
A Grounded Specification Language for Agent Programs

Mehdi Dastani
Utrecht University
The Netherlands

mehdi@cs.uu.nl

M. Birna van Riemsdijk
LMU, Munich

Germany
riemsdijk@pst.ifi.lmu.de

John-Jules Ch. Meyer
Utrecht University
The Netherlands

jj@cs.uu.nl

ABSTRACT
This paper studies the relation between agent specification and agent
programming languages. In particular, it shows that an agent pro-
gramming language obeys some desirable properties expressed in
an agent specification language, i.e., that any agent implemented
by the programming language satisfies the desirable property ex-
pressed in the specification language. We study this relation by
defining and aligning the semantics of an agent specification lan-
guage and implementation language, and prove that certain prop-
erties expressed in the specification language are satisfied by the
implementation language.

Categories and Subject Descriptors
F.3.1 [Logics and Meaning of Programs]: Specifying and Verify-
ing and Reasoning about Programs—Logics of programs, Specifi-
cation techniques

Keywords
Agent Programming Language, Agent Specification language

1. INTRODUCTION
In the area of agent theory and agent-oriented software systems,

various logics have been proposed to characterize the behavior of
rational agents. The most cited logics to specify agents’ behavior
are the BDI logics [3, 10, 11, 8]. These logics are multi-modal log-
ics consisting of temporal and epistemic modal operators. In the
BDI logics, the behaviour of an agent is specified in terms of the
temporal evolution of its mental attitudes (i.e., beliefs, desires, and
intentions) and their interactions. These logics are characterized by
means of axioms and inference rules to capture the desired static
and dynamic properties of agents’ behaviour. In particular, the ax-
ioms establish the desired properties of the epistemic and temporal
operators as well as the rational balance between them. For exam-
ple, the axioms to capture the desired static properties of beliefs are
KD45 (the standard weak S 5 system), for desires and intentions are
the K and D axioms, and for the rational balance between beliefs
and desires the various versions of the realism axioms. Moreover,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

some desired dynamic properties of agents’ behaviour are captured
through axioms that implement various versions of the commitment
strategies. These axioms are defined using temporal operators ex-
pressing when and under which conditions the goals and intentions
of agents can be dropped. For example, an agent can be specified
either to hold its goals until it has achieved it (blindly-committed
agent type), or to drop the goal if it believes that it can never achieve
it (single-minded agent type) [3, 10].

Motivated by these logics, various agent-oriented programming
languages have been proposed [1, 4] to implement rational agents.
These programming languages provide specific constructs to im-
plement the concepts that are used in the BDI logics (e.g., be-
liefs, goals, and intentions). Some of the agent programming lan-
guages are designed and developed from scratch and come with an
explicit formal semantics, while others are extensions of existing
programming languages such as Java, an do not have an explicit
formal semantics. A main concern in designing and developing
agent-oriented programming languages is to provide programming
constructs in such a way that their executions generate the agent
behaviours having the same desirable properties as in their speci-
fications. This implies that the semantics of the programming lan-
guages (or the extensions) should be defined in such a way to satisfy
(some of) the desirable properties captured by means of the axioms
in the BDI logics. It should be noted that arbitrary programming
languages can be used to implement agents. However, it will be-
come difficult to verify whether they satisfy their specifications as
it is hard to identify what for instance the beliefs, desires and in-
tentions of the agents are. This is referred to by Wooldridge as the
problem of ungrounded semantics for agent specification languages
[14].

The main issue addressed in this paper is how agent specifica-
tion logics, which are used to specify the agents’ behaviour, are
related to agent-oriented programming languages, which are used
to implement the agents. In this paper, we show that an agent
programming language obeys some desirable properties expressed
in an agent specification language, i.e., that any individual agent
implemented by the programming language satisfies the desirable
property expressed in the specification language. We study this re-
lation by defining and aligning the semantics of an agent specifica-
tion language and implementation language, and prove that certain
properties expressed in the specification language are satisfied by
the implementation language. It is important to realize that this
problem is different from the model checking problem. In model
checking, the problem is to verify if a certain property, expressed in
a specification language such as the language of a BDI logic, holds
for one specific agent implementation (and not for any agent that
is implemented by the same programming language). Of course,
the properties that we focus on in this paper are general properties

of individual agents such as commitment strategies. Thus, in con-
trast to model checking, where one verifies that a particular agent
program satisfies a particular property expressed in a specification
language, we are here interested only in certain general properties
of individual agents such as an agent will not drop its goals until it
believes it has achieved them.

In this paper, we show a possible connection between an agent
specification language and an agent-oriented programming language.
In particular, we first present a simple but extendable agent-oriented
programming language that provides mental concepts such as be-
liefs, goals, and plans. The syntax and semantics of this program-
ming language will be presented in section 2. We then present in
section 3 an agent specification language which is closely related
to BDI specification languages. This language consists of (modal)
operators for beliefs, goals, and time such that properties such as
commitment strategies can be expressed. In section 4 we show that
all agents that are implemented in the proposed agent programming
language satisfy the desirable properties that are specified in the
specification language. Finally, we conclude the paper and discuss
future research directions.

2. AN AGENT-ORIENTED PROGRAMMING
LANGUAGE APL

In this section, we propose the syntax and semantics of a simple
logic-based agent-oriented programming language that provides pro-
gramming constructs to implement cognitive agents. In order to
focus on the relation between programming and specification lan-
guages and without loss of generality, we ignore some aspects that
may be relevant or even necessary for a practical logic-based agent-
oriented programming language. This language is based on the ex-
isting agent-oriented programming languages (e.g., 3APL and Ja-
son [5, 1]) such that our approach can be used to relate them to a
specification language as well.

2.1 Syntax of APL
The presented agent-oriented programming language will have

beliefs, goals, plans, and planning rules. We use a propositional
language to represent an agent’s beliefs and goals while plans are
assumed as operations that update the agent’s beliefs base. It is im-
portant to note that these simplifications do not limit the applicabil-
ity of the proposed model. In order to study various desirable prop-
erties of this programming language, we will consider two types of
goals: achievement and maintenance goals. Elsewhere [5] we have
discussed these goal types and elaborated on their detailed seman-
tics.

