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Abstract

In this paper, we give an operational and denotational semantics for a meta-language of the 3APL agent programming language.
With this meta-language, various 3APL interpreters can be programmed. We prove equivalence of the operational and denota-
tional semantics. Furthermore, we give an operational semantics for object-level 3APL. Using this semantics, we relate the 3APL
meta-language to object-level 3APL by providing a specific interpreter, the semantics of which will prove to be equivalent to object-
level 3APL.
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1. Introduction

An agent is commonly seen as an encapsulated computer system that is situated in some environment and that is
capable of flexible, autonomous action in that environment in order to meet its design objectives [19]. Autonomy
means that an agent encapsulates its state and makes decisions about what to do based on this state, without the direct
intervention of humans or others. Agents are situated in some environment which can change during the execution
of the agent. This requires flexible problem solving behaviour, i.e., the agent should be able to respond adequately
to changes in its environment. Programming flexible computing entities is not a trivial task. Consider for example a
standard procedural language. The assumption in these languages is that the environment does not change while some
procedure is executing. If problems do occur during the execution of a procedure, the program might throw an excep-
tion and terminate (see also [20]). This works well for many applications, but we need something more if change is the
norm and not the exception.

A philosophical view that is well recognized in the AI literature is that rational behaviour can be explained in terms
of the concepts of beliefs, goals and plans 1 [2,13,3]. This view has been taken up within the AI community in the
sense that it might be possible to program flexible, autonomous agents using these concepts. The idea is that an agent
tries to fulfill its goals by selecting appropriate plans, depending on its beliefs about the world. Beliefs should thus

∗Corresponding author.
E-mail addresses: birna@cs.uu.nl (M.B. van Riemsdijk), jj@cs.uu.nl (J.-J.Ch. Meyer), frb@cwi.nl (F.S. de Boer).
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represent the world or environment of the agent; the goals represent the state of the world the agent wants to realize and
plans are the means to achieve these goals. When programming in terms of these concepts, beliefs can be compared
to the program state, plans can be compared to statements, i.e., plans constitute the procedural part of the agent, and
goals can be viewed as the (desired) postconditions of executing the statement or plan. Through executing a plan, the
world and therefore the beliefs reflecting the world will change and this execution should have the desired result, i.e.,
achievement of goals.

This view has been adopted by the designers of the agent programming language 3APL 2 [7]. The dynamic parts of
a 3APL agent thus consist of a set of beliefs, a plan 3 and a set of goals. 4 A plan can consist of sequences of so-called
basic actions and abstract plans. Basic actions change the beliefs 5 if executed and abstract plans can be compared to
procedure names. To provide for the possibility of programming flexible behaviour, so-called plan revision rules were
added to the language. These rules can be compared to procedures in the sense that they have a head (the procedure
name) and a body (a plan or statement). The operational meaning of plan revision rules is similar to that of procedures:
if the procedure name or head is encountered in a statement or plan, this name or head is replaced by the body of
the procedure or rule, respectively (see [1] for the operational semantics of procedure calls). The difference however
is that the head in a plan revision rule can be any plan (or statement) and not just a procedure name. In procedural
languages it is furthermore usually assumed that procedure names are distinct. In 3APL however, it is possible that
multiple rules are applicable at the same time. This provides for very general and flexible plan revision capabilities,
which is a distinguishing feature of 3APL compared to other agent programming languages [12,16,6].

As argued, we consider these general plan revision capabilities to be an essential part of agenthood. The introduction
of these capabilities now gives rise to interesting issues concerning the semantics of plan execution, the exploration of
which is the topic of this paper.

Semantics of plan execution can be considered on two levels. On the one hand, the semantics of object-level 3APL
can be studied as a function yielding the result of executing a plan on an initial belief base, where the plan can be revised
through plan revision rules during execution. An interesting question is whether a denotational semantic function can
be defined that is compositional in its plan argument.

