
Prototyping 3APL in the Maude Term
Rewriting Language

M. Birna van Riemsdijk1 Frank S. de Boer1,2,3 Mehdi Dastani1

John-Jules Ch. Meyer1

1 ICS, Utrecht University, The Netherlands
2 CWI, Amsterdam, The Netherlands

3 LIACS, Leiden University, The Netherlands

Abstract. This paper presents an implementation of (a simplified ver-
sion of) the cognitive agent programming language 3APL in the Maude
term rewriting language. Maude is based on the mathematical theory of
rewriting logic. The language has been shown to be suitable both as a
logical framework in which many other logics can be represented, and
as a semantic framework, through which programming languages with
an operational semantics can be implemented in a rigorous way. We ex-
plore the usage of Maude in the context of agent programming languages,
and argue that, since agent programming languages such as 3APL have
both a logical and a semantic component, Maude is very well suited for
prototyping such languages. Further, we show that, since Maude is re-
flective, 3APL’s meta-level reasoning cycle or deliberation cycle can be
implemented very naturally in Maude. Moreover, although we have im-
plemented a simplified version of 3APL, we argue that Maude is very
well suited for implementing various extensions of this implemented ver-
sion. An important advantage of Maude, besides the fact that it is well
suited for prototyping agent programming languages, is that it can be
used for verification as it comes with an LTL model checker. Although
this paper does not focus on model checking 3APL, the fact that Maude
provides these verification facilities is an important motivation for our
effort of implementing 3APL in Maude.

1 Introduction

An important line of research in the agent systems field is research on agent pro-
gramming languages [3]. This type of research is concerned with an investigation
of what kind of programming constructs an agent programming language should
contain, and what exactly the meaning of these constructs should be. In order
to test whether these constructs indeed facilitate the programming of agents in
an effective way, the programming language has to be implemented.

This can be done using Java, which was for example used for implementing
the agent programming language 3APL [13]. Java has several advantages, such
as its platform independence, its support for building graphical user interfaces,
and the extensive standard Java libraries. A disadvantage is however that the

translation of the formal semantics of an agent programming language such
as 3APL into Java is not very direct. It can therefore be difficult to ascertain
that such an implementation is a faithful implementation of the semantics of
the agent programming language, and experimenting with different language
constructs and semantics can be quite cumbersome.

As an alternative to the use of Java, we explore in this paper the usage of the
Maude term rewriting language [6] for prototyping 3APL. Maude is based on the
mathematical theory of rewriting logic. The language has been shown to be suit-
able both as a logical framework in which many other logics can be represented,
and as a semantic framework, through which programming languages with an
operational semantics can be implemented in a rigorous way [17]. We argue
that, since agent programming languages such as 3APL have both a logical and
a semantic component, Maude is very well suited for prototyping such languages
(see Section 5.1). Further, we show that, since Maude is reflective, 3APL’s meta-
level reasoning cycle or deliberation cycle can be implemented very naturally in
Maude (Section 4.2).

An important advantage of Maude is that it can be used for verification
as it comes with an LTL model checker [12]. This paper does not focus on
model checking 3APL using Maude, for reasons of space and since the usage of
Maude’s model checker is relatively easy, given the implementation of 3APL in
Maude. The fact that Maude provides these verification facilities however, is an
important, and was in fact, our original, motivation for our effort of implementing
3APL in Maude.

The outline of this paper is as follows. We present (a simplified version of)
3APL in Section 2, and we briefly explain Maude in Section 3. We explain
how we have implemented this simplified version of 3APL in Maude in Section
4. In Section 5, we discuss in more detail the advantages of Maude for the
implementation of agent programming languages such as 3APL, and we address
related work.

2 3APL

In this section, we present the version of 3APL that we have implemented in
Maude. This version comes closest to the one presented in [26]. It is single-agent
and builds on propositional logic. We refer to [9,10] for first order, multi-agent,
and otherwise extended versions. We have implemented this simple version of
3APL to serve as a proof-of-concept of the usage of Maude for prototyping
languages such as 3APL. In Section 5.2, we discuss the possible implementation
of various extensions of the version of 3APL as defined in this section, although
implementing these is left for future research. It is beyond the scope of this paper
to elaborate on the motivations for the various language constructs of 3APL. For
this, we refer to the cited papers, which also include example programs.

3APL, which was first introduced by Hindriks [13], is a cognitive agent pro-
gramming language. This means that it has explicit constructs for representing
the high-level mental attitudes of an agent. A 3APL agent has beliefs, a plan,

and goals. Beliefs represent the current state of the world and information inter-
nal to the agent. Goals represent the desired state of the world, and plans are
the means to achieve the goals. Further, a 3APL agent has rules for selecting a
plan to achieve a certain goal given a certain belief, and it has rules for revising
its plan during execution. Sections 2.1 and 2.2 formally define the syntax and
semantics of the language constructs.

2.1 Syntax

The version of 3APL as presented in this paper takes a simple language, con-
sisting of a set of propositional atoms, as the basis for representing beliefs and
goals.

Definition 1 (base language) The base language is a set of atoms Atom.

As specified in Definition 7, the belief base and goal base are sets of atoms from
Atom.

Below, we define the language of plans. A plan is a sequence of basic actions.
Informally, basic actions can change the beliefs of an agent if executed. This
simple language of plans could be extended with, e.g., if-then-else and while
constructs as was done in [26], but these are straightforward extensions and the
language as given here suffices for the purpose of this paper. Abstract plans
can be modeled as basic actions that are never executable, i.e., that have a
precondition that is always false.

Definition 2 (plan) Let BasicAction with typical element a be the set of basic
actions. The set of plans Plan with typical element π is then defined as follows.

π ::= a | π1;π2

We use ε to denote the empty plan and identify ε;π and π; ε with π.

