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Abstract. This paper contributes to a line of research that aims to ap-
ply agent-oriented techniques in the field of service-oriented computing.
In particular, we propose to use goal-oriented techniques from the field
of cognitive agent programming for service orchestration. The advantage
of using an explicit representation of goals in programming languages
is the flexibility in handling failure that goals provide. Moreover, goals
have a close correspondence with declarative descriptions as used in the
context of semantic web services. This paper now presents first steps to-
wards the definition of a goal-based orchestration language that makes
use of semantic matchmaking. The orchestration language we propose
and its semantics are formally defined and analyzed, using operational
semantics.

1 Introduction

This paper contributes to a line of research that aims to apply agent-oriented
techniques in the field of service-oriented computing. Services are generally de-
fined as autonomous, platform-independent computational entities that can be
described, published, and discovered. An important concern in service-oriented
computing is how services can be composed in order to solve more complex tasks.
One way to go about this, is to use a so-called orchestration language such as
WS-BPEL [10] or Orc [7], by means of which one can specify an executable pat-
tern of service invocations. Another important issue in the context of services is
dealing with failure [14, 6]. Especially when services are discovered at run-time,
one needs to take into account that a service might not do exactly what one had
asked for, or that a particular orchestration does not yield the desired result.

We argue that the agent community has something to offer to the services
community, as agents are meant to be capable of flexible action in dynamic en-
vironments. Being capable of flexible action means that the agent should be able
to cope with failure, and should respond adequately to changed circumstances.
The idea is now that using agent-oriented techniques in orchestration languages
could potentially yield more adaptive and flexible orchestrations.

In this paper, we focus in particular on the usage of (declarative) goals as is
common in agent programming (see, e.g., [22, 5, 20]), for flexible service orches-
tration. Goals as used in agent programming describe situations that the agent
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wants to reach. The use of an explicit representation of goals in a programming
language provides for added flexibility when it comes to failure handling, as the
fact that a goal represents a desired state, can be used to check whether some
plan for achieving a goal has failed. This is then combined with a mechanism for
specifying which plan may be used for achieving a certain goal in certain circum-
stances, which also allows for the specification of multiple plans for achieving a
certain goal.

When considering the application of goal-oriented techniques to services, es-
pecially semantic web services seem to have a natural relation with goals. The
idea of semantic web services is to endow web services with a declarative de-
scription of what the service has to offer, i.e., a declarative description of the
semantics of the service. This then allows semantic matchmaking [16] between
the declarative description of a service being sought, which in our case would
correspond with a goal of an agent, and a description of the service being of-
fered. In fact, the WSMO framework for web service discovery refers explicitly
to semantic matching between goals and web services [19].

This paper now describes first steps towards the design of a goal-based orches-
tration language that makes use of semantic matchmaking, building on research
on goal-oriented agent programming, orchestration, and semantic web services.
This orchestration language and its semantics are formally defined and analyzed.
The orchestration language and the description of services are based on proposi-
tional logic. Being a first step towards combining cognitive agent programming
languages and orchestration languages, the relative simplicity of propositional
logic allows us to focus on the essential aspects of an agent-based orchestration
language.

Proposals for combining agent-oriented and service-oriented approaches are
appearing increasingly often in the literature. In the CooWS platform [4], for
example, an agent-based approach to procedural learning is used in the context
of web services. Other approaches focus on communication protocols [13, 2]. The
relation between goals as used in agent programming and semantic web services
has also been pointed out in [9], in which an architecture is described that focuses
on the translation of high-level user goals to lower-level goals that can be related
to semantic service descriptions.

To the best of our knowledge, however, this is the first proposal for a formally
defined language for goal-based orchestration. Flexibility in handling failure is
an issue that is well-recognized in service composition, and it is exactly this
flexibility that goal-based techniques can provide to orchestration languages.
The main technical contribution of this paper is that we provide a clean and
formally defined way of combining service-oriented and agent-oriented models of
computation.

2 Syntax

In this section, we describe the syntax and informal semantics of our goal-
oriented orchestration language. The way we go about combining goal-oriented



techniques and orchestration languages, is that we take (a family of) cognitive
agent programming languages as a basis, and incorporate into these constructs
for service orchestration. The family of agent programming languages on which
we build are variants of the language 3APL as also reported in [20], and we more-
over draw inspiration from the language AgentSpeak(L) [18]. The orchestration
language that we take as a basis is the language Orc [7].

In (goal-oriented) agent programming languages, agents generally have a be-
lief base, representing what the agent believes to be the case in the world, and
a goal base, representing the top-level goals of the agent. Agents execute plans
in order to achieve their goals. These plans, broadly speaking, consist of actions
that the agent can execute, and so-called subgoals. In order to achieve these
subgoals, an agent needs to select plans, just like it selects plans to achieve its
top-level goals. Selecting plans for (sub)goals is done by means of so-called plan
selection rules that tell the agent which plan they may use for achieving which
goal, given a certain state of the world.

The general idea of our goal-oriented orchestration language now is that
an agent may use not only actions that it can execute itself for achieving its
goals, but it can also call services. We thus extend the language of plans with
a construct for calling services. These services may be called directly using the
service name, or may be discovered, based on the goal that the agent wants to
achieve. One of the main technical issues that arises when modifying an agent
programming language in this way, is that it has to be determined how to handle
the results that are returned by services in a way that is in line with the (goal-
oriented) model of computation of agent programming languages. This will be
explained in more detail in the sequel.