On the other hand, the semantics of a 3APL interpreter language or meta-language can be studied, where a plan
and a belief base are considered the data on which the interpreter or meta-program operates. This meta-language is the
main focus of this paper. To be more specific, we define a meta-language and provide an operational and denotational
semantics for it. These will be proven equivalent. We furthermore define a very general interpreter in this language, the
semantics of which will prove to be equivalent to the semantics of object-level 3APL.

For regular procedural programming languages, studying a specific interpreter language is in general not very
interesting. In the context of agent programming languages it however is, for several reasons. First of all, 3APL and
agent-oriented programming languages in general are non-deterministic by nature. In the case of 3APL for example,
it will often occur that several plan revision rules are applicable at the same time. Choosing a rule for application (or
choosing whether to execute an action from the plan or to apply a rule if both are possible) is the task of a 3APL
interpreter. The choices made affect the outcome of the execution of the agent. In the context of agents, it is interesting
to study various interpreters, as different interpreters will give rise to different agent types. An interpreter that for
example always executes a rule if possible, thereby deferring action execution, will yield a thoughtful and passive
agent. In a similar way, very bold agents can be constructed or agents with characteristics anywhere on this spectrum.
These conceptual ideas about various agent types fit well within the agent metaphor and therefore it is worthwhile to
study an interpreter language and the interpreters that can be programmed in it (see also [4]).

Secondly, as pointed out by Hindriks [8], differences between various agent languages often mainly come down to
differences in their meta-level reasoning cycle or interpreter. To provide for a comparison between languages, it is thus
important to separate the semantic specification of object-level and meta-level execution.

Finally, and this was the original motivation for this work, we hope that the specification of a denotational semantics
for the meta-language might shed some light onto the issue of specifying a denotational semantics for object-level

2 3APL is to be pronounced as “triple-a-p-l”.
3 In the original version this was a set of plans.
4 The addition of goals was a recent extension [14].
5 A change in the environment is a possible “side effect” of the execution of a basic action.
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3APL. It however seems, contrary to what one might think that the denotational semantics of the meta-language cannot
be used to define a denotational semantics for object-level 3APL. We will elaborate on this issue in Section 6.2.

2. Syntax

2.1. Object-level

As stated in the introduction, the latest version of 3APL incorporates beliefs, goals and plans. In this paper, we will
however consider a version of 3APL with only beliefs and plans as was defined in [7]. The reason is that in this paper we
focus on the semantics of plan execution, for the treatment of which only beliefs and plans will suffice. The language
defined in [7] is a first-order language, a propositional and otherwise slightly simplified version of which we will use in
this paper.

In the sequel, a language defined by inclusion shall be the smallest language containing the specified elements.

Definition 1 (belief bases). Assume a propositional language L with typical formula � and the connectives ∧ and ¬
with the usual meaning. Then the set of possible belief bases � with typical element � is defined to be ℘(L).

Definition 2 (plans). Assume that a set BasicAction with typical element a is given, together with a set AbstractPlan.
The symbol E denotes the empty plan. Then the set of plans � with typical element � is defined as follows:

• {E} ∪ BasicAction ∪ AbstractPlan ⊆ �,
• if c ∈ ({E} ∪ BasicAction ∪ AbstractPlan) and � ∈ � then c ; � ∈ �. 6

A plan E; � is identified with the plan �.

For reasons of presentation and technical convenience we exclude non-deterministic choice and test from plans.
This is no fundamental restriction as non-determinism is introduced by plan revision rules (to be introduced below).
Furthermore, tests can be modelled as basic actions that do not affect the state if executed (for semantics of basic actions
see Definition 8).

A plan and a belief base can together constitute the so-called mental state of a 3APL agent. A mental state can be
compared to what is usually called a configuration in procedural languages, i.e., a statement-state pair.

Definition 3 (mental states). Let � be the set of belief bases and let � be the set of plans. Then � × � is the set S of
possible mental states of a 3APL agent.