In order to be able to test whether an agent has a certain belief or goal, we
use belief and goal query languages. These languages are built from the atoms
B(p) and G(p) for expressing that the agent believes p and has p as a goal,
respectively, and negation, disjunction and conjunction. Implication could be
defined in terms of these, but this is not used a lot in practice. Therefore, we
omit it here.

Definition 3 (belief and goal query language) Let p ∈ Atom. The belief query
language LB with typical element β, and the goal query language LG with typical
element κ, are then defined as follows.

β ::= > | B(p) | ¬β | β1 ∧ β2 | β1 ∨ β2

κ ::= > | G(p) | ¬κ | κ1 ∧ κ2 | κ1 ∨ κ2

The actions of an agent’s plan update the agent’s beliefs, if executed. In order
to specify how actions should update the beliefs, we use so-called action specifi-
cations. In papers on 3APL, often a belief update function T is assumed for this
purpose, i.e., the exact definition of T is usually omitted. Since in this paper we
are concerned with implementing 3APL, we also have to be specific about the
implementation of belief update through actions.

An action specification is of the form {β}a{Add,Del}. Here, a represents the
action name, β is a belief query that represents the precondition of the action,
and Add and Del are sets of atoms, that should be added to and removed from
the belief base, respectively, if a is executed. This way of specifying how actions
update beliefs corresponds closely with the way it is implemented in the Java
version of 3APL.

Definition 4 (action specification) The set of action specifications AS is de-
fined as follows: AS = {{β}a{Add,Del} : β ∈ LB, a ∈ BasicAction, Add ⊆
Atom, Del ⊆ Atom}.4

Plan selection rules are used for selecting an appropriate plan for a certain goal.
A plan selection rule is of the form β, κ ⇒ π. This rule represents that it is
appropriate to select plan π for the goals as represented through κ, if the agent
believes β.5

Definition 5 (plan selection rule) The set of plan selection rulesRPS is defined
as follows: RPS = {β, κ ⇒ π : β ∈ LB, κ ∈ LG, π ∈ Plan}.

Plan revision rules are used to revise an agent’s plan during execution. These
rules facilitate the programming of flexible agents which can operate in dynamic
domains. A plan revision rule πh | β πb represents that in case the agent
believes β, it can replace the plan πh by the plan πb.

Definition 6 (plan revision rule) The set of plan revision rules RPR is defined
as follows: RPR = {πh | β πb : β ∈ LB, πh, πb ∈ Plan}.

The notion of a configuration is used to represent the state of a 3APL agent at
each point during computation. A configuration consists of a belief base σ and
a goal base γ which are both sets of atoms, a plan, and sets of plan selection
rules, plan revision rules, and action specifications.

Definition 7 (configuration) A 3APL configuration is a tuple
〈σ, π, γ,PS,PR,AS〉 where σ ⊆ Atom is the belief base, π ∈ Plan is the plan,
γ ⊆ Atom is the goal base, PS ⊆ RPS is a set of plan selection rules, PR ⊆ RPR

is a set of plan revision rules, and AS ⊆ AS is a set of action specifications.

Programming a 3APL agent comes down to specifying its initial configuration.
4 We use the notation {. . . : . . .} instead of {. . . | . . .} to define sets, to prevent

confusing usage of the symbol | in Definition 6.
5 Note that it is up to the programmer to specify appropriate plans for a certain goal.

3APL agents do not do planning from first principles.

2.2 Semantics

The semantics of 3APL agents is defined by means of a transition system [22].
A transition system for a programming language consists of a set of axioms
and derivation rules for deriving transitions for this language. A transition is a
transformation of one configuration into another and it corresponds to a single
computation step. In the configurations of the transitions below, we omit the
sets of plan revision rules PR, plan selection rules PS, and action specifications
AS for reasons of presentation, i.e., we use configurations of the form 〈σ, π, γ〉
instead of 〈σ, π, γ,PS,PR,AS〉. This is not problematic, since these sets do not
change during execution of the agent.

Before moving on to defining the transition rules for 3APL, we define the
semantics of belief and goal queries. The satisfaction relations |=LB

and |=LG
are

used for this purpose. Belief and goal queries are evaluated in a configuration. A
formula B(p) is true in a configuration iff p is in the belief base, and G(p) is true
iff p is in the goal base. The semantics of negation, disjunction, and conjunction
are defined in the obvious way, which we omit for reasons of space.

Definition 8 (belief and goal queries)

〈σ, π, γ〉 |=LB
B(p) ⇔ p ∈ σ

〈σ, π, γ〉 |=LG
G(p) ⇔ p ∈ γ

The first transition rule as specified below is used to derive a transition for action
execution. An action a that is the first action of the plan, can be executed if there
is an action specification for a, and the precondition of this action as specified in
the action specification holds. The belief base σ is updated such that the atoms
of Add are added to, and the atoms of Del are removed from σ. Further, the
atoms that have been added to the belief base should be removed from the goal
base, as the agent believes these goals to be achieved. Also, the action is removed
from the plan.

Definition 9 (action execution) The transition for action execution is defined
as follows:

{β}a{Add,Del} ∈ AS 〈σ, a;π, γ〉 |=LB
β

〈σ, a;π, γ〉 → 〈σ′, π, γ′〉
where σ′ = (σ ∪Add) \Del, and γ′ = γ \Add.

An agent can apply a plan selection rule β, κ ⇒ π if it has an empty plan.
The idea is that the agent can only select a new plan, if it has completed the
execution of a previous plan. Further, the conditions β and κ have to hold in
order for the rule to be applicable. If the rule is applied, the plan π becomes the
plan of the agent.

Definition 10 (plan selection rule application)

β, κ ⇒ π ∈ PS 〈σ, ε, γ〉 |=LB
β 〈σ, ε, γ〉 |=LG

κ

〈σ, ε, γ〉 → 〈σ, π, γ〉

The transition below specifies the application of a plan revision rule of the form
πh | β ⇒ πb to a plan of the form πh;π. The rule can be applied if β holds. If
the rule is applied, the plan πh is replaced by the body of the rule, yielding the
plan πb;π.