The idea of an achievement goal is to reach the state denoted
by it. An agent is then expected to generate and execute plans to
achieve its achievement goal. The emphasis here is that the goal
will not be dropped until the state denoted by it is achieved. An
example of an achievement goal is to have fuel in car (fuel) for
which the agent can generate either a plan to fuel at gas station 1
(gs1) or a plan to fuel at gas station 2 (gs2). The achievement
goal will be dropped as soon as the agent believes that it has fuel
in its car, i.e., as soon as it believes fuel. As suggested in [12]
and implemented in Jadex, we assign a failure condition to each
achievement goal to indicate when the agent should stop trying to
achieve the goal and thus drop the goal. For example, the failure
condition of the achievement goal fuel can be set as fuelNoWhere
indicating that there is neither fuel at gas station 1 nor at gas station
2.

The idea of a maintenance goal is to ensure that a state holds and
continues to hold. An agent is expected to generate and execute

plans only if the state denoted by the maintenance goal is threat-
ened not to hold (rather than waiting and taking action once the
state does not hold). The condition under which the maintenance
goal is threatened not to hold will be called the maintain condition.
The agent starts to generate and execute plans when the maintain
condition becomes true. For example, consider now an agent with
fuel as a maintain goal. This means that the agent wants to main-
tain having a fueled car. In such a case, the maintain condition is the
illuminated lamp warning of a shortage of fuel. The agent should
in this case generate and execute a refuel plan until the maintain
condition holds again.

 1. (belief and goal languages) Let Lp be a propo-
sitional language (used also in the rest of the paper). The belief
language Lσ, the achievement goal language Lγa , and the mainte-
nance goal language Lγm are defined as follows:
- Lσ = Lp

- Lγa = {(φ, ψ) | φ, ψ ∈ Lp}

- Lγm = {(φ, ψ) | φ, ψ ∈ Lp}

An achievement goal is thus represented as a tuple (φ, ψ) of propo-
sitions, where φ denotes the desirable state to achieve and ψ is its
corresponding failure condition. In our running example, a car driv-
ing agent can believe that he is in position 1 (pos1) and have the
achievement goal (fuel, fuelNoWhere). A maintenance goal is
also represented as a tuple (φ, ψ) of propositions, where φ denote
the state to maintain and ψ is its corresponding maintain condition.

For the purpose of this paper, we assume a set of plans Plan that
can be executed by the agents atomically, i.e., a plan can be exe-
cuted in one computation step. As plans are executed atomically,
their internal structure can be ignored. The empty plan will be de-
noted by ε. Moreover, agents are assumed to generate their plans
based on their beliefs and goals. The planning rules indicate which
plans are appropriate to decide when the agent has a certain goal
and beliefs. A planning rule is of the form β, κ ⇒ π and indicates
to select plan π for the goal κ, if the agent believes β. In order
to be able to check whether an agent has a certain belief or goal,
we use propositional formulas from Lp to represent belief and goal
query expressions. Note that the planning rules are generic and can
be used to generate plans for both achievement and maintenance
goals.

 2. (planning rule) Let Plan be the set of plans that
an agent can use. The set of planning rules RPL is defined as:

RPL = {β, κ ⇒ π | β, κ ∈ Lp, π ∈ Plan}

In the following, we use Goal(r) and Bel(r) to indicate the goal
condition κ and the belief condition β, respectively, that occur in
the head of the planning rule r = (β, κ ⇒ π).

In our running example, the agent can have two planning rules
pos1,fuel⇒gs1 and pos2,fuel⇒gs2. The first (second) plan-
ning rule indicates that the agent should fuel at gas station 1 (2)
if he want to fuel and believes that he is in position pos1 (pos2).
Given these languages, an agent can be implemented by program-
ming three sets of propositional formulas (representing the agent’s
beliefs, achievement goals and maintenance goals), and one set of
planning rules. For the purpose of this paper, we assume that agents
cannot have initial plans, but generate them during their executions.

 3. (agent program) An agent program is a tuple
(σ, γa, γm,PL) where σ ⊆ Lσ, γa ⊆ Lγa , γm ⊆ Lγm and PL ⊆ RPL.

The agent program for our running example is then a tuple where
σ = {pos1}, γa = {(fuel,fuelNoWhere)}, γm = ∅, and
PL= {pos1,fuel⇒gs1 , pos2,fuel⇒gs2}. Note that the agent
believes it is in position 1 and has no maintenance goal.

2.2 Semantics of APL
In the previous section, we described the constructs of an agent-

oriented programming language and explained their intuitive mean-
ings. In this section, we present the operational semantics of the
programming language in terms of a transition system. A transi-
tion system is a set of derivation rules for deriving transitions. A
transition is a transformation of one state into another and it corre-
sponds to a single computation step. For the semantics of the agent
programming language a transition is a transformation of one agent
configuration (state) into another.

2.2.1 Agent Configuration
An agent’s configuration denotes the state of the agent at one

moment in time. It is determined by its mental attitudes, i.e., by its
beliefs, goals, plans, and reasoning rules.

 4. (agent configuration) Let |=p be the propositional
entailment relation (used also in the rest of the paper). Let Σ =
{σ | σ ⊆ Lσ, σ 6|=p ⊥} be the set of possible consistent belief bases,
Γa = {(φ, ψ) ∈ Lγa | φ 6|=p ⊥} be the set of achievement goals, and
Γm = {(φ, ψ) ∈ Lγm | φ 6|=p ⊥& ψ 6|=p ⊥} be the set of maintenance
goals. An agent configuration is a tuple 〈σ, (γa, γm),Π,PL〉 where
σ ∈ Σ is the belief base, γa ⊆ Γa and γm ⊆ Γm are respectively the
achievement and maintain goal bases, Π ⊆ (Lp × Lp × Plan) is the
plan base, and PL ⊆ RPL is a set of planning rules.