In order to illustrate our approach, we use a very simple example scenario
that is adapted from [23]. In the car repair scenario, the car’s diagnostic system
reports a failure so that the car is no longer drivable. Depending on the problem,
the car may be repaired on the spot, or it might have to be towed to a garage.
The car’s discovery system then calls a repair service in order to try to repair the
car on the spot. Alternatively, it may identify and contact garages and towing
truck services in the car’s vicinity in order to get the car towed to a garage.

In Section 2.1, we define how services are described, and in Section 2.2 we
define the syntax of the orchestration language.

2.1 Service Descriptions

The way we describe services is based on the Ontology Web Language for Ser-
vices (OWL-S) [12] which seeks to provide the building blocks for encoding rich
semantic service descriptions. In particular, we focus on the description of func-
tional properties of services. According to OWL-S, these can be described in
terms of inputs, outputs, preconditions, and effects (so-called IOPEs). The idea
is that a service is “a process which requires inputs, and some precondition to
be valid, and it results in outputs and some effects to become true” [12].

The inputs description specifies what kind of inputs the service accepts from
a caller, and the outputs description specifies what the service may return to



the caller. Preconditions are conditions on the state of the world, which need to
hold in order for the service to be able to execute successfully. Effects describe
what the service can bring about in the world, i.e., the effects description is like
a description of post-conditions.

In this paper, the inputs description is a set of atoms. The set of atoms rep-
resents what kind of formulas the service is able to handle (similar to a type
specification). The outputs description is a set of propositional formulas or the
special atom failure. Informally, the idea is that the formulas in the outputs
description represent alternative possible outputs, where the actual output may
also be a combination of these alternatives (see Definition 9 for a precise speci-
fication). The effects are described in a similar way.

Below, we formally define service descriptions. A service description has a
name, and inputs, outputs, preconditions, and effects. The name of the service
may not be the reserved name d. The name d is used to express in plans that a
service should be discovered.

Definition 1 (service description) Throughout this paper we assume a lan-
guage of propositional logic L with typical element φ that is based on a set of
atoms Atom, where >,⊥ ∈ Atom and failure 6∈ Atom. Moreover, we define a
language Lo = L ∪ {failure} for describing the output of services. We use φ not
only to denote elements of L, but also of Lo, but if the latter is meant, this will
be indicated explicitly. Let Nsn with typical element sn be a set of service names
such that d 6∈ Nsn.

The set of service descriptions S with typical element sd is then defined as
follows:

{〈sn, in, out, prec, eff〉 | in ⊆ Atom, out ⊆ Lo, failure ∈ out, prec ∈ L and eff ⊆ L}.

An example from the car repair scenario of a service description is the service
that gives information on when it would be possible to make a garage appoint-
ment (with some particular garage). In this simple example, the input of this
garageAppInfo service is {possAppGarageMonday, . . . ,possAppGarageFriday},
representing that it can accept information requests regarding whether it would
be possible to have an appointment on Monday (possAppGarageMonday), Tues-
day, etc. The output is the same as the input, with the addition of failure and
with the addition of the negations of the atoms in the input, representing that
it can provide information on possibilities for making an appointment. The idea
is that on an input of, e.g., possAppGarageMonday, returns either this formula
itself or the negation, depending on whether it is possible to make a garage
appointment on Monday. Both the preconditions and effects of the service are
empty (i.e., >), expressing that the service does not make any changes in the
world.

In order to provide some more guidance and intuition to the use of service
descriptions, we refine the above definition such that two kinds of services can
be described: information providing services and world altering services [15].
Intuitively, information providing services such as flight information providers



give information on something that is the case in the world, and world altering
services such as flight booking services can make changes in the world.

In the context of this paper, we define information providing services as
services that have no effect, and for each formula appearing in the output de-
scription, the negation of this formula should also be in the output description.
The idea here is that the service should be able to provide information on each
formula in the output description, meaning that it should be able to tell for each
formula φ in the output description whether this formula holds in the world. The
service should thus be able to return on an input φ, either φ or ¬φ, depending
on whether φ holds or does not hold, respectively, and therefore both φ and ¬φ
should appear in the output description.

World altering services are here defined as services for which the output
description is equal to the effects description. The idea is that a world altering
service should be able to return the effect of its execution to its caller. As will be
explained in more detail in Section 3.1, in order to make full use of goal-based
orchestration, it is important that a service returns what it has done. The two
kinds of services are defined formally below.

Definition 2 (information providing and world altering services) Let
〈sn, in, out, prec, eff〉 be a service description. This service description is an in-
formation providing service iff eff ≡ > and for each φ 6= failure ∈ out, there is
a φ′ ∈ out such that φ′ ≡ ¬φ. The service description is a world altering service
iff out \ {failure} ≡ eff, i.e., if φ ∈ out \ {failure}, then ∃φ′ ∈ eff : φ′ ≡ φ, and
vice versa.