Definition 11 (plan revision rule application)

πh | β πb ∈ PR 〈σ, πh;π, γ〉 |=LB
β

〈σ, πh;π, γ〉 → 〈σ, πb;π, γ〉

3 Maude

We cite from [21]: “Maude is a formal declarative programming language based
on the mathematical theory of rewriting logic [18]. Maude and rewriting logic
were both developed by José Meseguer. Maude is a state-of-the-art formal method
in the fields of algebraic specification [28] and modeling of concurrent systems.
The Maude language specifies rewriting logic theories. Data types are defined
algebraically by equations and the dynamic behavior of a system is defined by
rewrite rules which describe how a part of the state can change in one step.”

A rewriting logic specification consists of a signature, a set of equations, and
a set of rewrite rules. The signature specifies the terms that can be rewritten
using the equations and the rules. Maude supports membership equational logic
[19], which is an extension of order-sorted equational logic, which is in turn an
extension of many-sorted equational logic. For this paper, it suffices to treat only
the many-sorted subset of Maude. A signature in many-sorted equational logic
consists of a set of sorts, used to distinguish different types of values, and a set
of function symbols declared on these sorts.

In Maude, sorts are declared using the keyword sort, for example as follows:
sort List. Function symbols can be declared as below, using the keywords op
and ops.

op app : Nat List -> List .

ops 0 1 2 3 : -> Nat .

op nil : -> List .

The function app, expressing that natural numbers can be appended to form a
list, takes an argument of sort Nat and an argument of sort List, and the result-
ing term is again of sort List. The functions 0, 1, 2 and 3 are nullary functions,
i.e., constants, of sort Nat. The nullary function nil represents the empty list. An
example of a term (of sort List) over this signature is
app(1,app(2,app(3,nil))).

In order to define functions declared in the signature, one can use equations.
An equation in Maude has the general form eq 〈Term-1〉 = 〈Term-2〉. Assume
a function declaration op sum : List -> Nat, and a function + for adding nat-
ural numbers (declared as op _+_ : Nat Nat -> Nat, in which the underscores
are used express infix use of +). Further, assume variable declarations var N

: Nat and var L : List, expressing that N and L are variables of sorts Nat
and List respectively. The equations eq sum(app(N,L)) = N + sum(L) and eq
sum(nil) = 0 can then be used to define the function sum.

Maude also supports conditional equations, which have the following general
form.

ceq 〈Term-1〉 = 〈Term-2〉
if 〈EqCond-1〉 /\ . . . /\ 〈EqCond-n〉

A condition can be either an ordinary equation of the form t = t’, a matching
equation of the form t := t’, or an abbreviated boolean equation of the form
t, which abbreviates t = true. An example of the use of a matching equation as
the condition of a conditional equation is
ceq head(L) = N if app(N,L’) := L. This equation defines the function head,
which is used to extract the first element of a list of natural numbers. The match-
ing equation app(N,L’) := L expresses that L, as used in the lefthand side of
the equation, has to be of the form app(N,L’), thereby binding the first element
of L to N, which is then used in the righthand side of the equation.

Operationally, equations can be applied to a term from left to right. Equa-
tions in Maude are assumed to be terminating and confluent,6 i.e., there is no
infinite derivation from a term t using the equations, and if t can be reduced
to different terms t1 and t2, there is always a term u to which both t1 and t2
can be reduced. This means that any term has a unique normal form, to which
it can be reduced using equations in a finite number of steps.

Finally, we introduce rewrite rules. A rewrite rule in Maude has the gen-
eral form rl [〈Label〉] : 〈Term-1〉 => 〈Term-2〉, expressing that term Term-1
can be rewritten into term Term-2. Conditional rewrite rules have the following
general form.

crl [〈Label〉] 〈Term-1〉 => 〈Term-2〉
if 〈Cond-1〉 /\ . . . /\ 〈Cond-n〉

Conditions can be of the type as used in conditional equations, or of the form
t => t’, which expresses that it is possible to rewrite term t to term t’. An ex-
ample of a rewrite rule is rl [duplicate] : app(N,L) => app(N,app(N,L)),
which expresses that a list with head N can be rewritten into a new list with N
duplicated. The term app(1,app(2,app(3,nil))) can for example be rewrit-
ten to the term app(1,app(1,app(2,app(3,nil)))) using this rule. The former
term can however also be rewritten into app(1,app(2,app(2,app(3,nil)))),
because rewrite rules (and equations alike) can be applied to subterms.

The way the Maude interpreter executes rewriting logic specifications, is as
follows [21]. Given a term, Maude tries to apply equations from left to right
to this term, until no equation can be applied, thereby computing the normal
form of a term. Then, an applicable rewrite rule is arbitrarily chosen and applied
(also from left to right). This process continues, until no rules can be applied.

6 If this is not the case, the operational semantics of Maude does not correspond with
its mathematical semantics.

Equations are thus applied to reduce each intermediate term to its normal form
before a rewrite rule is applied.

Finally, we remark that in Maude, rewriting logic specifications are grouped
into modules with the following syntax: mod 〈Module-Name〉 is 〈Body〉 endm.
Here, 〈Body〉 contains the sort and variable declarations and the (conditional)
equations and rewrite rules.

4 Implementation of 3APL in Maude

In this section, we describe how we have implemented 3APL in Maude. We
distinguish the implementation of 3APL as defined in Section 2, which we will
refer to as object-level 3APL (Section 4.1), and the implementation of a meta-
level reasoning cycle (Section 4.2).