In the above definition, it is assumed that the belief base of an
agent is consistent since otherwise the agent can believe everything
which is not a desirable property. Also, each achievement goal (not
the corresponding failure condition) is assumed to be consistent
since otherwise an agent should achieve an impossible state. The
failure condition can be ⊥ which means that the agent should not
drop its achievement goal until it believes that the state denoted by
it is reached. Moreover, a maintenance goal (and its correspond-
ing maintain condition) is assumed to be consistent since otherwise
an agent should maintain an impossible state (and will never start
generating a plan). Finally, the elements of the plan base are de-
fined as 3-tuples (Lp × Lp × Plan) consisting of a plan and two
goals (propositional formulas) that indicate the reasons for gener-
ating the plan. More specifically, (φ, κ, π) is added to an agent’s
plan base if the planning rule β, κ ⇒ π is applied because κ is a
subgoal of the agent’s goal φ. Note that the planning rule can be
applied only if κ is a subgoal of an agent’s goal φ. This means that
we have ∀(φ, κ, π) ∈ Π : φ |=p κ. This information will be used
to avoid applying a planning rule if it is already applied and the
generated plan is not fully executed. In our running example, the
agent can apply both planning rules (depending on the agent’s be-
liefs) since the goals of these rules (i.e., fuel) is a subgoal of the
agent’s goal (fuel,fuelNoWhere), i.e., since fuel|=fuel. Note
that these rules could also be applied if the agent had more complex
goals such as (fuel∧cw,FuelNoWhere); cw stands for car wash.

The initial configuration of an agent can be defined based on the
agent program (definition 3) that specifies the initial beliefs, goals,
and planning rules. As noted, for the purpose of this paper, we
assume that an agent does not have initial plans, i.e., the initial plan
base is empty.

 5. (initial configuration) Let (σ, γa, γm,PL) be an agent
program. Then, the initial configuration of the agent is
〈σ, (γa, γm),Π,PL〉 where Π = ∅.

In the following, for reasons of presentation we do not include
the set RPL in the agent configuration when possible (as they do
not change during the agent executions). Also, we will write γ to

represent the whole goal base (γa, γm) when possible. So, we use
〈σ, γ,Π〉 or 〈σ, (γa, γm),Π〉 instead of 〈σ, (γa, γm),Π,PL〉.

2.2.2 Transition System T
This subsection presents the transition system T which consists

of transition rules (also called derivation rules) for deriving transi-
tions between an agent’s configurations. Each transition rule has
the following form indicating that the configuration C can be trans-
formed to configuration C′ if the condition of the rule holds.

condition
C → C′

In order to define the operational semantics of the application of
planning rules, we define the notions of relevant and applicable
planning rules w.r.t. an agent’s goal and its configuration. Intu-
itively, a planning rule is relevant for an agent’s goal if it can con-
tribute to the agent’s goal, i.e., if the goal that occurs in the head of
the planning rule is a subgoal of the agent’s goal. A planning rule
is applicable to an agent’s goal if it is relevant for that goal and its
belief condition is entailed by the agent’s configuration.

 6. (relevant, applicable) Let C = 〈σ, γ,Π,PL〉 be an
agent configuration. For the given configuration C and goal φ, the
set of relevant and applicable planning rules are defined as follows:
• rel(φ,C) = {r ∈ PL | φ |=p Goal(r)}
• app(φ,C) = {r ∈ rel(φ,C) | σ |=p Bel(r)}

In the following transition rules we write app(φ)
C→C′ instead of app(φ,C)

C→C′ .
When executing an agent, planning rules will be selected and

applied based on its beliefs, goals and plans. The application of
planning rules generates plans which can subsequently be selected
and executed. Before introducing the transition rules to specify
possible agent execution steps, we need to define what it means
to perform a plan. For simplicity reasons, we assume here that
the performance of a plan affects only the belief base. The ef-
fect of plans on the belief base is captured by an update opera-
tor update, which takes the belief base and a plan and generates
the updated belief base. This update operator can be as simple as
adding/deleting atoms to/from the belief base. We assume a partial
function update : (Plan × Σ) → Σ that takes a plan and a belief
base, and yields the belief base resulting from the execution of the
plan on the input belief base (if the update is not successful, the
update operation is undefined).

The first transition rule (R1) captures the case where the plan π
is successfully performed. The resulting configuration contains the
empty plan and the belief base is updated appropriately.

Rule R1 (Plan execution rule)

(φ, κ, π) ∈ Π & π , ε & update(σ, π) = σ′

〈σ, γ,Π〉 → 〈σ′, γ, (Π \ {(φ, κ, π)}) ∪ {(φ, κ, ε)}〉

The second transition rule (R2) captures the case that the perfor-
mance of the plan has failed. Note that in this case, the failed plan
(φ, ψ, π) will be removed from the plan base.

Rule R2 (Plan execution rule)

(φ, κ, π) ∈ Π & π , ε & update(σ, π) = unde f ined
〈σ, γ,Π〉 → 〈σ, γ,Π \ {(φ, κ, π)}〉

For an achievement goal, plans should be generated to reach the
state denoted by it. If the generated and performed plans do not
achieve the desired state, then the achievement goal remains in the
goal base. The first transition rule below (called R3) is designed
to apply planning rules in order to generate plans the execution of

which may achieve the subgoals of the achievement goals. A plan-
ning rule can be applied if the goal in the head of the rule is not
achieved yet, if there is no plan for the same subgoal in the plan
base (in order to avoid applying rules if it is already applied), and
if the failure condition does not hold. The application of a planning
rule will add the plan of the planning rule to the plan base.

Rule R3 (apply planning rules)

(φ, ψ) ∈ γa & (β, κ ⇒ π) ∈ app(φ) &
@π′ ∈ Plan : (φ, κ, π′) ∈ Π & σ 6|= κ & σ 6|= ψ

〈σ, γ,Π〉 → 〈σ, γ,Π ∪ {(φ, κ, π)}〉

The next transition rule (R4) removes all empty plans, which are
generated for the achievement or maintenance goals, from the plan
base. Note that this rule is for both achievement and maintenance
goals.

Rule R4 (remove empty plans)

(φ, ψ) ∈ γa ∪ γm & (φ, κ, ε) ∈ Π
〈σ, γ,Π〉 → 〈σ, γ,Π \ {(φ, κ, ε)}〉

An achievement goal can be dropped under two circumstances:
either when its failure condition becomes true, or when the state it
denotes is reached. The transition rule R5 below captures these two
cases of dropping the achievement goal. In both cases, besides the
removal of the achievement goal, the plans associated with it will
be removed.

