2 = (∆I2 , ·I2),∆I1 = ∆I2 , and aI1 = aI2 for all a ∈ Ni,
and ρ : X → ∆ is a valuation where ∆ , ∆I1(= ∆I2). The morphisms
are the 〈Σ,X〉-homomorphisms for each 〈Σ,X〉 ∈ |SigS+bi

Var
|.

• each SHOIN+bi
Var signature morphism σS+bi

Var
: 〈Σ,X〉 → 〈Σ′, X ′〉 to the

reduct functor ModS+bi
Var

(σS+bi
Var

) : ModS+bi
Var

(〈Σ′, X ′〉) → ModS+bi
Var

(〈Σ,X〉).
The reduct (I ′1, I ′2, ρ′)|σS+bi

Var

consists of I ′1|σS+ , I ′2|σS+ , and ρ′|σ
S+

Var

.

– For each SHOIN+bi
Var signature 〈Σ,X〉 ∈ |SigS+bi

Var
|, the satisfaction relation

|=S+bi
Var ,〈Σ,X〉

⊆ ModS+bi
Var

(〈Σ,X〉) × SenS+bi
Var

(〈Σ,X〉) is defined as follows by
means of a reduction to |=S+,Σbi

X
.

Let (I1, I2, ρ) ∈ ModS+bi
Var

(〈Σ,X〉) and let
f
Iρ∈ ModS+(Σbi

X) be defined as

follows: ∆
f
Iρ = ∆I1(= ∆I2), ·

f
Iρ = ·(I2)ρ for concept names A, role names

r, and individual names a of Σ, and ·
f
Iρ = ·(I1)ρ for concept names A@pre

and role names r@pre, where (I1)ρ and (I2)ρ are the extension of I1 and I2,
respectively, to variables as defined above.

We now define (I1, I2, ρ) |=S+bi
Var ,〈Σ,X〉

φ ,
f
Iρ |=S+,Σbi

X
φ for φ ∈

SenS+bi
Var

(〈Σ,X〉) and thus by definition also φ ∈ SenS+(Σbi
X).

Proposition 2 (satisfaction condition of SHOIN+bi
Var) The satisfaction con-

dition of SHOIN+bi
Var holds.

Proof: The proof is by a reduction to SHOIN+, similar to the proof of Propo-
sition 1. 2

C Service Specification using Description Logic

Definition 18 (service) A service serv = servName([Xin]) : [Xout] consists
of a service name servName, and sequences of input and output variables [Xin]
and [Xout], respectively, such that all x in [Xin] and [Xout] are distinct. We use
var in(serv) and varout(serv) to denote the sets of input and output variables of
serv , respectively.

Definition 19 (service package (SP) institution) The institution SP = 〈SigSP ,
SenSP ,ModSP , |=SP,(〈Σ,Ω〉,Servs)〉 is defined as follows:

– SigSP is the category of SP signatures.
• An SP signature is a pair (〈Σ,Ω〉,Servs) where 〈Σ,Ω〉 is a SHOIN+

ontology (see Definition 15), and Servs is a set of services.
• Let (〈Σ,Ω〉,Servs) and (〈Σ′, Ω′〉,Servs ′) be SP signatures. An SP sig-

nature morphism σSP : (〈Σ,Ω〉,Servs)→ (〈Σ′, Ω′〉,Servs ′) consists of a
theory morphism σOnt : 〈Σ,ClΣ(Ω)〉 → 〈Σ′,ClΣ′(Ω′)〉, and a mapping
of each service serv ∈ Servs to a service serv ′ ∈ Servs ′, such that for each
mapping from serv to serv ′ it holds that serv and serv ′ have the same
number of input variables and the same number of output variables.

– The functor SenSP : SigSP → Set maps
• each SP signature (〈Σ,Ω〉,Servs) to the set of SP sentences as follows.

An SP sentence is a triple 〈serv , pre, post〉, where serv is a service, and

pre ⊆ SenS+
Var

(〈Σ,Xin〉),
post ⊆ SenSHOIN+bi

Var
(〈Σ,Xin,out〉),

where here and in the following Xin = var in(serv), Xout = varout(serv),
and Xin,out = var in(serv) ∪ varout(serv).

• each SP signature morphism σSP : (〈Σ,Ω〉,Servs) → (〈Σ′, Ω′〉,Servs ′)
to the obvious translation function SenSP (σSP).