Definition 4 (plan revision (PR) rules). A PR rule � is a triple �h | �� �b such that � ∈ L, �h, �b ∈ � and �h �= E.

Definition 5 (3APL agent). A 3APL agent A is a tuple 〈�0, �0, BasicAction, AbstractPlan, Rule, T 〉 where 〈�0, �0〉 is
the initial mental state, BasicAction, AbstractPlan and Rule are finite sets of basic actions, abstract plans and PR rules,
respectively, and T : (BasicAction × �) → � is a partial function, defining belief update through action execution.

In the following, when referring to agent A, we will assume this agent to have a set of basic actions BasicAction, a
set of abstract plans AbstractPlan, a set of PR rules Rule and a belief update function T .

2.2. Meta-level

In this section, we define the meta-language that can be used to write 3APL interpreters. The programs that can
be written in this language will be called meta-programs. Like regular imperative programs, these programs are state
transformers. The kind of states they transform however do not simply consist of an assignment of values to variables
like in regular imperative programming, but the states that are transformed are 3APL mental states. In Section 3.2, we

6 For technical convenience, plans are defined to have a list structure.
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will define the transition system with which we will define the operational semantics of our meta-programs. We will
do this using the concept of a meta-configuration. A meta-configuration consists of a meta-program and a mental state,
i.e., the meta-program is the procedural part and the mental state is the “data” on which the meta-program operates.

The basic elements of meta-programs are the execute action and the apply(�) action (called meta-actions). The
execute action is used to specify that a basic action from the plan of an agent should be executed. The apply(�) action
is used to specify that a PR rule � should be applied to the plan. Composite meta-programs can be constructed in a
standard way.

Below, the meta-programs and meta-configurations for agent A are defined.

Definition 6 (meta-programs). We assume a set Bexp of boolean expressions with typical element b. Let b ∈ Bexp
and � ∈ Rule, then the set Prog of meta-programs with typical element P is defined as follows:

P ::= execute | apply(�) | while b do P od | P1; P2 | P1 + P2.

Definition 7 (meta-configurations). Let Prog be the set of meta-programs and let S be the set of mental states. Then
Prog × S is the set of possible meta-configurations.

3. Operational semantics

In [7], the operational semantics of 3APL is defined using transition systems [11]. A transition system for a pro-
gramming language consists of a set of derivation rules for deriving transitions for this language. A transition is a
transformation of one configuration into another and it corresponds to a single computation step. In the following
section, we will repeat the transition system for 3APL given in [7] (adapted to fit our simplified language) and we will
call it the object-level transition system. We will furthermore give a transition system for the meta-programs defined in
Section 2.2 (the meta-level transition system). Then in the last section, we will define the operational semantics of the
object- and meta-programs using the defined transition systems.

3.1. Object-level transition system

The transition systems defined in this and the following section assume 3APL agent A. The object-level transition
system (Transo) is defined by the rules given below. The transitions are labelled to denote the kind of transition.

Definition 8 (action execution). Let a ∈ BasicAction.

T (a, �) = �′

〈a; �, �〉 →execute 〈�, �′〉
In the next definition, we use the operator •. The statement �1 • �2 denotes a plan of which �1 is the first part and �2

is the second, i.e., �1 is the prefix of this plan. We need this operator because plans are defined to have a list structure
(see Definition 2).

Definition 9 (rule application). Let � : �h | �� �b ∈ Rule

���

〈�h • �, �〉 →apply(�) 〈�b • �, �〉
3.2. Meta-level transition system

The meta-level transition system (Transm) is defined by the rules below, specifying which transitions from one meta-
configuration to another are possible. As for the object-level transition system, the transitions are labelled to denote the
kind of transition.

An execute meta-action is used to execute a basic action. It can thus only be executed in a mental state, if the first
element of the plan in that mental state is a basic action. As in the object-level transition system, the basic action a
must be executable and the result of executing a on belief base � is defined using the function T . After executing the
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meta-action execute, the meta-program is empty and the basic action is gone from the plan. Furthermore, the belief
base is changed as defined through T .