Rule R5 (achieved or not achievable goals)

(φ, ψ) ∈ γa & (σ |= φ or σ |= ψ)
〈σ, (γa, γm),Π〉 → 〈σ, (γ′a, γm),Π′〉

where γ′a = γa \ {(φ, ψ)} and Π′ = Π \ {(φ, κ, π) | κ ∈ Lp, π ∈ Plan}.
The state denoted by a maintenance goal should hold at any mo-

ment during an agent’s execution. In order to maintain the denoted
state, plans should be generated and performed. The question is
when exactly plans should be generated and performed. A main-
tenance goal φ is enriched with a maintain condition ψ which, if
it becomes true, indicates that plans should be generated and ex-
ecuted. It should be noted that there might be no logical relation
between the maintenance goals and their maintain conditions. This
relation depends usually on the application domain. However, we
assume that in all agent configurations, if the maintain condition
does not hold, then the maintenance goal holds: ∀σ ∈ Σ,∀φ, ψ ∈
L : (σ 6|= ψ)→ (σ |= φ).

The transition rule R6 is designed to allow the application of
planning rules when the maintain condition becomes true. The ap-
plied rule should be such that there is no plan already in the plan
base for the subgoal that occurs in the head of the selected rule.

Rule R6 (apply planning rules)

(φ, ψ) ∈ γm & (β, κ ⇒ π) ∈ app(φ) &
@π′ ∈ Plan : (φ, κ, π′) ∈ Π & σ |= ψ
〈σ, γ,Π〉 → 〈σ, γ,Π ∪ {(φ, κ, π)}〉

Note that there is no transition rule that removes a maintenance
goal from an agent’s goal base. This is because an agent’s main-
tain goal should remain in the agent’s goal base during its execu-
tion. Note also that the removal of empty plans of the maintenance
goals is already captured by the transition rule R4, and that the plans
which are generated to maintain goals, are based on the same set of
planning rules as used for achieve goals.

2.2.3 Agent Execution
In order to define the behaviours of an agent and compare them

with each other, we need to define what it means to execute an
agent. Given a transition system consisting of a set of transition
rules, the execution of an agent is a set of transitions generated by
applying the transition rules to the initial configuration of an agent.
Thus, the execution of an agent starts with the initial configuration
of an agent and generates subsequent configurations that can be
reached from the initial configuration by applying a transition rule.
Note that the execution of an agent forms a graph in which the
nodes are the configurations and the edges indicate the application
of a transition rule. In the following, we define the execution of
an agent A by first defining the set of all possible transitions RT
for all possible agents in the transition system T , and then take
the subset of those transitions that can be reached from the initial
configuration of agent A.

 7. (agent execution) Let C be the set of all agent con-
figurations. Then, the set of transitions that are derivable from the
transition system T , denoted as RT , is defined as follows:

RT =

{(ci, c j) | ci ⇒ c j is a transition derivable from T & ci, c j ∈ C}

Given an agent program A with corresponding initial agent config-
uration c0, the execution of A is the smallest set ET (A) of transi-
tions derivable from T starting from A, i.e., it is the smallest subset
ET (A) ⊆ RT such that:

• if (c0, c1) ∈ RT , then (c0, c1) ∈ ET (A) for c1 ∈ C

• if (ci, c j) ∈ ET (A) and (c j, ck) ∈ RT , then
(c j, ck) ∈ ET (A) for ci, c j, ck ∈ C

3. CT LAPL: A SPECIFICATION LANGUAGE
FOR AGENT PROGRAMS

In order to specify (not implement) an agent’s behaviour, we will
use an instantiation of the BDICT L logic [3, 10, 11]. This is a multi-
modal logic consisting of temporal modal operators to specify the
evolution of agents’ configurations (the agents’ execution) through
time and epistemic modal operators to specify agents’ mental state
(beliefs and goals) in each configuration.

For the purpose of this paper to relate the specification and im-
plementation languages, we do not allow the nesting of epistemic
operators. This is because the beliefs and goals in the agent pro-
gramming language presented in this paper are propositional rather
than modal formulas. This is, however, not a principle limitation as
the representation of beliefs and goals in agent programming lan-
guages can be extended to modal formulas [13]. In order to specify
the mental state of agents, we will define the language L consisting
of non-nested belief and goal formulas.

 8 (L). The language L for the
specification of agents’ mental attitudes consists of non-nested be-
lief and goal formulas, defined as follows:

• if φ ∈ Lp, then B(φ) ∈ L

• if φ, ψ ∈ Lp, then Ga(φ, ψ) and Gm(φ, ψ) ∈ L

3.1 CT Lapl Syntax
The behaviour of an agent, generated by the execution of the

agent, is a temporal structure overs its mental states. In order to
specify the behaviour of agents, we use the standard CT L∗ logic [6]
in which the primitive propositions are formulas from the language

L defined in Definition 8. The resulting language will be called
CT Lapl defined as follows.

 9 (CT Lapl). The state and path
formulas are defined by the following S and P clauses, respectively.

S1 Each formula from L is a state formula.

S2 If φ and ψ are state formulas, then φ ∧ ψ and ¬φ are also
state formulas.

S3 If φ is a path formula, then Eφ and Aφ are state formulas.

P1 Any state formula is a path formula.

P2 If φ and ψ are path formulas, then ¬φ, φ ∧ ψ, Xφ, �φ, and
φ U ψ are path formulas.

Using the CT Lapl language, one can for example express that if
an agent has an achievement goal, then it will not drop the goal until
it believes the goal is achieved or believes that its failure condition
holds, i.e., Ga(φ, ψ)→ A(Ga(φ, ψ) U (B(φ) ∨ B(ψ))).

3.2 CT Lapl Semantics
The semantics of the specification language CT Lapl is defined on

a Kripke structure M = 〈C,R,V〉, where the set of states C is the set
of configurations of agents implemented in the agent programming
language APL (definition 4), and the temporal relation R is speci-
fied by the transition system T of the agent programming language
APL (definition 7). In particular, a transition between two agent
configurations is derivable from the transition system T if there
exists a temporal relation between these two configurations in the
Kripke structure. Finally, the valuation function V = (Vb,Va

g ,V
m
g)

of the Kripke structure is defined on agent configurations and con-
sists of different valuation functions each with respect to a specific
mental attitude of agents’ configurations.