A typical example of an information providing service is the garageAppInfo ser-
vice that was mentioned above. The corresponding world altering service for ac-
tually making garage appointments, i.e., the garageAppMaker service, takes as
input {appGarageMonday, . . . , appGarageFriday}, representing that it accepts
request for making appointments on Monday, Tuesday, etc. The output descrip-
tion is the same as the input description, with the addition of failure, and the
effect description is the output description without failure (which is in this case
equal to the input description), in accordance with the definition of a world
altering service. The idea is that the service receives as input, e.g., appGarage-
Monday, expressing a request for making a garage appointment on Monday.
Assuming that this is possible, the world is changed in such a way that the ap-
pointment is actually made, and the appointment itself is returned, to let the
requester know that it has made the appointment.

In this paper, we assume that a service description describes either an in-
formation providing service, or a world altering service. In principle, one could
imagine that there are services that are both information providing and world
altering. However, we think that distinguishing these two kinds of services pro-
vides a conceptually clear guidance for how service descriptions can be used.
Moreover, the two kinds of services fit well with the two kinds of goals that we
consider here, i.e., test goals and achievement goals (see Section 2.2).



2.2 Orchestration Language

In this section, we describe the agent-based orchestration language. An agent
has a belief base and a goal base. In [20], the belief base is generally a set of
propositional formulas. Here, the belief base, typically denoted by σ, is a pair
(σa, σb) of sets of propositional formulas that are mutually consistent. The idea
is that σb forms the background knowledge of the agent, which does not change
during execution. The set σa forms the actual beliefs, which are modified during
execution. The sets σa and σb correspond loosely with the A-Box and T-Box
of description logics, respectively. The reason that we make this distinction is
explained in Section 3.2.

The goals of the agent can be of two kinds, i.e., a goal is either an achieve-
ment goal or a test goal. An achievement goal !φ, where φ is a propositional
formula, represents that the agent wants to achieve a situation in which φ holds.
A test goal ?φ represents that the agent wants to know whether φ holds.1 The
idea is that test goals are to be fulfilled by information providing services, and
achievement goals may be fulfilled by world altering services. Belief bases and
goal bases are defined formally below.

Definition 3 (belief base and goal base) The set of belief bases Σ with typical
element σ is defined as {(σa, σb) | σa, σb ⊆ L, σa ∪σb 6|= ⊥}. The set of goals LG

with typical element κ is defined as {?φ, !φ | φ ∈ L}. A goal base γ is a subset
of LG, i.e., γ ⊆ LG.

In the car repair scenario, the initial goal base contains
!carRepaired, representing that the agent has the goal of getting the car re-
paired. The part of the initial belief base with actual beliefs contains repOnSpot,
representing that initially it is assumed that the car is repairable on the spot, and
the background knowledge consists of {appGarageMonday → appGarage, . . .},
expressing that if the agent has a garage appointment on Monday etc., it has a
garage appointment.

Following agent terminology, an expression in our orchestration language is
called a plan. Broadly speaking, a plan consists of actions which change the
belief base of the agent, of subgoals that are to be achieved by selecting a more
concrete plan, and of service calls, the results of which may be passed along and
which may be stored in the belief base.

A service call has the form snr(φ, κ), where sn is the name of the service that
is to be called, κ represents the goal that is to be achieved through calling the
service, and φ represents additional information that forms input to the service.
The parameter r is called the revision parameter. This revision parameter can
be either np or p, where np stands for non-persistent (meaning that the result
of the service call is not stored), and p stands for persistent (meaning that the
result is stored in the belief base). We thus provide the programmer with the
possibility to specify what to do with the result of service calls. Typically, the
results of world altering service calls will be stored in the belief base, together
1 The syntax of representing achievement goals and test goals is taken from [18].



with results of information providing services that are likely to be needed at a
later stage.

The service name sn of an annotated service call may be either from the set
of service names Nsn, or it may be the reserved name d. If a name sn ∈ Nsn is
used in a service call, we say that this is a service call by name2, i.e., the service
with name sn should be called. Usage of the name d in a service call represents
a service call by discovery, i.e., a service should be discovered that matches the
goal with which the service is called.

Sequential composition of actions and service calls is done by means of the
construct b >x> π, where b is an action, a subgoal, or a service call. The result
returned from b is bound to the variable x, which may be used in the remaining
plan π. This construct for sequential composition is inspired by a similar con-
struct in the orchestration language Orc [7]. Note that the result of a service call
can thus be used in the remaining plan, even though it is not stored in the belief
base.

Definition 4 (plan) Assume that a set BasicAction with typical element a, and
a set of variable names Var with typical element x are given. Let N+

sn be defined
as Nsn ∪ {d}.3 Let sn ∈ N+

sn, r ∈ {np, p}, φ ∈ L and κ ∈ LG. Then the set of
plans Plan with typical element π is defined as follows, where b stands for basic
plan element.

b ::= a | κ | snr(φ, κ)
π ::= b | b >x> π

As in Orc, a plan of the form b � π is used to abbreviate a plan b >x> π where
x does not occur in π. This may be used in particular in case b is a basic action,
as the execution of an action only modifies the belief base and does not return
a result. Extending the syntax of plans with more involved constructs, such as
constructs for programming parallelism, is left for future research.