Definition 10 (action execution). Let a ∈ BasicAction

T (a, �) = �′

〈execute, (a; �, �)〉 →execute 〈E, (�, �′)〉 .

A meta-action apply(�) is used to specify that PR rule � should be applied. It can be executed in a mental state if �
is applicable in that mental state. The execution of the meta-action in a mental state results in the plan of that mental
state being changed as specified by the rule.

Definition 11 (rule application). Let � : �h | �� �b ∈ Rule.

���

〈apply(�), (�h • �, �)〉 →apply(�) 〈E, (�b • �, �)〉
In order to define the transition rule for the while construct, we first need to specify the semantics of boolean

expressions Bexp.

Definition 12 (semantics of boolean expressions). We assume a function W of type Bexp → (S → W) yielding the
semantics of boolean expressions, where W is the set of truth values {tt, ff } with typical formula �.

The transition for the while construct is then defined in a standard way below. The transition is labelled with idle,
to denote that this is a transition that does not have a counterpart in the object-level transition system.

Definition 13 (while).

W(b)(s)

〈while b do P od, s〉 →idle 〈P ; while b do P od, s〉
¬W(b)(s)

〈while b do P od, s〉 →idle 〈E, s〉
The transitions for sequential composition and non-deterministic choice are defined as follows in a standard way.

The variable x is used to pass on the type of transition through the derivation.

Definition 14 (sequential composition). Let x ∈ {execute, apply(�), idle | � ∈ Rule}.

〈P1, s〉 →x 〈P ′
1, s

′〉
〈P1; P2, s〉 →x 〈P ′

1; P2, s′〉
Definition 15 (non-deterministic choice). Let x ∈ {execute, apply(�), idle | � ∈ Rule}.

〈P1, s〉 →x 〈P ′
1, s

′〉
〈P1 + P2, s〉 →x 〈P ′

1, s
′〉

〈P2, s〉 →x 〈P ′
2, s

′〉
〈P1 + P2, s〉 →x 〈P ′

2, s
′〉

3.3. Operational semantics

Using the transition systems defined in the previous section, transitions can be derived for 3APL and for the meta-
programs. Individual transitions can be put in sequel, yielding so called computation sequences. In the following
definitions, we define computation sequences and we specify the functions yielding these sequences, for the object-
and meta-level transition systems. We also define the function �, yielding the last element of a computation sequence
if this sequence is finite and the special state ⊥ otherwise. These functions will be used to define the operational
semantics.
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Definition 16 (computation sequences). The sets S+ and S∞ of, respectively, finite and infinite computation sequences
are defined as follows:

S+ = {s1, . . . , si , . . . , sn | si ∈ S, 1� i�n, n ∈ N},
S∞ = {s1, . . . , si , . . . | si ∈ S, i ∈ N}.

Let S⊥ = S ∪ {⊥} and 	 ∈ S+ ∪ S∞. The function � : (S+ ∪ S∞) → S⊥ is defined by

�(	) =
{

last element of 	 if 	 ∈ S+,

⊥ otherwise.

The function � is extended to handle sets of computation sequences as follows: �({	i | i ∈ I }) = {�(	i ) | i ∈ I }.

Definition 17 (functions for calculating computation sequences). The functions Co and Cm are, respectively, of type
S → ℘(S+ ∪ S∞) and Prog → (S → ℘(S+ ∪ S∞)).

Co(s) = {s1, . . . , sn ∈ ℘(S+) | s →t1 s1 →t2 · · · →tn 〈E, �n〉
is a finite sequence of transitions in Transo} ∪
{s1, . . . , si , . . . ∈ ℘(S∞) | s →t1 s1 →t2 · · · →ti si →ti+1 . . .

is an infinite sequence of transitions in Transo}
Cm(P )(s) = {s1, . . . , sn ∈ ℘(S+) | 〈P, s〉 →x1 〈P1, s1〉 →x2 · · · →xn 〈E, sn〉

is a finite sequence of transitions in Transm} ∪
{s1, . . . , si , . . . ∈ ℘(S∞) | 〈P, s〉 →x1 〈P1, s1〉 →x2 · · · →xi

〈Pi, si〉 →xi+1 · · ·
is an infinite sequence of transitions in Transm}.