4.1 Object-Level

The general idea of the implementation of 3APL in Maude, is that 3APL con-
figurations are represented as terms in Maude, and the transition rules of 3APL
are mapped onto rewrite rules of Maude. This idea is taken from [27], in which,
among others, implementations in Maude of the operational semantics of a sim-
ple functional language and an imperative language are discussed. In this section
we describe in some detail how we have implemented 3APL, thereby highlighting
3APL-specific issues.

Syntax Each component of 3APL’s syntax as specified in Definitions 1 through
6 is mapped onto a module of Maude. As an example, we present the definition
of the module for the belief query language, corresponding with Definition 3.

mod BELIEF-QUERY-LANGUAGE is

including BASE-LANGUAGE .

sort BQuery .

op B : LAtom -> BQuery .

op top : -> BQuery .

op ~_ : BQuery -> BQuery .

op _/_ : BQuery BQuery -> BQuery .

op _\/_ : BQuery BQuery -> BQuery .

endm

The module BELIEF-QUERY-LANGUAGE imports the module used to define the
base language of Definition 1. A sort BQuery is declared, representing elements
from the belief query language. The sort LAtom is declared in the module
BASE-LANGUAGE, and represents atoms from the base language. Five operators

are defined for building belief query formulas, which correspond with the opera-
tors of Definition 3. The other syntax modules are defined in a similar way. Note
that only sort and function declarations are used in syntax modules. None of the
syntax modules contain equations or rewrite rules.

The notion of configuration as specified in Definition 7 is also mapped onto
a Maude module. This module imports the other syntax modules, and declares
a sort Conf and an operator op <_,_,_,_,_,_> : BeliefBase Plan GoalBase
PSbase PRbase ASpecs -> Conf.

Semantics The implementation of the semantics of 3APL in Maude can be
divided into the implementation of the logical part, i.e., the belief and goal
queries as specified in Definition 8, and the operational part, i.e., the transition
rules of Definitions 9 through 11. The logical part, i.e., the semantics of the
satisfaction relations |=LB

and |=LG
, is modelled as equational specifications,

whereas the transition rules of the operational part are translated into rewrite
rules.

As an example of the modeling of the logical part, we present part of the mod-
ule for the semantics of |=LB

below. Here [owise] is a built-in Maude construct
that stands for “otherwise”.

mod BELIEF-QUERY-SEMANTICS is

including BELIEF-QUERY-LANGUAGE .

op _|=LB_ : BeliefBase BQuery -> Bool .

var p : LAtom .

vars BB BB’ : BeliefBase .

vars BQ : BQuery .

ceq BB |=LB B(p) = true if p BB’ := BB .

eq BB |=LB B(p) = false [owise] .

ceq BB |=LB ~BQ = true if not BB |=LB BQ .

eq BB |=LB ~BQ = false [owise] .

. . .

endm

The relation |=LB
is modeled as a function |=LB, which takes a belief base of

sort BeliefBase (a sort from the base language module), and a belief query of
sort BQuery, and yields a boolean, i.e., true or false. Although the semantics
of belief queries as specified in Definition 8 is defined on configurations rather
than on belief bases, it is in fact only the belief base part of the configuration
that is used in the semantic definition. For ease of specification we thus define
the function |=LB on belief bases, rather than on configurations.

The first pair of (conditional) equations defines the semantics of a belief query
B(p). Belief bases are defined as associative and commutative space-separated
sequences of atoms. The matching equation p BB’ := BB expresses that belief
base BB is of the form p BB’ for some belief base BB’, i.e., that the atom p is
part of BB. The second pair of (conditional) equations specifies the semantics of
a negative query ~BQ. The term not BB |=LB BQ is an abbreviated boolean equa-
tion, i.e., it abbreviates not BB |=LB BQ = true, and not is a built-in boolean
connective. The module for the semantics of goal query formulas is defined in a
similar way.

We now move on to the implementation of the operational part. Below, we
present the rewrite rule for action execution, corresponding with the transition
rule of Definition 9. The variables B, B’ and B’’ are of sort BeliefBase, A is
of sort Action, P is of sort Plan, and G and G’ are of sort GoalBase. Moreover,
PSB, PRB, and AS are respectively of sorts PSbase, PRbase, and ASpecs. Further,
Pre is of sort BQuery and Add and Del are of sort AtomList.

crl [exec] : < B, A ; P, G, PSB, PRB, AS > =>

< B’, P, G’, PSB, PRB, AS >

if {Pre} A {Add,Del} AS’ := AS /\ B |=LB Pre /\ B’’ := B U Add /\

B’ := B’’ \ Del /\ G’ := G \ Add .

The transition as specified in the conclusion of the transition rule of Definition
9 is mapped directly to the rewrite part of the conditional rewrite rule.7 The
conditions of the transition rule, and the specification of how belief base and goal
base should be changed, are mapped onto the conditions of the rewrite rule.

The first condition of the rewrite rule corresponds with the first condition of
the transition rule. It specifies that if action A is to be executed, there should
be an action specification for A in the set of action specifications AS. The second
condition of the rewrite rule corresponds with the second condition of the tran-
sition rule, and specifies that the precondition of the action should hold. Note
that the previously defined satisfaction relation |=LB is used here.

The third and fourth conditions of the rewrite rule specify how the belief base
is changed, if the action A is executed. For this, a function U (union) has been
defined using equations, which we omit here for reasons of space. This function
takes a belief base and a list of atoms, and adds the atoms of the list to the
belief base, thereby making sure that no duplicate atoms are introduced in the
belief base. The function \ for deleting atoms is defined in a similar way, and is
also used for updating the goal base as specified in the last condition.

The translation of the transition rules for plan selection and plan revision rule
application is done in a similar way. As an illustration, we present the rewrite
rule for plan revision, corresponding with the transition rule of Definition 11.
The variables Ph and Pb are of sort Plan, and PRB’ is of sort PRbase. The
syntax (Ph | BQ -> Pb) is used for representing a plan revision rule of the
form πh | β πb.
7 Recall that the plan selection and plan revision rule bases and the action specifica-

tions were omitted from Definitions 9 through 11 for reasons of presentation.

crl [apply-pr] : < B, Ph ; P, G, PSB, PRB, AS > =>

< B, Pb ; P, G, PSB, PRB, AS >

if (Ph | BQ -> Pb) PRB’ := PRB /\ B |=LB BQ .