An example of a plan in the car repair scenario is (where we abbreviate
“Monday” with “M”, etc., and if the information parameter of a service call is
not shown, this should be interpreted as being >):

dnp(?(possAppGarageM ∨ . . . ∨ possAppGarageF)) >poss>

chooseAppnp(poss, ?(appGarageM ∨ . . . ∨ appGarageF)) >app> dp(!app). (1)

This plan intuitively represents that a service should be discovered that pro-
vides information on when a garage appointment would be possible, e.g., on
Monday and on Tuesday. In our example, the service to be discovered would
be the garageAppInfo service, as described in Section 2.1. The idea is that one
does not know beforehand where a car breakdown will occur, and therefore the
orchestration expresses that a service for making garage appointments should
2 Note that usage of the term call by name here is not related to the distinction

between call by name and call by value in programming language research.
3 We use sn as typical element of Nsn and of N+

sn. It will generally be clear from the
context which is meant, and otherwise it will be indicated explicitly.



be discovered. The result of the service is passed to a service that chooses an
appointment from possible appointments.4 The result of the chooseApp service,
e.g., appGarageMonday, is passed to a service for making garage appointments,
which needs to be discovered.5 The intermediate results of the first two service
calls are passed along and not stored anywhere, and the result of the service that
actually makes the appointment is stored.

Plans are executed in order to achieve the agent’s goals. The specification of
which plan may be executed in order to achieve a certain goal is done by means
of plan selection rules [20]. A plan selection rule κ | β ⇒ π intuitively represents
that if the agent has the goal κ and believes β to be the case, it may execute
the plan π.

Definition 5 (plan selection rules) The set of plan selection rules RPS is de-
fined as {κ | β ⇒ π : κ ∈ LG, β ∈ L, π ∈ Plan}6.

Plan selection rules can be applied to an agent’s top-level goals in the goal base,
but also to (the goals of) service calls in a plan that is currently executing (if
the service call has not yielded a satisfactory result). Our example agent has
two plan selection rules that specify how the goal of getting the car repaired can
be reached. The first rule, which we omit here, specifies that a road assistance
company can be called if the car is believed to be repairable on the spot. As we
assume initially that the agent beliefs the car to be repairable on the spot, this
rule is applied first. If it turns our that the car is after all not repairable on the
spot, then the second rule can be applied:

!carRepaired | ¬repOnSpot ⇒
!appGarage � dp(!appTowTruck) � monitorp(?carRepaired). (2)

This rule says that if the agent has the goal of getting his car repaired and he
believes it is not possible to repair the car on the spot, it should make a garage
appointment and a tow truck appointment, and then it should check whether
the car is actually repaired. In order to achieve the goal of having a garage
appointment, the agent can apply the plan selection rule !appGarage | > ⇒ π,
where π is the plan from (1).

The mechanism of applying plan selection rules is formalized using the notion
of a stack. This stack can be compared with the stack resulting from procedure
calls in procedural programming, or method calls in object-oriented program-
ming, and a similar mechanism was also used in [21]. During execution of the

4 We assume that the chooseApp service returns just one possible appointment from
the possible appointments.

5 Presumably, this should be a service of the same garage as the discovered service
for providing information on possible appointments. Extending the orchestration
language with a linguistic mechanism for expressing this (using service variables), is
left for future research.

6 We use the notation {. . . : . . .} instead of {. . . | . . .} to define sets, to prevent
confusing usage of the symbol | in this definition.



agent, a single stack is built. Each element of the stack represents, broadly
speaking, the application of plan selection rules to a particular (sub)goal. To
be more specific, each element of the stack is of the form (π, κ, PS), where κ is
the (sub)goal to which the plan selection rule has been applied, π is the plan
currently being executed in order to achieve κ, and PS is the set of plan selection
rules that have not yet been tried in order to achieve κ.

Definition 6 (stack) The set of stacks Stack with typical element St to denote
arbitrary stacks, and st to denote single elements of a stack, is defined as follows,
where π ∈ Plan, κ ∈ LG, and PS ⊆ RPS.

st ::= (π, κ, PS)
St ::= st | st.St

E is used to denote the empty stack (or the empty stack element), and E.St is
identified with St.

We are now in a position to give a definition of an agent. An agent has a be-
lief base, a goal base, a stack, a set of plan selection rules, and a belief update
function. The belief update function is introduced as usual [20] for technical con-
venience, and is used to define the semantics of action execution. We introduce
a constraint on agents that expresses that any goal that is used should be con-
sistent with the background knowledge of the belief base. Note that according
to this definition, in particular goals ?>, ?⊥, and !⊥ are not allowed.

Definition 7 (agent) An agent A is a tuple 〈σ, γ, St,PS, T 〉 where σ ∈ Σ is
the belief base, γ ⊆ LG is the goal base, St ∈ Stack is the current plan stack
of the agent, PS ⊆ RPS is a finite set of plan selection rules, and T is a partial
function of type (BasicAction×Σ) → Σ and specifies the belief update resulting
from the execution of basic actions.

Further, agents should satisfy the following constraint. Let σ = (σa, σb). It
should then be the case that for any goal ·φ, where “·” stands for ? or !, occurring
in a goal in γ or in a service call in one of the plans of PS, σb 6|= ¬φ. For any
goal ?φ it should also be the case that σb 6|= φ. Initially, the plan stack of the
agent is empty.

3 Semantics

In this section, we define the semantics of the orchestration language. The defini-
tion is split into two parts. First, we define the semantics of service calls (Section
3.1), and then we define the semantics of the orchestration language as a whole,
making use of the semantics of service calls (Section 3.2).