More specifically, we define a valuation function Vb that valuates
the belief formulas in terms of agents’ beliefs, a valuation function
Va

g for the agents’ achievement goals, and a valuation function Vm
g

for the agents’ maintenance goals. The belief valuation function Vb

maps an agent configuration c to a set of propositions Vb(c) that are
derivable from the agent’s belief base. An agent believes a proposi-
tion if and only if the proposition is included in Vb(c). The valuation
function Va

g for achievement goals is defined in such a way that all
subgoals of an agent’s achievement goal are also considered as a
goal. The valuation function Va

g maps an agent’s configuration to
a set of sets of pairs. Each set of pairs contains all subgoals of an
achievement goal. An agent wants to achieve a proposition if and
only if the proposition is included in a set of pairs. The valuation
function Vm

g is defined in similar way.
The semantics of the CT Lapl expressions are defined in the same

way as the semantics of CT L∗ expressions except that the valu-
ation functions are defined with respect to the agent’s belief and
goal bases. We omit the semantics of negation and conjunction for
reasons of space. These are defined as usual.

 10. Let M = 〈C,R,V〉 be a Kripke structure specified
by the execution of the transition system T , where:

• C is a set of configurations (states) of the following form:
〈σ, (γa, γm),Π,PL,T〉.

• R ⊆ C × C is a serial binary relation, such that for each
(c, c′) ∈ R, we have (c, c′) ∈ RT , or c = c′.

• V= (Vb,Va
g ,V

m
g) are the belief and goal (achieve

and maintain) evaluation functions, i.e.,
Vb: C → 2Lp , s.t.,

Vb(〈σ, (γa, γm),Π,T 〉) = {φ | σ |=p φ}

Va
g : C → 22Lp×Lp , s.t.,
Va

g (〈σ,(γa, γm),Π,T 〉) =
{{(φ′, ψ′) | φ |=p φ

′ & ψ ≡ ψ′} | (φ, ψ) ∈ γa}

Vm
g : C → 22Lp×Lp , s.t.,
Vm

g (〈σ, (γa, γm),Π,T 〉) =
{{(φ′, ψ′) | φ |=p φ

′ & ψ ≡ ψ′} | (φ, ψ) ∈ γm}

A fullpath is an infinite sequence x = c0, c1, c2, . . . of configurations
such that ∀i : (ci, ci+1) ∈ R. We use xi to indicate the i-th state of
the path x.

(S1) M, c |= B(φ) ⇔ φ ∈ Vb(c)

(S1) M, c |= Ga(φ, ψ) ⇔ ∃s ∈ Va
g (c) : (φ, ψ) ∈ s

(S1) M, c |= Gm(φ, ψ) ⇔ ∃s ∈ Vm
g (c) : (φ, ψ) ∈ s

(S3) M, c |= Eφ ⇔
∃ fullpath x = c, c1, c2, . . . ∈ M : M, x |= φ

(S3) M, c |= Aφ ⇔
∀ fullpath x = c, c1, c2, . . . ∈ M : M, x |= φ

(P1) M, x |= φ ⇔ M, x0 |= φ for φ is a state formula

(P2) M, x |= Xφ ⇔ M, x1 |= φ

(P2) M, x |= �φ ⇔ M, xn |= φ for some n ≥ 0

(P2) M, x |= φ U ψ ⇔
a) ∃k ≥ 0 such that

M, xk |= ψ and for all 0 ≤ j < k : M, x j |= φ, or,
b) ∀ j ≥ 0 : M, x j |= φ

Note that the two options in clause P6 of the above definition
capture two interpretations of the until operator. The first (strong)
interpretation is captured by the option a and requires that the con-
dition ψ of the until expression should hold at once. The second
(weak) interpretation is captured by the option a + b and requires
the formula φ should hold forever.

In the above definition, the CT Lapl state formulas are evaluated
in the Kripke model M with respect to a configuration c. As we are
interested in expressing that a certain property holds in all agent
configurations, we will define the notion of satisfaction in a model.

 11. (satisfaction in model) A formula φ is satisfied in
the model M if and only if φ holds in all configurations in M, i.e.,
M |= φ⇔de f M, c |= φ for every c ∈ C.

In the following, we model the execution of an agent with the
initial configuration A and based on the transition system T as the
Kripke model MA

T
= 〈CA

T
,RA
T
,V〉 based on which the CT Lapl ex-

pressions (i.e., properties to be checked) can be evaluated. The
accessibility relation RA

T
is defined as the set of executions of the

agent A extended with a reflexive accessibility for all end configura-
tions. This is to guarantee the seriality property of the accessibility
relation RA

T
. Moreover, the set CA

T
of configurations will be defined

in terms of configurations that occur in the execution of the agent.

 12. (agent model) Let A be an agent program and
let ET (A) be the execution of A. Then the model corresponding
with agent A, which we call an agent model, is defined as MA

T
=

〈CA
T
,RA
T
,V〉, where the accessibility relation RA

T
and the set of con-

figurations CA
T

are defined as follows:

RA
T
= ET (A) ∪
{(cn, cn) | ∃(cn−1, cn) ∈ ET (A) : ¬∃(cn, cn+1) ∈ ET (A)}

CA
T
= {c | (c, c′) ∈ RA

T
}

Note that agent models are Kripke structures in the sense of Defi-
nition 10.

In section 4, we prove that certain properties hold for any agent
program that is implemented in the APL programming language.
As the above definition of model MA

T
is based on one specific agent

A, we need to quantify over all agent programs. Since the binary
relation RA

T
(derived from the transition system T , which is the se-

mantics of the agent programs) has to be the same in all Kripke
models, a quantification over agent programs means a quantifica-
tion over models MA

T
. This implies that we need to define the no-

tion of validity of a property as being true for all agents and thus all
models MA

T
.

 13. (validity) A property φ ∈ CT Lapl holds for the
execution of an arbitrary agent A based on the transition system
T , expressed as |=T , if and only if φ holds in all agent models MA

T
,

i.e., |=T φ⇔de f ∀A : MA
T
|= φ.

Note that this notion of validity is the same as the notion of va-
lidity in modal logic since it is defined at the level of frames, i.e.,
at the level of states and relation and not valuations, which is in our
case defined in terms of specific agents.

4. PROPERTIES
Given the semantics of the programming language APL and the

specification language CT Lapl, we can prove that certain properties
expressed in CT Lapl hold for agents programmed in APL.

4.1 Proving the Properties
In this section, we present a number of desired properties and

prove that they hold for arbitrary agents. In section 4.2, we discuss
these properties in more detail. The first property expresses that an
agent may not drop its goals until it believes it has achieved them,
or believes the failure condition holds.