As was the case for action execution, the transition as specified in the conclusion
of the transition rule of Definition 11 is mapped directly onto the rewrite part
of the conditional rewrite rule. The conditions of the transition rule furthermore
correspond to the conditions of the rewrite rule.

Above, we have discussed the Maude modules for specifying the syntax and
semantics of 3APL. In order to run a concrete 3APL program using Maude,
one has to create another module for this program. In this module, one needs
to specify the initial belief base, goal base, etc. For this, the atoms as can be
used in, e.g., the belief base have to be declared as (nullary) operators of sort
LAtom. Also, the possible basic actions have to be declared. Then, the initial
configuration has to be specified. This can be conveniently done by declaring an
operator for each component of the configuration, and specifying the value of
that component using an equation. An initial belief base containing the atoms
p and q can for example be specified using eq bb = p q, where bb is a nullary
operator of sort BeliefBase, and p and q are atoms. In a similar way, the
initial plan, goal base, rule bases, and action specifications can be defined. The
3APL program as thus specified can be executed by calling Maude with the
command rewrite <bb, plan, gb, psb, prb, as>, where <bb, plan, gb,
psb, prb, as> is the initial configuration.

4.2 Meta-Level

Given the transition system of 3APL as defined in Section 2.2, different possible
executions might be derivable, given a certain initial configuration. It might for
example be possible to execute an action in a certain configuration, as well as to
apply a plan revision rule. The transition system does not specify which transi-
tion to choose during the execution. An implementation of 3APL corresponding
with this transition system might non-deterministically choose a possible transi-
tion. The implementation of 3APL in Maude does just this, as Maude arbitrarily
chooses an applicable rewrite rule for application.

In some cases however, it can be desirable to have more control over the
execution. This can be achieved by making it possible to specify more precisely
which transition should be chosen, if multiple transitions are possible. In the case
of 3APL, meta-level languages have been introduced for this purpose (see [13,8]).
These meta-languages have constructs for specifying that an action should be
executed or that a rule should be applied. Using a meta-language, various so-
called deliberation cycles can be programmed.

A deliberation cycle can for example specify that the following process should
be repeated: first apply a plan selection rule (if possible), then apply a plan
revision rule, and then execute an action. Alternatively, a deliberation cycle
could for example specify that a plan revision rule can only be applied if it is

not possible to execute an action. It might depend on the application which is
an appropriate deliberation cycle.

It turns out that this kind of meta-programming can be modeled very nat-
urally in Maude, since rewriting logic is reflective [7]. “Informally, a reflective
logic is a logic in which important aspects of its metatheory can be represented
at the object level in a consistent way, so that the object level representation
correctly simulates the relevant metatheoretic aspects.” [6, Chapter 10]

In order to perform meta-level computation, terms and modules of the object-
level have to be represented as Maude terms on the meta-level, i.e., they have to
be meta-represented. For this, Maude has predefined modules, that include the
functions upTerm and upModule for meta-representing terms and modules, and
the function metaXapply which defines the meta-level application of a rewrite
rule8.

The function upTerm takes an (object-level) term and yields the
meta-representation of this term, i.e., a term of sort Term. The function upModule
takes the meta-representation of the name of a module, i.e., the name of a mod-
ule with a quote prefixed to it, and yields the meta-representation of the module
with this name, i.e., a term of sort Module. The function metaXapply takes the
meta-representation of a module, the meta-representation of a term, the meta-
representation of a rule label (i.e., the rule label with a quote prefixed to it),
and some more arguments which we do not go into here, as they are not rele-
vant for understanding the general idea. The function tries to rewrite the term
represented by its second argument using the rule as represented by its third
argument. A rule with the label as given as the third argument of the function,
should be part of the module as represented by the function’s first argument.
The function returns a term of sort Result4Tuple?. If the rule application was
successful, i.e., if the rule could be applied to the term, the function returns a
4-tuple of sort Result4Tuple,9 which contains, among other information, the
term resulting from the rule application. This term can be retrieved from the
tuple using the function getTerm, which returns the meta-representation of the
term of sort Term resulting from the rewrite rule application.

Meta-level function calls, such as the application of a certain rewrite rule
through metaXapply, can be combined to form so-called strategies
[6]. These strategies can be used to define the execution of a system at the
meta-level. Deliberation cycles of 3APL can be programmed as these strategies.

An example of a deliberation cycle implemented in Maude is specified be-
low using the function one-cycle. It first tries to apply a plan selection rule,
then to execute an action and then to apply a plan revision rule. The function
one-cycle only specifies one sequence of applications of reasoning rules and ac-
tion executions. It is repeated to form a deliberation cycle using the function
cycle, which is specified below.

8 Maude also has a function metaApply for this purpose with a slightly different mean-
ing [6]. It is however beyond the scope of this paper to explain the difference.

9 Note that the difference with the sort Result4Tuple? is the question mark. The sort
Result4Tuple is a subsort of the sort Result4Tuple?.

ceq one-cycle(Meta-Conf, Meta-Prog) = Meta-Conf’

if Meta-Conf’ := try-meta-apply-pr(try-meta-exec(try-meta-apply-ps(

Meta-Conf, Meta-Prog), Meta-Prog), Meta-Prog) .