3.1 Service Calls

In defining the semantics of service calls, we have to define two things. First, we
need a definition of when a service matches a service call. Second, we need to
specify what a service may return, if it is called.



Although it is not the purpose of this paper to define advanced matching
algorithms, we do provide one possible definition of matching. The reason for
this is that in this goal-oriented context, the definition of a match depends on
the (kind of) goal with which a service is called. We think it is important to
identify how the use of goals influences the definition of a match, in order to be
able to identify at a later stage which existing matching algorithms can be used
in a goal-oriented setting, or how they might have to be adapted.

When matching a service to a goal, the idea is that a test goal is matched to
an information providing service, and an achievement goal is matched to a world
altering service. That is, for a test goal it is important to match the goal against
the output description, and for an achievement goal the goal is matched to the
effect description. The matching definition below corresponds loosely with what
is called plug-in matching in [11].

This approach to matching is based on the idea that a service should provide
at least the information that is asked for, or do at least what is desired. Formally,
a service description sd matches a service call sn(φ, ?φ′) if φ and φ′ do not
contain atoms that are not in the inputs description of sd. Moreover, what
the agent believes to be the case should not contradict with the preconditions
description of sd. The idea here is that the agent may not always be able to
check whether the precondition of a service holds, but it should at least not have
explicit information that the precondition does not hold. Finally, there should be
a consistent subset of the outputs description (for test goals) or effects description
(for achievement goals) from which the goal of the service call follows. Intuitively,
this represents that the service is able to provide at least the information that
is asked for, or is able to do at least what is desired, respectively.

Definition 8 (matching a service to a goal) In the following, we define σ |= φ
where σ = (σa, σb) as σa ∪ σb |= φ, where |= is the standard entailment relation
of propositional logic. Assume a function atoms : L → ℘(Atom) that takes
a formula from L and yields the set of atoms that occur in the formula. Let
sd = 〈sn′, in, out, prec, eff〉 be a service description. Then the matching predicate
match(sn(φ, κ), σ, sd), which takes a service call sn(φ, κ), a belief base σ, and a
service description sd, is defined as follows if sn 6= d.

match(sn(φ, ?φ′), σ, sd) ⇔ sd is information providing and sn = sn′ and
atoms(φ), atoms(φ′) ⊆ in and σ 6|= ¬prec and
∃out′ ⊆ out : out′ 6|= ⊥ and out′ |= φ′

match(sn(φ, !φ′), σ, sd) ⇔ sd is world altering and sn = sn′ and
atoms(φ), atoms(φ′) ⊆ in and σ 6|= ¬prec and
∃eff ′ ⊆ eff : eff ′ 6|= ⊥ and eff ′ |= φ′

If sn = d, then the same definition applies, but the requirement that sn = sn′

is dropped.

Note that one needs to define a match by specifying that a goal is a logical conse-
quence of a consistent subset, rather than as a logical consequence of the outputs



or effects description as a whole, as these descriptions may be inconsistent. This
definition is inspired by the so-called consistent subset semantics as proposed in
[20, Chapter 4] for defining semantics of goals in case these goals may be incon-
sistent. Also, note that a service call by name has the additional restriction that
the name of the service call should match the name of the service description,
meaning that a service call by name is more restrictive than a service call by
discovery. Further, if a service is able to provide information on φ, it can also
provide information on ¬φ, as expressed by the following proposition.

Proposition 1

∃out′ ⊆ out : out′ 6|= ⊥ and out′ |= φ′ ⇒ ∃out′ ⊆ out : out′ 6|= ⊥ and out′ |= ¬φ′

The semantics of service execution is defined using a predicate ret(sd, φ), which
specifies that φ may be returned by the service corresponding with service de-
scription sd. The idea is that what is returned by a service should be compatible
with its output description. If the predicate ret(sd, φ) is true, this represents that
φ may be returned by a service that has service description sd. It is important
to have a specification of what may be returned by the service, as we will need
it in the semantics of the orchestration language to determine whether the goal
of a service call is reached.

Definition 9 (semantics of service execution) Let sd = 〈sn, in, out, prec, eff〉
be a service description. The predicate ret is then defined as follows.

ret(sd, φ) ⇔ φ ≡ failure or
∃out′ ⊆ out \ {failure} : (out′ 6|= ⊥ and

∧
φo∈out′ φo ≡ φ)

3.2 Orchestration Language

The semantics of the orchestration language is defined by means of a transition
system [17]. A transition system for a programming language consists of a set of
axioms and transition rules for deriving transitions for this language. A transition
is a transformation of one configuration (or agent in this case) into another and
it corresponds to a single computation step.

For reasons of presentation, we will in the following omit the set of plan
selection rules PS and the function T from the specification of an agent, as these
do not change during computation. In the transition rules below, we will refer
to the set of plan selection rules of the agent with PSA. Further, we assume the
agent has access to a finite set of service descriptions SA. Finally, we sometimes
omit the revision parameter r from service calls, if this parameter is not relevant
there.

The first transition rule specifies how a transition for a composed stack can
be derived, given a transition for a single stack element. It specifies that only
the top element of a stack can be transformed or executed.7

7 We omit a rule that specifies that the two topmost stack elements may be modified
at the same time.



Definition 10 (stack execution) Let st 6= E.