– The functor ModSP : (SigSP)op → Cat maps
• each SP signature (〈Σ,Ω〉,Servs) to the category of SP models. An SP

model for this signature is a non-deterministic total labeled transition
system with outputs T = (Q, δ), where Q ⊆ModS+(〈Σ,Ω〉) is a set of
states and δ is a set of transitions between states, defined as follows. Let
Label = {(serv , ρin) | serv ∈ Servs, ρin : Xin → ∆}, where ∆ =

⋃
{∆I |

I ∈ Q} and let Output be the set of valuations ρout : X → ∆ where X
is an arbitrary set of variables. Then δ ⊆ Q×Label × (Q×Output) such
that for all (I, (serv , ρin), (I ′, ρout)) ∈ δ we have ρin : Xin → ∆I and
ρout : Xout → ∆I

′
, and T is total, i.e., for all I ∈ Q it holds that for all

l ∈ Label there is an I ′, ρout such that (I, l, (I ′, ρout)) ∈ δ.

A morphism T → T ′, where T = (QT , δT) and T ′ = (QT ′ , δT ′), consists
of a function f : QT → QT ′ such that if f(I) = I ′ then there is a Σ-
morphism I → I ′, and a mapping of each (I1, (serv , ρin), (I2, ρout)) ∈
δT to a transition (f(I1), (serv , g(ρin)), (f(I2), g(ρout))) ∈ δT ′ where
g(ρin) : X → ∆f(I1) (with ρin : X → ∆I1) is a valuation such that
g(ρin)(x) = d(a) if ρin(x) = a, where d : ∆I1 → ∆f(I1) is the domain
mapping function of the Σ-morphism I1 → f(I1), and similarly for ρout .
• each SP signature morphism σSP : (〈Σ,Ω〉,Servs) → (〈Σ′, Ω′〉,Servs ′)

to the reduct functor ModSP (σSP) : ModSP ((〈Σ′, Ω′〉,Servs ′)) →
ModSP ((〈Σ,Ω〉,Servs)). The reduct T ′|σSP

where T ′ = (Q′, δ′) is
(Q′|σOnt

, δ′|σSP
), where Q′|σOnt

= {I ′|σOnt
| I ′ ∈ Q′}, and δ′|σSP

are all
transitions (I1|σOnt , (serv , ρin |σ

S+
Var

), I2|σOnt , ρout |σ
S+

Var

) such that

(I1, (σSP (serv), ρin), I2, ρout) ∈ δ′. Note thatQ′|σOnt
⊆ModS+(〈Σ,Ω〉),

since σOnt is a theory morphism (see above).
– For each SP signature (〈Σ,Ω〉,Servs), the satisfaction relation
|=SP,(〈Σ,Ω〉,Servs) ⊆ ModSP ((〈Σ,Ω〉,Servs))× SenSP ((〈Σ,Ω〉,Servs)) is de-
fined as follows. Let ΣSP = (〈Σ,Ω〉,Servs) be an SP signature, and let
T = (Q, δ) ∈ ModSP ((〈Σ,Ω〉,Servs)). We define T |=SP,ΣSP

〈serv , pre, post〉
iff for all I ∈ Q and for all ρin : Xin → ∆I , if (I, ρin) |=S+

Var ,〈Σ,Xin〉 pre then
for all (I, (serv , ρin), I ′, ρout) ∈ δ it holds that (I, I ′, ρin,out) |=S+bi

Var ,〈Σ,Xin,out〉
post. We use ρin,out to denote the merging of the two valuations ρin and ρout

to one valuation in the obvious way.

Proposition 3 (satisfaction condition of SP) The satisfaction condition of SP
holds.