Here, Meta-Conf and Meta-Conf’ are variables of sort Term which stand for the
meta-representations of 3APL configurations, and Meta-Prog is a variable of
sort Module, which should be instantiated with the meta-representation of the
module with Maude code of a 3APL program10. The variable Meta-Conf is input
to the function one-cycle, and Meta-Conf’ represents the result of applying
the function one-cycle to Meta-Conf and Meta-Prog. This module imports the
syntax and semantics modules, which are also meta-represented in this way. The
functions try-meta-apply-pr, try-meta-exec, and try-meta-apply-ps try to
apply the (object-level) rewrite rules for plan revision, action execution, and
plan selection, respectively. In the definitions of these functions, the pre-defined
function metaXapply is called, with the names of the respective object-level
rewrite rules as one of its arguments, i.e., with, respectively, apply-pr, exec,
and apply-ps.

Before giving an example of these functions, we show how the function
one-cycle can be iterated to form a deliberation cycle. The function cycle
applies the function one-cycle repeatedly to Meta-Conf and Meta-Prog, until
the application of one-cycle does not result in a change to the configuration
Meta-Conf, which means the 3APL program has terminated.

ceq cycle(Meta-Conf, Meta-Prog) = cycle(Meta-Conf’, Meta-Prog)

if Meta-Conf’ := one-cycle(Meta-Conf, Meta-Prog) /\

Meta-Conf’ =/= Meta-Conf .

eq cycle(Meta-Conf,Meta-Prog) = Meta-Conf [owise] .

As an example of the functions for applying object-level rewrite rules, we present
the definition of the function try-meta-apply-pr.

ceq try-meta-apply-pr(Meta-Conf, Meta-Prog) =

if Result? :: Result4Tuple

then getTerm(Result?)

else Meta-Conf

fi

if Result? := metaXapply(Meta-Prog, Meta-Conf, ’apply-pr, ...) .

The variable Result? is of sort Result4Tuple?. The function metaXapply takes
the meta-representation of a module representing a 3APL program,11 the meta-
representation of a configuration, and the meta-representation of the label of
10 Note that by “3APL program”, we mean the Maude representation of a concrete

3APL program, i.e., consisting of specific sets of plan selection rules, plan revision
rules, etc.

11 The modules defining the syntax and semantics of 3APL are imported by this mod-
ule, and are therefore also meta-represented.

the plan revision rewrite rule, i.e., ’apply-pr, and yields the result of applying
the plan revision rewrite rule to the configuration. If the rule application was
successful, i.e., if Result? is of sort Result4Tuple, the term of the resulting 4-
tuple which meta-represents the new configuration, is returned. Otherwise, the
original unmodified configuration is returned. Note that there is only one object-
level rule for plan revision (see Section 4.1), and that this is the one referred to
in the definition of the function try-meta-apply-pr. Nevertheless, there might
be multiple ways of applying this rule, since potentially multiple plan revision
rules are applicable in a configuration. The function metaXapply then takes the
first instance it finds.

A 3APL program can be executed through a deliberation cycle by calling
Maude with the command.12

rewrite cycle(upTerm(conf),upModule(’3APL-PROGRAM)) .

The term conf represents the initial configuration of the 3APL program, and
’3APL-PROGRAM is the meta-representation of the name of the module containing
the 3APL program.

5 Discussion and Related Work

5.1 Experiences in Using Maude

Based on our experience with the implementation of 3APL in Maude as elab-
orated on in Section 4, we argue in this section that Maude is well suited as
a prototyping and analysis tool for logic based cognitive agent programming
languages.

Advantages of Maude In [17], it is argued that rewriting logic is suitable
both as a logical framework in which many other logics can be represented,
and as a semantic framework.13 The paper shows how to map Horn logic and
linear logic in various ways to rewriting logic, and, among other things, it is
observed that operational semantics can be naturally expressed in rewriting logic.
The latter has been demonstrated from a more practical perspective in [27], by
demonstrating how simple functional, imperative, and concurrent languages can
be implemented in Maude.

In this paper, we show how (a simple version of) 3APL can be implemented in
Maude. We observe that cognitive agent programming languages such as 3APL
have a logical as well as a semantic component: the logical part consists of
the belief and goal query languages (together with their respective satisfaction
relations), and the semantic part consists of the transition system. Since Maude
supports both the logical and the semantic component, the implementation of

12 We omit some details for reasons of clarity.
13 Obviously, logics often have semantics, but the notion of a semantic framework used

in the cited paper refers to semantics of programming languages.

languages like 3APL in Maude is very natural, and the integration of the two
components is seamless.

We observe that the direct mapping of transition rules of 3APL into rewrite
rules of Maude ensures a faithful implementation of the operational semantics
of 3APL in Maude. This direct mapping is a big advantage compared with the
implementation of a 3APL interpreter in a general purpose language such as
Java, in which the implementation is less direct. In particular, in Java one needs
to program a mechanism for applying the specified transition rules in appropriate
ways, whereas in the case of Maude the term rewriting engine takes care of this.
As another approach of implementing a cognitive agent programming language
in Java, one might consider to implement the plans of the agent as methods in
Java, which is for example done in the Jadex framework [23]. Since Java does
not have support for revision of programs, implementing 3APL plans as methods
in Java is not possible. We refer to [25] for a theoretical treatment of the issues
with respect to semantics of plan revision.

A faithful implementation of 3APL’s semantics in Maude is very important
with regard to our main original motivation for this work, i.e., to use the Maude
LTL model checker to do formal verification for 3APL. The natural and transpar-
ent way in which the operational semantics of 3APL can be mapped to Maude,
is a big advantage compared with the use of, e.g., the PROMELA language [14]
in combination with the SPIN model checker [15].