〈σ, γ, st〉 → 〈σ′, γ′, st′〉
〈σ, γ, st.St〉 → 〈σ′, γ′, st′.St〉

Before we continue with the definition of transition rules, we need to define when
a goal is achieved, and when a plan selection rule can be applied to a goal. The
definition of when a goal is achieved differs for test goals and achievement goals.
A test goal is evaluated against the result of a service call, i.e., the belief base is
not taken into account. The idea is that a test goal is used if the agent wants to
obtain or to check a piece of information, regardless of whether it already believes
something about this piece of information. The achievement of an achievement
goal, on the other hand, is determined on the basis of the belief base, together
with the result of a service call.

We specify what it means to take a belief base together with a result of
service execution, using a belief revision function. For examples on how such a
function is defined, see, e.g., [1] which shows how a belief revision mechanism can
be incorporated into the agent programming language AgentSpeak(L). Below,
we only specify the constraints that such a belief revision function should satisfy.
That is, if a belief base (σa, σb) is updated with a result x, only σa should be
updated. The function is not defined if x is inconsistent with the background
knowledge.

Definition 11 (belief revision function) In the following, we assume a partial
belief revision function brev : (℘(L) × ℘(L)) → (L → ℘(L)). The function
brev((σa, σb), x) is defined iff σb 6|= ¬x, and if it is defined, it should satisfy the
following constraints on behavior: brev((σa, σb), x) = (σ′a, σb) where σ′a |= x and
σ′a ∪ σb 6|= ⊥; if σ |= x, then brev(σ, x) = σ.

In agent programming frameworks, the achievement of achievement goals is de-
termined on the belief base, as this is the only component representing the
current situation. In this context where we have service calls that return results,
not all results are stored in the belief base. Therefore, we also take into account
the result of the relevant service call when evaluating whether a goal is achieved.
In fact, the evaluation of a test goal should be performed only on the result of a
service call, as we disregard whether the agent already believes something about
the test goal.

This is reflected in the semantics of goal achievement as defined formally
below, in which we specify when a predicate ach(κ, σ, x) holds, representing that
the goal κ is achieved with respect to the result of a service call x and belief
base σ. To be more specific, a test goal ?φ holds if the result of the service call
expresses that either φ or ¬φ hold. An achievement goal !φ holds if φ follows
from the belief base that would result from updating the old belief base with the
service result.

Definition 12 (semantics of goal achievement) The semantics of goal achieve-
ment is defined as a predicate ach(κ, σ, x) that takes a goal κ, a belief base σ,



and a propositional formula x ∈ L that represents the result against which κ
should be checked.

ach(?φ, σ, x) ⇔ brev(σ, x) = σ′ and (x |= φ or x |= ¬φ) and x 6= failure
ach(!φ, σ, x) ⇔ brev(σ, x) = σ′ and σ′ |= φ and x 6= failure

Although test goal achievement is defined in principle only on the result of
the service call x, we use the belief base to check that x is consistent with
the background knowledge. We thus have by definition that a goal cannot be
achieved with respect to a result of a service call, if this result is inconsistent
with the background knowledge (in that case brev would be undefined for this
result).

A plan selection rule ρ of the form κ′ | β ⇒ π is applicable to a goal κ given
a belief base σ, if κ′ matches κ, β holds according to σ, and κ′ is not achieved.
The kind of matching we use is one that could be called partial matching. Here,
a rule with head κ′ is applicable to a goal κ if κ′ “follows from” κ. That is, a rule
with, e.g., head !p, could match a goal !(p∧q). This kind of semantics is generally
used for these rules in agent programming [20], as the goal decomposition for
which it allows has practical advantages.

Definition 13 (applicability of plan selection rule) We define a predicate
applicable(ρ, κ, σ) that takes a plan selection rule ρ, a goal κ, and a belief base
σ as follows, where “·” stands for ? or !.

applicable(· φ′ | β ⇒ π, · φ, σ) ⇔ φ |= φ′ and σ |= β and ¬ach(· φ′, σ,>)

In order to start execution and create a first stack element, the agent applies
a plan selection rule to a goal in the goal base. However, we leave out the
corresponding transition rule for reasons of space.

When an agent encounters a service call construct during execution of a plan,
it tries to call matching services until there are no more matching services, or
the goal of the service call is reached. In order to keep track of which services
have been called, we annotate the service call construct (initially) with the set
of services that are available. For an achievement goal, the agent only tries to
call services if the goal is not already reached. For a test goal, the agent always
tries to call a service, no matter whether it already believes the test goal to hold.
The service call is then used to check whether the information of the agent is
correct. We omit the rule for test goals for reasons of space. From this set of
services, a matching service is selected non-deterministically. The result of the
execution of the selected service is also stored in the annotation with the service
call construct, as this is used in other transition rules (Definitions 16 and 22) to
check whether the goal of the service call is reached. For reasons of presentation,
we omit here and in the sequel rules for dealing with service calls and actions
that form the last element of a plan.