 1. (single-minded commitment)

|=T Ga(φ, ψ)→ A(Ga(φ, ψ) U (B(φ) ∨ B(ψ)))

P. Using Definitions 13 and 11, we derive that we have to
prove MA

T
, c |= Ga(φ, ψ)⇔ MA

T
, c |= A(Ga(φ, ψ) U (B(φ) ∨ B(ψ))).

Assume MA
T
, c |= Ga(φ, ψ). Then to prove ∀ fullpath x = c, c1, c2, . . . ∈

MA
T

: MA
T
, x |= Ga(φ, ψ) U (B(φ) ∨ B(ψ)) (Definition 10). Let

x = c, c1, . . . an arbitrary fullpath starting in c. Then to prove
MA
T
, x |= Ga(φ, ψ) U (B(φ) ∨ B(ψ)).

We can prove that Ga(φ, ψ) holds until B(φ) ∨ B(ψ) on the path
x, by proving for each configuration xi on the path x the following:

if MA
T
, xi |= Ga(φ, ψ) then (I) MA

T
, xi+1 |= Ga(φ, ψ) or

(II) MA
T
, xi+1 |= B(φ) ∨ B(ψ).

(1)

That is, if Ga(φ, ψ) holds, then this keeps on holding in the next
state, or else B(φ) ∨ B(ψ) holds. If the former is continuously the
case, then we have that ∀ j : MA

T
, x j |= Ga(φ, ψ), i.e., case b of

clause (P6) of Definition 10. If the latter is the case for some xk,
then we have that MA

T
, xk |= B(φ) ∨ B(ψ), and for all 0 ≤ j < k we

have MA
T
, x j |= Ga(φ, ψ), since MA

T
, c |= Ga(φ, ψ) by assumption,

i.e., we have case a of clause (P6).

Assume MA
T
, xi |= Ga(φ, ψ), i.e., ∃s ∈ Va

g (xi) : (φ, ψ) ∈ s, i.e.,
∃(φ′, ψ′) ∈ γi

a : φ′ |=p φ and ψ′ ≡ ψ, where γi
a is the achievement

goal base of xi. Given these properties of the configuration xi, we
have to show that any next configuration xi+1 has the stated desired
properties. Since the accessibility relation of MA

T
, RTA , is based on

T , we know that xi → xi+1 should be derivable in T , or xi → xi+1 is
a reflexive edge. In the latter case, we have (I). In the former case,
we can see that the only transition rule of T through which the goal
base can be changed is R5.

Assume that xi → xi+1 is a transition derived using transition
rule R5. This means that some goal (φ′′, ψ′′) has been removed
from γi

a. If (φ′′, ψ′′) , (φ′, ψ′), then we have (φ′, ψ′) ∈ γi+1
a , and

therefore MA
T
, xi+1 |= Ga(φ, ψ) (I). If (φ′′, ψ′′) = (φ′, ψ′), then it

must be the case that σi |=p φ
′ or σi |=p ψ

′, where σi is the belief
base of xi. Since R5 does not update the belief base, it must be the
case that σi+1 |=p φ′ or σi+1 |=p ψ′. Since φ′ |=p φ and ψ′ ≡ ψ,
we have that σi+1 |=p φ or σi+1 |=p ψ. Therefore, we have that
MA
T
, xi+1 |= B(φ) ∨ B(ψ) (II), by Definition 10.

Otherwise, goals do not change and we have case (I), yielding
the desired result.

The next property specifies that if the failure condition of an achieve-
ment goal is ⊥, the agent does not drop this goal until it believes it
has achieved the goal.

 2. (blind commitment)

|=T Ga(φ,⊥)→ A(Ga(φ,⊥) U B(φ))

P. By Proposition 1, we have
|=T Ga(φ,⊥) → A(Ga(φ,⊥) U (B(φ) ∨ B(⊥)). By Definition 4, we
have that belief bases are consistent, i.e., ¬∃MA

T
, c : MA

T
, c |= B(⊥).

We thus have that B(⊥) ≡ ⊥, and as ϕ ∨ ⊥ ≡ ϕ for any formula ϕ,
we have B(φ) ∨ B(⊥) ≡ B(φ), yielding the desired result.

We now proceed to give a definition of intention, and show how in-
tentions defined in this way are related to an agent’s goals. We de-
fine that an agent intends κ, if κ follows from the second component
of one of the plans in an agent’s plan base. The second component
of a plan specifies the subgoal for which the plan was selected, and
it is these subgoals for which the agent is executing the plans, that
we define to form the agent’s intentions. This is analogous to the
way the semantics of intention is defined in [2].

 14. (intention) Let Vi : C → 22Lp be defined as
Vi(〈σ, (γa, γm),Π〉) = {{κ′ | κ |=p κ

′} | (φ, κ, π) ∈ Π}. Then M, c |=
I(κ) is defined as ∃s ∈ Vi(c) : κ ∈ s.

Given this definition, we prove that an agent’s intentions are a “sub-
set” of the agent’s goals, i.e., we prove the following proposition.

 3. (intentions)

|=T I(κ)→ Ga(κ, ψ) for some ψ

P. In order to prove the proposition, we prove something
stronger. Informally, if we can prove for every configuration that if
a plan is in the plan base, then there is also a corresponding goal
in the goal base, we have the desired result. Formally, we need
to show ∀c : ∀(φ, κ, π) : ((φ, κ, π) ∈ Πc ⇒ ∃ψ : (φ, ψ) ∈ γc

a)
where Πc and γc

a are the plan base and goal base of configuration c,
respectively. We prove this result using induction.

Let c be an initial agent configuration, i.e., ¬∃c′ : (c′, c) ∈ RA
T

.
Then the plan base of c is empty, which means that ¬∃(φ, κ, π) :
(φ, κ, π) ∈ Πc. This yields the desired result in the base case.

Let c be an arbitrary configuration and let (c, c′) ∈ RA
T

. We then
have to show:

∀(φ, κ, π) : ((φ, κ, π) ∈ Πc ⇒ ∃ψ : (φ, ψ) ∈ γc
a)⇒

((φ, κ, π) ∈ Πc′ ⇒ ∃ψ : (φ, ψ) ∈ γc′
a)

Take an arbitrary plan (φ, κ, π). Assume (φ, κ, π) ∈ Πc ⇒ ∃ψ :
(φ, ψ) ∈ γc

a. Then to prove ((φ, κ, π) ∈ Πc′ ⇒ ∃ψ : (φ, ψ) ∈ γc′
a). We

distinguish two cases, i.e., the case in which (φ, κ, π) ∈ Πc, and the
case in which (φ, κ, π) < Πc:

Assume (φ, κ, π) ∈ Πc. Assume ¬∃ψ : (φ, ψ) ∈ γc′
a (contraposi-

tion). Then to prove: (φ, κ, π) < Πc′ . We then have ∃ψ : (φ, ψ) ∈ γc
a.