SPIN is a generic verification system which supports the design and verifi-
cation of asynchronous process systems. SPIN verification models are focused
on proving the correctness of process interactions, and they attempt to ab-
stract as much as possible from internal sequential computations. The language
PROMELA is a high level language for specifying abstractions of distributed
systems which can be used by SPIN, and it’s main data structure is the mes-
sage channel. In [4], an implementation of the cognitive agent programming
language AgentSpeak(F) - the finite state version of AgentSpeak(L) [20] - in
PROMELA is described, for usage with SPIN. Most of the effort is devoted to
translating AgentSpeak(F) into the PROMELA data structures. It is shown how
to translate the data structures of AgentSpeak(F) into PROMELA channels. It
is however not shown that this translation is correct, i.e., that the obtained
PROMELA program correctly simulates the AgentSpeak(F) semantics. In con-
trast with the correctness of the implementation of 3APL in Maude, the cor-
rectness of the AgentSpeak(F) implementation in PROMELA is not obvious,
because of the big gap between AgentSpeak(F) data structures and semantics,
and PROMELA data structures and semantics.

In [12], it is demonstrated that the performance of the Maude model checker
“is comparable to that of current explicit-state model checkers” such as SPIN.
The cited paper evaluates the performance of the Maude model checker against
the performance of SPIN by taking a number of given systems specified in
PROMELA, and implementing these in Maude. Then, for a given model check-
ing problem, the running times as well as memory consumptions of SPIN and of
the Maude model checker were compared on the respective specifications.

A further important advantage of Maude is that deliberation cycles can be
programmed very naturally as strategies, using reflection. A related advantage
is that a clear separation of the object-level and meta-level semantics can be
maintained in Maude because the meta-level reasoning cycle can be implemented
separately from the object-level semantics, using reflection. A 3APL program
can be executed without making use of a deliberation cycle, while it can equally
easily be executed with a deliberation cycle.

Finally, we have found that learning Maude and implementing this simpli-
fied version of 3APL in Maude can be done in a relatively short amount of time
(approximately two weeks). We cannot compare this effort with the implementa-
tion of the 3APL platform in Java where the implementation time is concerned.
This is because the platform in Java implements an interpreter for full 3APL [9]
and provides a number of other features, such as graphic user interfaces. Nev-
ertheless, we believe that the implementation of the simplified version of 3APL
in Maude can be extended very naturally in various ways. This is discussed in
Section 5.2.

Advantages of Java over Maude As stated in the introduction, Java has
several advantages over Maude such as its platform independence, its support
for building graphical user interfaces, and the extensive standard Java libraries.
Support for building, e.g., graphical user interfaces, is very important when it
comes to building a platform of which the most important aim is to allow the im-
plementation of agent systems in a certain (agent programming) language. Such
a platform should ideally implement a (relatively) stable version of a program-
ming language. However, in the process of designing a language, it is important
to be able to implement it rapidly in order to be able to test it. Maude is very
well suited for this, since logics as well as operational semantics can be trans-
lated naturally into Maude, providing a prototype that faithfully implements
the designed language.

We thus advocate the usage of Maude primarily for rapid prototyping of
cognitive agent programming languages. Once the agent programming language
has reached a point where it is reasonably stable, it might be desirable to imple-
ment a supporting platform in a language such as Java. While such a platform
should be well suited for testing an agent program, one may again want to use
Maude with its accompanying model checker when it comes to verifying this
program. One might have to abstract over certain aspects of the agent program-
ming language as implemented in Java, such as calls to Java from plans in the
case of 3APL, although there is recent work describing an implementation of an
operational semantics of Java in Maude [1].

5.2 Extending the Implementation

As was explained in Section 2, this paper presents an implementation of a sim-
plified version of 3APL in Maude. We however argue that the features of Maude
are very well suited to support the implementation of various extensions of this
version of 3APL. Implementing these extensions is left for future research.

In particular, an extension of a single-agent to a multi-agent version will be
naturally implementable, since, from a computational point of view, rewriting
logic is intrinsically concurrent [17]. It was in fact the search for a general con-
currency model that would help unify the heterogenity of existing models, that
provided the original impetus for the first investigations on rewriting logic [18].

Further, a more practically useful implementation will have to be first-order,
rather than propositional. Although the implementation of a first-order version
will be more involved, it can essentially be implemented in the same way as
the current version, i.e., by mapping transition rules to rewrite rules. In [9], the
transition rules for a first-order version of 3APL are presented. Configurations in
this setting have an extra substitution component, which records the assignment
of values to variables. An implementation of this version in Maude will involve
extending the notion of a configuration with such a substitution component, as
specified in the cited paper.

Finally, we aim to extend the logical part in various ways, for which, as
already pointed out, Maude is very well suited. Regarding this propositional
version, one could think of extending the belief base and goal base to arbitrary
sets of propositional formulas, rather than just sets of atoms. Also, the belief and
goal query languages could be extended to query arbitrary propositional formu-
las. The satisfaction relations for queries could then be implemented using, e.g.,
tableau methods as suggested in [17], for checking whether a propositional for-
mula follows from the belief or goal base. Further, when considering a first-order
version of 3APL, the belief base can be implemented as a set of Horn clauses,
or even as a Prolog program. In the current Java implementation of 3APL, the
belief base is implemented as a Prolog program. How to define standard Prolog
in rewriting logic has been described in [16]. Finally, we aim to experiment with
the implementation of more sophisticated specifications of the goals of 3APL
agents and their accompanying satisfaction relations, such as proposed in [24].

An aspect of 3APL as implemented in Java that is not easily implemented
in Maude, are the actions by means of which a Java method can be called from
the plan of a 3APL agent. The execution of a method may return a value to
the 3APL program. A similar mechanism could be implemented in Maude by
introducing the ability to access built-in Maude functions from the plans of the
agent.

5.3 Related Work

Besides the related work as already discussed in Sections 5.1 and 5.2, we mention
a number of papers on Maude and agents. To the best of our knowledge, Maude
has not been used widely in the agent community, and in particular not in the
area of agent programming languages. Nevertheless, we found a small number of
papers describing the usage of Maude in the agent systems field, which we will
briefly discuss in this section.