Proof: Let (〈Σ,Ω〉,Servs) and (〈Σ′, Ω′〉,Servs ′) be SP signatures with σSP :
(〈Σ,Ω〉,Servs)→ (〈Σ′, Ω′〉,Servs ′) a signature morphism, let 〈serv , pre, post〉 ∈
SenSP ((〈Σ,Ω〉,Servs)), and let T ′ = (Q′, δ′) ∈ |ModSP ((〈Σ′, Ω′〉,Servs ′))| and
T ′|σSP

= (Q, δ). Let Xin = var in(serv), Xout = varout(serv), and Xin,out =
var in(serv) ∪ varout(serv) To prove:

T ′|σSP
|=SP,(〈Σ,Ω〉,Servs) 〈serv , pre, post〉 ⇔

T ′ |=SP,(〈Σ′,Ω′〉,Servs′) σOnt(〈serv , pre, post〉)

(⇐) Assume T ′ |=SP,(〈Σ′,Ω′〉,Servs′) σOnt(〈serv , pre, post〉) (∗). Let
I ′1 ∈ Q′, let ρ′in : X ′in → ∆I

′
1 , and let (I ′1, ρ′in) |=S+

Var ,〈Σ′,X′in〉
σS+

Var
(pre). Then, by Definition 19 and (∗), we have for all

(I ′1, (serv , ρ′in), I ′2, ρ′out) ∈ δ′: (I ′1, I ′2, ρ′in,out) |=S+bi
Var ,〈Σ′,X′in,out〉

σS+bi
Var

(post).
We have (I ′1, ρ′in)|σ

S+
Var

|=S+
Var ,〈Σ,Xin〉 pre, using the satisfaction condition of

SHOIN+
Var . Then to prove: for all (I ′1|σS+ , (serv , ρ′in |σS+

Var

), I2, ρout) ∈ δ it

holds that (I ′1|σS+ , I2, ρ′in,out |σS+
Var

) |=S+bi
Var ,〈Σ,Xin,out〉 post, where ρ′in,out |σS+

Var

is

the merging of ρ′in |σS+
Var

and ρout in the obvious way.

Let I2 ∈ Q and ρout ∈ Output such that (I ′1|σS+ , (serv , ρ′in |σS+
Var

), I2, ρout) ∈
δ. Then there are I ′2 ∈ Q′ and ρ′out ∈ Output such that (I ′1, (serv , ρ′in), I ′2, ρ′out) ∈
δ′ with I2 = I ′2|σS+ and ρout = ρ′out |σS+

Var

, by Definition 19 (reduct).

We have (I ′1, I ′2, ρ′in,out) |=S+bi
Var ,〈Σ′,X′in,out〉

σS+bi
Var

(post), since the precondition

holds in I ′1. By the satisfaction condition of SHOIN+bi
Var , we then have

(I ′1|σS+ , I2, ρ′in,out |σS+
Var

) |=S+bi
Var ,〈Σ,Xin,out〉 post.

(⇒) Assume T ′|σSP
|=SP,(〈Σ,Ω〉,Servs) 〈serv , pre, post〉 (∗). Let I1 ∈ Q, let

ρin : Xin → ∆I1 , and let (I1, ρin) |=S+
Var ,〈Σ,Xin〉 pre. Then, by Definition 19 and

(∗), we have for all (I1, (serv , ρin), I2, ρout) ∈ δ: (I1, I2, ρin,out) |=S+bi
Var ,〈Σ,Xin,out〉

post. Let I1 = I ′1|σS+ and ρin = ρ′in |σS+
Var

. We have (I ′1, ρ′in) |=S+
Var ,〈Σ′,X′in〉

σS+bi
Var

(pre), using the satisfaction condition of SHOIN+
Var . Then to prove: for

all (I ′1, (serv , ρ′in), I ′2, ρ′out) ∈ δ′ it holds that (I ′1, I ′2, ρ′in,out) |=S+bi
Var ,〈Σ′,X′in,out〉

σS+bi
Var

(post), where ρ′in,out is the merging of ρ′in |σS+
Var

and ρout in the obvious
way.

Let (I ′1, (serv , ρ′in), I ′2, ρ′out) ∈ δ′. Then there are I2 ∈ Q and ρout ∈ Output
such that (I1, (serv , ρin), I2, ρout) ∈ δ with I2 = I ′2|σS+ and ρout = ρ′out |σS+

Var

,

by Definition 19 (reduct). We have (I1, I2, ρin,out) |=S+bi
Var ,〈Σ,Xin,out〉 post, since

the precondition holds in I1. By the satisfaction condition of SHOIN+bi
Var , we

then have (I ′1, I ′2, ρ′in,out) |=S+bi
Var ,〈Σ′,X′in,out〉

σS+bi
Var

(post). 2

Definition 20 (service package specification) A service package specification
is a presentation 〈ΣSP , ΨSP 〉 where ΣSP ∈ |SigSP | and ΨSP ⊆ SenSP (ΣSP)
such that for each serv ∈ Servs where ΣSP = 〈Ont ,Servs〉 there is exactly
one sentence of the form 〈serv , pre, post〉 in ΨSP . Its semantics is the class of
ΣSP -models satisfying the axioms in ΨSP , i.e., ModSP (〈ΣSP , ΨSP 〉).