As we have ¬∃ψ : (φ, ψ) ∈ γc′
a , we know that a goal of the form

(φ, ψ) was removed from γc
a over the transition to c′. Goals can

only be removed using transition rule R5. This rule removes only
one goal at a time. We thus know that there was only one goal with
φ as its first element in γc

a. Transition rule R5 specifies that if a goal
(φ, ψ) is removed from the goal base, all plans of the form (φ, κ′, π′)
have to be removed from the plan base. We thus have in particular
that (φ, κ, π) < Πc′ , yielding the desired result in this case. The case
for (φ, κ, π) < Πc is proven in a similar way using transition rule
R3.

Note that the opposite of Proposition 3 does not hold, as it can be
the case that an agent has a goal for which it has not yet selected a
plan.

 4 (). |=TA Gm(φ, ψ)→ A�Gm(φ, ψ)

P. The property can be proven using the fact that there is no
transition rule in T that drops a maintenance goal.

4.2 Discussion

4.2.1 Relation with BDI logic
The properties we have proven in the previous section, are not

just arbitrary properties. They are closely related to properties that
have been presented as desired properties of goals and intentions in
the influential BDI logics [3, 10]. The properties we prove, how-
ever, are not exactly the corresponding properties discussed in [3,
10]. In this section, we discuss how the properties proven in the pre-
vious section differ from those specified mainly in [10]. Note that
we have proven the properties by reasoning about the semantics of
the CT Lapl language, i.e., we did not define a deductive system.
Also, the properties we have proven are properties that hold for all
agents in the APL language. Properties of particular APL agents,
such as liveness properties, would typically be proven using model
checking or some deductive system.

Property 1 is a variant of what has been termed “single-minded
commitment” in [10]. The property of single-minded commitment
expresses a certain level of persistency of or commitment towards
goals, i.e., an agent should not drop its goals until it believes it has
achieved them, or believes they are unachievable. Property 1 differs
from single-minded commitment of [10] in several ways. First,
Rao and Georgeff define single-minded commitment for intentions,
rather than goals. Goals are also present in their framework, but
are contrasted with intentions in that the agent is not necessarily
committed to achieving its goals (but is committed in some way to
achieving its intentions).

In agent programming frameworks that incorporate goals and
some form of intentions, commitment strategies such as single-
minded commitment are generally attributed to goals, rather than
to intentions (see, e.g., [7, 12]). The kind of entity in agent pro-
gramming frameworks that is sometimes referred to as “intention”,
is generally some kind of procedural entity (a plan) [9], and does

not have the level of commitment of goals. On the contrary, a plan
is generally removed after its execution, regardless of the effect of
the plan. It is precisely the goals that are used for providing the
agent with a desired level of persistency in behavior. One could
thus argue that goals as used in agent programming frameworks are
actually intentions as addressed in BDI logics, and that a compo-
nent corresponding with the goals in BDI logics, i.e., a component
from which intentions are selected, is missing in agent program-
ming frameworks.

Another difference is that where in [10] single-minded commit-
ment defines that an agent cannot drop a goal until it believes it has
achieved it or it believes it is unachievable, Proposition 1 specifies
that an agent cannot drop a goal until it believes it has achieved
it or it believes that the failure condition associated with the goal
holds. In agent programming frameworks, the intuition behind the
failure condition is that it expresses a property of the state of the
agent (or of the environment) from which it is not possible to reach
the goal, i.e., the idea is that if the failure condition holds, the goal
is unachievable [12]. The advantage of using such a failure condi-
tion that can be evaluated on the current state only, is that the agent
does not have to reason about its future courses of action, checking
whether a goal is achievable or not. The disadvantage is that it puts
a burden on the programmer, who has to formulate these failure
conditions.

A further difference is that single-minded commitment in [10] is
defined regarding intentions about the future. That is, the property
is formulated as INTEND(A � φ) → A(INTEND(A � φ) U (B(φ) ∨
¬B(E�φ))). In this BDI logic, the semantics of INTEND is defined
using an accessibility relation that is defined over a temporal struc-
ture. Here, it is intuitive that intentions express desired properties
of future states. In agent programming frameworks such as the one
presented in this paper, however, the Ga(φ, ψ) operator is not eval-
uated over a temporal structure, but the semantics is defined on the
basis of the goal base of the current state. Nevertheless, the idea of
achievement goals in agent programming frameworks is, of course,
that these represent a desired future state of affairs.

Proposition 2 is a variant of what has been termed “blind com-
mitment” in [10], and what are called “persistent goals” in [3]. This
property expresses that an agent should not drop its goals before
it believes to have achieved them. Regarding this property, we re-
mark the following. In [10], it is suggested that the various kinds of
commitments yield various kinds of agents, i.e., an agent can, e.g.,
be blindly committed. In the agent programming framework pre-
sented in this paper, the level of commitment can vary from goal
to goal. That is, blind commitment can be modeled as a certain
kind of single-minded commitment using ⊥ as the failure condi-
tion. We thus did not have to introduce an additional kind of goal
with a “blind commitment semantics”. This could be considered an
advantage.

Proposition 3 intuitively specifies that intentions are a subset of
the goals. This is a variant of a property of the BDI logic of [10].
In [10], the property is defined for so-called O-formulas, i.e., κ is
then an O-formula. An O-formula is a formula containing no pos-
itive occurrences of the temporal A operator outside the scope of
the modal operators for belief, goal, and intention. Intuitively, this
property holds for the programming language of this paper, since
“intentions” or plans are generated on the basis of goals, i.e., a
plan cannot be created without a corresponding achievement goal.
Moreover, if a goal is removed, its corresponding plans are also re-
moved. Note that while the commitment strategies were defined for
intentions in [10] and hold for goals in our framework, the property
of the BDI logic that relates goals and intentions does map directly
to goals and (what we have defined as) intentions in our framework.