A recent paper describes the usage of Maude for the specification of DIMA
multi-agent models [5]. In that paper, the previously not formalized DIMA model
of agency is formalized using Maude. This work thus differs from our approach

in that it does not implement an agent programming language which already
has a formal semantics, independent of Maude. Consequently, its techniques for
implementation are not based on the idea that transition rules can be translated
into rewrite rules.

Further, Maude has been used in the mobile agent area for checking fault-
tolerant agent-based protocols used in the DaAgent system [2]. Protocols in the
DaAgent system are related to mobility issues, such as detection of node failure.
The authors remark that the Java implementation for testing their protocols
has proved to be “extremely time-consuming and inflexible”. Using Maude, the
protocol specifications are formalized and they can be debugged using the Maude
model checker. Another example of the usage of Maude in the mobile agent area
is presented in [11]. In that paper, Mobile Maude is presented, which is a mobile
agent language extending Maude, and supporting mobile computation.

References

1. W. Ahrendt, A. Roth, and R. Sasse. Automatic validation of transformation rules
for Java verification against a rewriting semantics. In G. Sutcliffe and A. Voronkov,
editors, Proceedings, 12th International Conference on Logic for Programming, Ar-
tificial Intelligence and Reasoning, Montego Bay, Jamaica, volume 3835 of LNCS,
pages 412–426. Springer, Dec 2005.

2. J. V. Baalen, J. L. Caldwell, and S. Mishra. Specifying and checking fault-tolerant
agent-based protocols using Maude. In FAABS ’00: Proceedings of the First Inter-
national Workshop on Formal Approaches to Agent-Based Systems-Revised Papers,
volume 1871 of LNCS, pages 180–193, London, UK, 2001. Springer-Verlag.

3. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Multi-Agent
Programming: Languages, Platforms and Applications. Springer, Berlin, 2005.

4. R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
AgentSpeak. In Proceedings of the second international joint conference on au-
tonomous agents and multiagent systems (AAMAS’03), pages 409–416, Melbourne,
2003.

5. N. Boudiaf, F. Mokhati, M. Badri, and L. Badri. Specifying DIMA multi-agent
models using Maude. In Intelligent Agents and Multi-Agent Systems, 7th Pa-
cific Rim International Workshop on Multi-Agents (PRIMA 2004), volume 3371
of LNCS, pages 29–42. Springer, Berlin, 2005.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude manual (version 2.1.1). 2005.

7. M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. Electronic
Notes in Theoretical Computer Science, 4:125–147, 1996.

8. M. Dastani, F. S. de Boer, F. Dignum, and J.-J. Ch. Meyer. Programming agent
deliberation – an approach illustrated using the 3APL language. In Proceedings
of the second international joint conference on autonomous agents and multiagent
systems (AAMAS’03), pages 97–104, Melbourne, 2003.

9. M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. Ch. Meyer. A programming
language for cognitive agents: goal directed 3APL. In Programming multiagent
systems, first international workshop (ProMAS’03), volume 3067 of LNAI, pages
111–130. Springer, Berlin, 2004.

10. M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Programming multi-
agent systems in 3APL. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms and Appli-
cations. Springer, Berlin, 2005.

11. F. Durán, S. Eker, P. Lincoln, and J. Meseguer. Principles of mobile Maude.
In ASA/MA 2000: Proceedings of the Second International Symposium on Agent
Systems and Applications and Fourth International Symposium on Mobile Agents,
volume 1882 of LNCS, pages 73–85, London, UK, 2000. Springer-Verlag.

12. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker.
In F. Gaducci and U. Montanari, editors, Proceedings of the 4th International
Workshop on Rewriting Logic and Its Applications (WRLA 2002), volume 71 of
Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

13. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming in 3APL. Int. J. of Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

14. G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, New
Jersey, 1991.

15. G. Holzmann. The model checker SPIN. IEEE Trans. Software Engineering,
23(5):279–295, 1997.

16. M. Kulas and C. Beierle. Defining standard Prolog in rewriting logic. In Electronic
Notes in Theoretical Computer Science, volume 36. Elsevier Science Publishers,
2000.

17. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In J. Meseguer, editor, Electronic Notes in Theoretical Computer Science,
volume 4. Elsevier Science Publishers, 2000.

18. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73–155, 1992.

19. J. Meseguer. Membership algebra as a logical framework for equational specifi-
cation. In WADT ’97: Selected papers from the 12th International Workshop on
Recent Trends in Algebraic Development Techniques, pages 18–61, London, UK,
1997. Springer-Verlag.

20. A. Moreira and R. Bordini. An operational semantics for a BDI agent-oriented
programming language. In Proceedings of the Workshop on Logics for Agent-Based
Systems (LABS’02), 2002.

21. P. C. Ölveczky. Formal modeling and analysis of distributed systems in Maude.
Lecture Notes, 2005.

22. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

23. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: a BDI reasoning engine. In
R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-
Agent Programming: Languages, Platforms and Applications. Springer, Berlin,
2005.

24. M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Semantics of declarative
goals in agent programming. In Proceedings of the fourth international joint confer-
ence on autonomous agents and multiagent systems (AAMAS’05), pages 133–140,
Utrecht, 2005.

25. M. B. van Riemsdijk, J.-J. Ch. Meyer, and F. S. de Boer. Semantics of plan
revision in intelligent agents. In C. Rattray, S. Maharaj, and C. Shankland, editors,
Proceedings of the 10th International Conference on Algebraic Methodology And
Software Technology (AMAST04), volume 3116 of LNCS, pages 426–442. Springer-
Verlag, 2004.

26. M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer. Agent program-
ming in Dribble: from beliefs to goals using plans. In Proceedings of the second
international joint conference on autonomous agents and multiagent systems (AA-
MAS’03), pages 393–400, Melbourne, 2003.

27. A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in
Maude. Technical report, Universidad Complutense de Madrid, Madrid, 2003.

28. M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, volume B: Formal Models and Semantics, pages 675–788.
Elsevier, Amsterdam, 1990.