D Matching Service Requests and Service Providers

Definition 21 (matching) Let 〈ΣR
SP , Ψ

R
SP 〉 and 〈ΣP

SP , Ψ
P
SP 〉 be service package

specifications of request and provider, respectively, where σSP : ΣR
SP → ΣP

SP is
an SP signature morphism. Then, the request is matched by the provider under
σSP iff

ModSP (〈ΣP
SP , Ψ

P
SP 〉)|σSP

⊆ModSP (〈ΣR
SP , Ψ

R
SP 〉).

Theorem 2 (characterization of matching by semantic entailment) Let
〈ΣR

SP , Ψ
R
SP 〉 and 〈ΣP

SP , Ψ
P
SP 〉 be service package specifications of request and

provider, respectively, where 〈ΣP
SP , Ψ

P
SP 〉 is consistent, i.e.,

ModSP (〈ΣP
SP , Ψ

P
SP 〉) 6= ∅, and where σSP : ΣR

SP → ΣP
SP is an SP signature

morphism. Then, the request is matched by the provider under σSP according
to Definition 21, if the following holds.

Let ΣR
SP = (〈ΣR, ΩR〉,ServsR) and ΣP

SP = (〈ΣP , ΩP 〉,ServsP). Then for all
〈servR, preR, postR〉 ∈ ΨRSP two conditions hold for 〈servP , preP , postP 〉 ∈ ΨPSP ,

where servP = σSP (servR), σS+ : ΣR → ΣP , Xin = var in(servP) and Xin,out =
var in(servP) ∪ varout(servP):4

1. σS+(preR) ∪ΩP |=S+,ΣPXin

preP

2. σS+(preR)@pre ∪ΩP@pre ∪ postP ∪ΩP |=S+,ΣP bi
Xin,out

σS+(postR)

The sentences ΩP@pre are obtained from ΩP by adding @pre to all concept
names and role names, and similarly for σS+(preR)@pre.

Proof: Let 〈ΣR
SP , Ψ

R
SP 〉 and 〈ΣP

SP , Ψ
P
SP 〉 be service package specifications

of request and provider, respectively, where 〈ΣP
SP , Ψ

P
SP 〉 is consistent, i.e.,

ModSP (〈ΣP
SP , Ψ

P
SP 〉) 6= ∅, and where ΣR

SP = (〈ΣR, ΩR〉,ServsR) and
ΣP

SP = (〈ΣP , ΩP 〉,ServsP). For simplicity, we assume that ΨRSP =
{〈servR, preR, postR〉} and ΨPSP = {〈servP , preP , postP 〉} and that servR =
servP , denoted by serv , with σSP : servR → servP . The proof can eas-
ily be extended to the general case. Let Xin = var in(servP) and Xin,out =
var in(servP) ∪ varout(servP).

Assume that the two conditions of the characterization of Theorem 2 hold
for 〈serv , preR, postR〉 and 〈serv , preP , postP 〉. Then we have to show that
ModSP (〈ΣP

SP , Ψ
P
SP 〉)|σSP

⊆ModSP (〈ΣR
SP , Ψ

R
SP 〉).

Let T = 〈Q, δ〉 ∈ ModSP (〈ΣP
SP , Ψ

P
SP 〉). We have that T |=SP,ΣPSP

〈serv , preP , postP 〉, and must show that T |σSP
|=SP,ΣRSP

〈serv , preR, postR〉. That
is, we have to show that for all I ∈ Q|σOnt and for all ρin : Xin → ∆I such that
(I, ρin) |=S+

Var ,〈ΣR,Xin〉 preR the following holds:

for all (I, (serv , ρin), I ′, ρout) ∈ δ|σSP

it holds that (I, I ′, ρin,out) |=S+bi
Var ,〈ΣR,Xin,out〉 postR. (1)