Definition 14 (calling services)

¬ach(!φ′, σ,>)
〈σ, γ, (sn(φ, !φ′) >x> π, κ,PS)〉 → 〈σ, γ, (sn(φ, !φ′)[SA,>] >x> π, κ,PS)〉



¬ach(κ, σ, xo) sd ∈ S match(sn(φ, κ), σ, sd) ret(sd, xn)
〈σ, γ, (sn(φ, κ)[S, xo] >x> π, κ′,PS)〉 →

〈σ, γ, (sn(φ, κ)[S \ {sd}, xn] >x> π, κ′,PS)〉

Note that the second transition rule selects a matching service if the goal of the
service call is not reached. This provides a way of dealing with failure of services,
as another service is tried if a former service call did not have the desired result.
This is easily specified in our semantics, as we use an explicit representation of
goals.

In the following, we use a revision function that takes a revision parameter r,
a belief base σ and a result of a service call x, and updates σ with x, depending
on r.

Definition 15 (revision function) The revision function rev is defined as fol-
lows: rev(np, σ, x) = σ and rev(p, σ, x) = brev(σ, x).

The next transition rule specifies what happens if the goal of a service call is
reached after calling a service, and the goal of the stack element is not yet
reached. If this is the case, the belief base is updated according to the revision
parameter, and all occurrences of the parameter x of the sequential composition
in the rest of the plan π are replaced by the result of the service call x′, i.e., the
result of the service call is passed along. Moreover, all goals in the goal base that
are believed to be reached after the revision resulting from the service call are
removed.

Definition 16 (goal of service call achieved after service execution)

¬ach(κ′, σ, x′) ach(κ, σ, x′) rev(r, σ, x′) = σ′ γ′ = γ \ {κ | ach(κ, σ, x′)}
〈σ, γ, (snr(φ, κ)[S, x′] >x> π, κ′,PS)〉 → 〈σ′, γ′, ([x′/x]π, κ′,PS)〉

It might also be possible that a subgoal or the goal of a service call is already
reached before a service is called (only in case of an achievement goal). The
question is, what should be passed along in this case. One possibility would
be to pass along the goal itself. However, this yields unintuitive results in case
the background knowledge is used to derive the goal. In the car repair sce-
nario, the subgoal !appGarage can be achieved by applying a plan selection rule
!appGarage | > ⇒ π, where π is the plan from (1). The goal !appGarage can be
achieved through the service call dp(!app), which is matched to the garageApp-
Maker service. This service might return, e.g., appGarageMonday. Taking the
background knowledge of the agent, we can then derive !appGarage, making this
goal achieved.

The idea now is, that we want to pass along appGarageMonday, rather than
appGarage, as the first is the concrete realization of the second higher level
goal. This is achieved by passing along only the σa part of the belief base that
“contributes” to the goal being reached. That is, background knowledge is not
passed along. The part of σa that should be passed along, is what we call the
base, and this is defined formally below.



Definition 17 (base) The predicate base(σ, φ, x) takes a belief base σ, a for-
mula φ where σ |= φ, and a formula x representing the base of φ in σ. Let
σ = (σa, σb), and let σ′a ⊆ σa such that (σ′a, σb) |= φ and for any σ′′a such
that σ′′a ⊂ σ′a, we have (σ′′a , σb) 6|= φ. The predicate is then defined as follows:
base((σa, σb), φ, x) ⇔ x =

∧
φ′∈σ′

a
φ′.

The idea of the base is thus to extract the concrete realization of a goal, rather
than the higher level abstract goal. In description logic, a concrete realization
might correspond with an instance, where the higher level goal could be repre-
sented using a concept. The transition rule below specifies the case where the
goal is reached before a service is called. Is similar rule is used for subgoals, but
we omit it for reasons of space.

Definition 18 (goal of service call achieved before services are called)

¬ach(κ′, σ,>) ach(!φ′, σ,>) base(σ, φ′, x′)
〈σ, γ, (sn(φ, !φ′) >x> π, κ′,PS)〉 → 〈σ, γ, ([x′/x]π, κ′,PS)〉

If a subgoal is not achieved, a plan selection rule may be applied to the subgoal.
The application of a plan selection rule to a (sub)goal is the only way in which
a new stack element can be created.

Definition 19 (apply rule to create stack element) Below, PS′ = PSA \ {κ′ |
β ⇒ π}.

¬ach(κ′′, σ,>) κ′ | β ⇒ π ∈ PSA applicable(κ′ | β ⇒ π, κ, σ)
〈σ, γ, (κ >x> π′, κ′′,PS)〉 → 〈σ, γ, (π, κ, PS′).(κ >x> π′, κ′′,PS)〉

If the plan of a stack element is empty, a plan selection rule may be applied in
order to select another plan to try to reach the goal of the stack element. Note
that if a plan selection rule is applied to the goal of a stack element, this does
not lead to the creation of a new stack element.

Definition 20 (apply rule within stack element) Below, PS′ = PS \ {κ′ | β ⇒
π}.

κ′ | β ⇒ π ∈ PS applicable(κ′ | β ⇒ π, κ, σ)
〈σ, γ, (ε, κ, PS)〉 → 〈σ, γ, (π, κ, PS′)〉

Popping a stack element is done in two cases: the goal of the stack element
is reached, or the goal is not reached and there are no more applicable rules.
The goal of a stack element may be reached after a service call, or after action
execution. In the first case, the result of the relevant service call is passed to
the stack element just below the top element. In the second case, a result to be
passed is obtained from the belief base using the base predicate (Definition 17).