4.2.2 Robustness of the Properties
The fact that the properties of Section 4.1 hold for agents pro-

grammed in the presented programming language, depends on how
we have defined the semantics of the programming language, and
also on how we have defined the semantics of the CT Lapl operators.
In this section, we discuss whether the proven properties continue
to hold if we make certain changes to the semantics of the program-
ming language and/or the semantics of CT Lapl.

An important issue has to do with whether goals may already be
believed to be achieved. An alternative semantics of the operator
Ga(φ, ψ) could be obtained by adding the condition “φ < Vb(c) and
ψ < Vb(c)” to the semantics, expressing that the formula Ga(φ, ψ)
holds if φ or ψ is not already believed to be achieved. Such a se-
mantics is often defined for goal operators in agent programming
languages (see, e.g., [7]). If we would have defined the seman-
tics of the operator in our CT Lapl language in this way, the prop-
erty of single-minded commitment would still hold. The formula
Ga(φ, ψ) would then not hold anymore as soon as either φ or ψ are
believed, which is exactly what we want in order to achieve single-
minded commitment. We have, however, not defined the semantics
of CT Lapl in this way for reasons of simplicity.

Another issue has to do with the semantics of the U operator. The
semantics of the until operator is defined as the so-called “weak un-
til”. That is, in order for φ U ψ to hold, it is allowed that φ keeps
holding indefinitely. If the semantics of the until operator would
have been defined as a strong until, it would have to be the case
that ψ holds at some point. Under the strong until, the property of
single-minded commitment does not hold. The reason is that it is
not guaranteed that the agent will drop its goal. It can be the case
that a goal (φ, ψ) remains in the goal base without φ or ψ ever be-
coming true. This is in contrast with properties attributed to goals
in [3, 10], as in those logics there can be no so-called “infinite de-
ferral”, meaning that the agent has to drop its goal at some point in
time.

Further, we make a remark regarding the property of Proposition
3. This property holds, partly because plans are removed from the
plan base as soon as a corresponding goal is removed from the goal
base. Therefore it cannot be the case that there is a plan in the plan
base without there being a corresponding goal in the goal base. In,
e.g., the semantics of 3APL as defined in [1], plans remain in the
plan base, even if a corresponding goal is removed. Under such a
semantics of the programming language, Proposition 3 thus does
not hold.

5. CONCLUSION
In this paper, we showed how a BDI-based agent-oriented pro-

gramming language can be related to a BDI specification language.
The relation allows us to prove that certain properties expressed
in the specification language hold for the agent programming lan-
guage, and thus for all individual agents that are implemented in
this agent programming language. We used here a very simple
agent programming language which can be extended in many dif-
ferent ways. In fact, we have already developed a BDI-based agent-
oriented programming languages with first-order belief and goal
expressions, complex plans and reasoning rules. For this agent pro-
gramming language we aim at proving desirable properties similar
to those discussed in this paper. Doing this we can ensure that the
semantics of our agent programming language is defined and im-
plemented correctly. This work can thus be considered as a first
step in that direction. In [2], a comparable effort is undertaken for
the agent programming language AgentSpeak. The specification
language in that work is, however, not a temporal logic, and the

properties proven are different (not related to dynamics of goals).
At this moment our agent programming language is not expressive
enough to support the implementation of composite mental atti-
tudes such as beliefs about beliefs and goals (or goals to have cer-
tain beliefs). This was the reason why we modified and simplified
the BDICT L specification language. Extending the agent program-
ming language with operators that can be nested makes it possible
to prove also these kinds of properties for the programming lan-
guage. It should be noted that our focus in this paper was on in-
dividual agent properties. Future research is needed to study the
multi-agent system properties. Finally, we are currently develop-
ing a logic for an agent programming language (similar to one pre-
sented in this paper) with sound and complete axiomatisation that
allows reasoning about agent programs. Such a logic can be used
to verify safety and liveness properties of particular agent programs
that are executed according to a certain execution strategy, e.g., exe-
cuting multiple plans in parallel and interleaving mode or executing
single plans atomically.

6. REFERENCES
[1] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah

Seghrouchni. Multi-Agent Programming: Languages,
Platforms and Applications. Springer, Berlin, 2005.

[2] Rafael H. Bordini and Alvaro F. Moreira. Proving the
asymmetry thesis principles for a BDI agent-oriented
programming language. Electronic Notes in Theoretical
Computer Science, 70(5), 2002.

[3] Philip R. Cohen and Hector J. Levesque. Intention is choice
with commitment. Artificial Intelligence, 42, 1990.

[4] M. Dastani, D. Hobo, and J.-J. Ch Meyer. Practical
extensions in agent programming languages. In Proceedings
of AAMAS 2007. ACM Press, 2007.

[5] Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Ch.
Meyer. Goal types in agent programming. In Proceedings of
ECAI’06, 2006.

[6] E. A. Emerson and J. Y. Halpern. ”sometimes” and ”not
never” revisited: on branching versus linear time temporal
logic. Journal of the ACM, 33(1):151–178, 1986.

[7] K.V. Hindriks, F.S. de Boer, W. van der Hoek, and J.-J. Ch
Meyer. Agent programming with declarative goals. In
Proceedings of ATAL’2000), LNAI.

[8] J.-J. Ch Meyer, W. van der Hoek, and B. van Linder. A
logical approach to the dynamics of commitments. Arificial
Intelligence, 113:1–40, 1999.

[9] Anand S. Rao. AgentSpeak(L): BDI agents speak out in a
logical computable language. In W. van der Velde and J.W.
Perram, editors, Agents Breaking Away (LNAI 1038), 1996.

[10] Anand S. Rao and Michael P. Georgeff. Modeling rational
agents within a BDI-architecture. In J. Allen, R. Fikes, and
E. Sandewall, editors, Proceedings of KR’91, pages
473–484, 1991.

[11] K. Schild. On the relationship between BDI-logics and
standard logics of concurrency. Autonomous agents and
multi-agent systems, 3:259–283, 2000.

[12] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah.
Declarative and procedural goals in intelligent agent systems.
In Proc. of KR’02, 2002.

[13] Laurens Winkelhagen, Mehdi Dastani, and Jan Broersen.
Beliefs in agent implementation. In Proceedings DALT 2005,
LNCS 3904. Springer, 2006.

[14] Michael Woolridge. Introduction to Multiagent Systems.
John Wiley & Sons, Inc., 2002.