Let I ∈ Q|σOnt and let ρin : Xin → ∆I be a valuation such that
(I, ρin) |=S+

Var ,〈ΣR,Xin〉 preR. We then have that there is a Iu ∈ Q such
that Iu|σOnt

= I, and since SHOIN+
Var is an institution we get that

(Iu, ρin) |=S+
Var ,〈ΣP ,Xin〉 σS+

Var
(preR). By Definition 16 we get that Iuρin

|=S+,ΣRXin

σS+
Var

(preR) (i). Since Iu ∈ Q = ModS+(〈ΣP , ΩP 〉) it holds that Iu |=S+
Var ,Σ

P

ΩP . By construction of Iuρin
(which leaves the interpretation of concept names,

role names, and individual names of Σ unchanged when constructing Iuρin

from Iu), we then have Iuρin
|=S+,ΣPXin

ΩP 5. Because of (i), we then have

Iuρin
|=S+,ΣPXin

σS+
Var

(preR) ∪ ΩP . Because we have σS+
Var

(preR) ∪ ΩP |=S+,ΣPXin

preP by assuming that the two conditions of the characterization of Theorem 2
hold, we have Iuρin

|=S+,ΣXin
preP , and therefore (Iu, ρin) |=S+

Var ,〈ΣP ,Xin〉 preP .

4 We use σS+(Ω) as a shorthand notation for SenS+(σS+)(Ω).
5 Note that since SenS+(ΣP) ⊆ SenS+

Var
(〈ΣP , Xin〉), and since ΩP ⊆ SenS+(ΣP), we

also have ΩP ⊆ SenS+
Var

(〈ΣP , Xin〉).

Now, we can prove (1). Let I ′, ρout be such that (I, (serv , ρin), I ′, ρout) ∈
δ|σSP . Then, by the definition of δ|σSP , there must be I ′u such that I ′u|σOnt =
I ′. Since T ∈ ModSP (〈ΣP

SP , Ψ
P
SP 〉), i.e. T is a model of P , it holds that

(Iu, I ′u, ρ) |=S+bi
Var ,〈ΣP ,Xin,out〉 postP , where ρ = ρin,out . Therefore,

f
Iuρ |=S+,ΣP bi

Xin,out

postP by Definition 17. We also have
f
Iuρ |=S+,ΣP bi

Xin,out

σS+
Var

(preR)@pre by (i), and
f
Iuρ |=S+,ΣP bi

Xin,out

ΩP ∪ΩP@pre since Iu, I ′u ∈ Q.

By assuming that the two conditions of the characterization of Theo-
rem 2 hold, we have σS+

Var
(preR)@pre ∪ postP ∪ ΩP ∪ ΩP@pre |=S+,ΣP bi

Xin,out

σS+
Var

(postR). Therefore, we have
f
Iuρ |=S+,ΣP bi

Xin,out

σS+bi
Var

(postR), and thus

(Iu, I ′u, ρ) |=S+bi
Var ,〈ΣP ,Xin,out〉 σS+

Var
(postR). Using the fact that SHOIN+bi

Var is an
institution finally yields that (Iu|σOnt

, I ′u|σOnt
, ρ) |=S+bi

Var ,〈ΣR,Xin,out〉 postR. This
concludes the proof of (1), and with that also of (⇐).

2

E Example: Garage Appointment Service

We model an appointment making service for car garages, GA. The appointment
service allows to make an appointment with a garage within a given day interval,
and returns an appointment. To specify the service package 〈ΣGA

SP , Ψ
GA
SP 〉, we need

to provide the ontology 〈ΣGA, ΩGA〉, the set of services, ServsGA, and the service
specifications ΩGA

SP .
ΣGA is defined as follows:NC = {Appointment,WDay,WEDay,Day,Hour,String},
Nr = {after, before,hasDay,hasHour}, Ni = {1, 2, . . . , 24,mon, tue, . . . , sun}.
The ontology ΩGA is:

{ ∃hasDay.Day v Appointment,≥ 2 hasDay v ⊥,≤ 0 hasDay v ⊥,
∃hasHour.Hour v Appointment,≥ 2 hasHour v ⊥,≤ 0 hasHour v ⊥,
∃¬Appointment,WDay tWEDay ≡ Day,
monday : Date, . . . , sunday : Date, 1 : Hour, . . . , 24 : Hour,
after(mon,mon), after(mon, tue), . . . ,
after(1, 1), after(1, 2), after(2, 2), after(1, 3), after(2, 3) . . . ,
before(mon,mon),before(tue,mon), . . .}