Definition 21 (popping a stack element: goal of stack element reached or un-
reachable)

ach(κ1, σ, x) rev(r, σ, x) = σ′ γ′ = γ \ {κ | ach(κ, σ′,>)}
〈σ, γ, (snr

1(φ1, κ3)[S, x] >x1> π1, κ1,PS1).(κ1 >x2> π2, κ2,PS2)〉 →
〈σ′, γ′, ([x/x2]π2, κ2,PS2)〉



T (σ, a) = σ′ ach(!φ′, σ′,>) base(σ′, !φ′, x′) γ′ = γ \ {κ | ach(κ, σ′,>)}
〈σ, γ, (a � π′, !φ′,PS′).(!φ′ >x> π, κ,PS)〉 → 〈σ′, γ′, ([x′/x]π, κ, PS)〉

¬ach(κ, σ,>) ¬∃ρ ∈ PS : applicable(ρ, κ, σ)
〈σ, γ, (ε, κ, PS).(κ >x> π, κ′,PS′)〉 → 〈σ, γ, (ε, κ′,PS′)〉

Note that if the plan of a stack element is empty, the goal of the stack element
is not reached. The reason is that the stack element would have been popped
before the plan got empty, if the goal of stack element would have been reached
after a service call or an action execution.

If an action of a plan cannot be executed, or there is no applicable rule for
a subgoal of a plan, or the goal of a service call has not been reached and there
are no more services that match, then the plan fails. If this happens, the plan is
dropped. Consecutively, another plan for achieving the goal of the stack element
may be tried, providing for flexibility in handling failure (Definition 20). Below,
we only show the transition rule for the case where an action is not executable.

Definition 22 (plan failure)

T (σ, a) is undefined
〈σ, γ, (a � π, κ, PS)〉 → 〈σ, γ, (ε, κ, PS)〉

Popping a stack element if the goal is not reached and there are no more ap-
plicable rules, prevents the agent from getting “stuck” or from looping inside
a stack element, while not reaching the (sub)goal of the stack element. If stack
elements are popped if the goal cannot be reached, the agent can try another
plan in the stack element that then becomes the new top element of the stack.
This mechanism functions recursively, meaning that if the agent has tried ev-
erything without success, it will have an empty stack element again. However,
the top-level goal that the agent tried to reach is still in the belief base, at it
was probably not reached. The agent can then try another goal, or wait for the
circumstances to change for the better, and give it another try later on. If the
agent terminates, then either the agent has an empty stack and the goal base
is empty, or the agent has an empty stack and there are no applicable rules to
the goals in the goal base. These considerations of progress and terminations are
formalized in the proposition below.

Proposition 2 (progress and termination) Let A = 〈σ, γ, St〉 be an agent.
Then, if St 6= E, there is an A′ such that A → A′. Further, on any computation
A,A1, . . . there is an A′ of the form 〈σ′, γ′, E〉. Finally, if there is no A′ such
that A → A′, then either A is of the form 〈σ, ∅, E〉, or A is of the form 〈σ, γ, E〉
and there is no ρ and κ ∈ γ such that applicable(ρ, κ, σ,>).

4 Conclusion

In this paper, we have proposed to use goal-oriented techniques from the field
of cognitive agent programming for service orchestration. The advantage of us-
ing an explicit representation of goals is the flexibility in handling failure that



goals provide. To be more specific, goals provide for flexibility in at least four
ways. First, goals can be used to do semantic matchmaking, yielding flexibility
in selection of services, as one does not necessarily have to define at design time
which particular service should be called. Second, the explicit use of goals makes
it easy to check whether a service call was successful, making it easy to build
into the semantics a mechanism for trying other matching services if one service
fails. Third, the plan selection rules can be used in a natural way to specify an
alternative plan if calling a service directly fails. Finally, the possibility to spec-
ify multiple plans for achieving a goal in combination with the mechanism for
detecting whether a goal is achieved, can make the orchestration more flexible in
handling failure, and also more responsive to the actual situation as plan selec-
tion rules are conditionalized on beliefs. We have made these ideas concrete by
formally defining a goal-based orchestration language that makes use of semantic
matchmaking.

We see several directions for future research. One of the main issues that
needs to be dealt with is the fact that the language is based on propositional logic.
Important candidates to replace propositional logic are description logics, given
the fact that we incorporate semantic matchmaking into our framework, or first-
order logics. We plan to study in particular whether the WSML [8] language can
be integrated into our work, as this is a language that has both first-order logic
and description logic variants. Further, WSML seems to be particularly suited for
our work, as it provides a formal syntax and semantics for WSMO, which is based
on goals. Moreover, we plan to extend the language of plans to include more
sophisticated constructs such as a construct for parallel composition. Further,
we consider to investigate more expressive kinds of service communication in
which interaction protocols are used for communication. Furthermore, we want
to investigate how work on soft constraints [3] can be used to obtain a more
expressive language for representing goals and for defining goal achievement.
Moreover, we want to analyze how exactly our semantics for the result passing
sequential composition construct differs from the Orc semantics. Finally, we aim
to analyze formally how our goal-based mechanism for handling failure is related
to more conventional approaches to failure handling, such as used in WS-BPEL.

Concluding, we believe that the framework as laid out in this paper can
provide a foundation for several interesting directions of future research, and we
hope it contributes to the further investigation of combining agent-oriented and
service-oriented approaches.
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