The services offered, ServsGA are {makeAppointment(name, from, to) : app}.
The service specifications ΨGA

SP are:

makeAppointment(String name,WDay from,WDay to) : Appointment app
pre after(from, to)
post Appointment u ¬(Appointment@pre) ≡ {app},

app : ∃hasDay.(∃after.{from}), app : ∃hasDay.(∃before.{to}),
app : ∃hasHour.(∃after.{8}), app : ∃hasHour.(∃before.{16})

For the service requester CA, a car requesting a garage appointment, we must
specify the same entities: the ontology 〈ΣCA, ΩCA〉, the set of requested ser-
vices, ServsCA, and the service specifications ΩCA

SP . ΣCA is defined by NC =
{Termin,Tag,Zeichenkette}, Nr = {nach, vor,hatTag},
Ni = {1, 2, . . . , 24,montag,dienstag, . . . , sonntag, t1, t2, . . .}. ΩCA is:

{ ∃hatTag.Tag v Termin,≥ 2 hatTag v ⊥,≤ 0 hatTag v ⊥,
montag : Tag,dienstag : Tag, . . . , sonntag : Tag,
nach(montag,montag), after(montag,dienstag), . . . ,
nach(1, 1),nach(1, 2),nach(2, 2),nach(1, 3),nach(2, 3) . . . ,
vor(montag,montag), vor(dienstag,montag), . . .}

The services required, ServsCA are {terminV ereinbaren(name, von, bis) : ter}.
The service specifications ΨCA

SP are:

terminVereinbaren(Zeichenkette name,Tag von,Tag bis) : Termin ter
pre nach(dienstag, von),nach(bis,dienstag)
post hatTag(ter ,dienstag)

In order to determine whether the service request CA is matched by the service
provider GA, we need to define a signature morphism σ : ΣCA

SP → ΣGA
SP . This is ob-

tained by mapping the German notions of ΣCA to the corresponding English ones
of ΣGA, i.e., Termin,Tag,Zeichenkette are mapped to Appointment,Day,String,
respectively, nach,vor,hatTag are mapped to after,before,hasDay, respectively,
and montag,dienstag,. . .,sonntag are mapped to mon,tue,. . .,sun, respectively,
and terminVereinbaren is mapped to makeAppointment. The request thus spec-
ifies a service that makes an appointment on Tuesday if from and to are set to
Tuesday, but it does not matter at what time.

σ yields a theory morphism from ΩCA to ΩGA, since the sentences of the car
ontology, translated with the signature morphism σ, are a subset of the sentences
of the garage ontology.

To prove that a matching between ΣCA
SP and ΣGA

SP exists, it must be shown
that

{after(tue, from), after(to, tue)} ∪ΩGA

|=S+,ΣGA
Xin

{after(from, to), from : WDay, to : WDay}

By the definition of the role “after” and since tue : WDay, it is easy to see that
can be proved. Considering the postconditions, it must be shown that

{after@pre(tuesday, from), after@pre(to, tuesday)}∪
{Appointment u ¬(Appointment@pre) ≡ {app},
app : ∃hasDay.(∃after.{from}), app : ∃hasDay.(∃before.{to}),
app : ∃hasHour.(∃after.{8}), app : ∃hasHour.(∃before.{16})}
ΩGA@pre ∪ΩGA

|=S+,ΣGA bi
Xin ,out

{hasDay(app, tuesday)}

Removing the irrelevant sentences and keeping ΩGA@pre, ΩGA in mind, we must
prove that

{after@pre(tuesday, from), after@pre(to, tuesday),
app : ∃hasDay.(∃after.{from}), app : ∃hasDay.(∃before.{to}),
|=S+,ΣGA bi

Xin ,out
{hasDay(app, tuesday)}

Since {app : ∃hasDay.(∃after.{from}), app : ∃hasDay.(∃before.{to}),
≥ 2 hasDay v ⊥, ≤ 0 hasDay v ⊥} is given, it can be deduced that app
has exaclty one day between from and to. With the help of the precondi-
tion of CA, {after@pre(tuesday, from), after@pre(to, tuesday)}, it can then be
inferred that this one day must be after and before tuesday. Since there is only
one day satisfying these constraints, namely tuesday, it can be inferred that
hasDay(app, tuesday) holds. Hence, the service provider GA matches service re-
quest CA.