Note that both Co and Cm return sequences of mental states. Co just returns the mental states comprising the sequences
of transitions derived in Transo, whereas Cm removes the meta-program component of the meta-configurations of the
transition sequences derived in Transm. The reason for defining these functions in this way is that we want to prove
equivalence of the object- and meta-level transition systems: both yield the same transition sequences with respect to
the mental states (or that is for a certain meta-program, see Section 4). Also note that for Co as well as for Cm, we only
take into account infinite sequences and successfully terminating sequences, i.e., those sequences ending in a mental
state or meta-configuration with an empty plan or meta-program, respectively.

The operational semantics of object- and meta-level programs are functions Oo and Om, yielding, for each mental
state s and possibly meta-program P, a set of mental states corresponding to the final states reachable through executing
the plan of s or executing the meta-program P, respectively. If there is an infinite execution path, the set of mental states
will contain the element ⊥.

Definition 18 (operational semantics). Let s ∈ S. The functions Oo and Om are, respectively, of type S⊥ → ℘(S⊥)

and Prog → (S⊥ → ℘(S⊥)).

Oo(s) = �(Co(s)),

Om(P )(s) = �(Cm(P )(s)),

Oo(⊥) = Om(P )(⊥) = {⊥}.

Note that the operational semantic functions can take any state s ∈ S⊥, including ⊥, as input. This will turn out to
be necessary for giving the equivalence result of Section 6.

4. Equivalence of Oo and Om

In the previous section, we have defined the operational semantics for 3APL and for meta-programs. Using the
meta-language, one can write various 3APL interpreters. Here we will consider an interpreter of which the operational
semantics will prove to be equivalent to the object-level operational semantics of 3APL. This interpreter for agent A
is defined by the following meta-program.
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Definition 19 (interpreter). Let
⋃n

i=1 �i = Rule, s ∈ S and let notEmptyPlan ∈ Bexp be a boolean expression such
that W(notEmptyPlan)(s) = tt if the plan component of s is not equal to E and W(notEmptyPlan)(s) = ff otherwise.
Then the interpreter can be defined as follows:

while notEmptyPlan do (execute + apply(�1) + · · · + apply(�n)) od.

In the sequel, we will use the keyword interpreter to abbreviate this meta-program.

This interpreter thus iterates the execution of a non-deterministic choice between all basic meta-actions, until the plan
component of the mental state is empty. Intuitively, if there is a possibility for the interpreter to execute some meta-action
in mental state s, resulting in a changed state s′, it is also possible to go from s to s′ in an object-level execution through
a corresponding object-level transition. At each iteration, an executable meta-action is non-deterministically chosen for
execution. The interpreter thus, as it were, non-deterministically chooses a path through the object-level transition tree.
The possible transitions defined by this interpreter correspond to the possible transitions in the object-level transition
system and therefore the object-level operational semantics is equivalent to the meta-level operational semantics of this
meta-program. 7

We prove the equivalence result by proving a weak bisimulation between Transo and Transm(interpreter), which
are defined assuming agent A (see the text below Definition 5 and Section 3.1). From this, we can then prove that Oo
and Om(interpreter) are equivalent. In order to do this, we first state the following proposition. It follows immediately
from the transition systems.

Proposition 1 (object-level versus meta-level transitions).

s →execute s′ is a transition in Transo ⇔
〈execute, s〉 →execute 〈E, s′〉 is a transition in Transm

s →apply(�) s′ is a transition in Transo ⇔
〈apply(�), s〉 →apply(�) 〈E, s′〉 is a transition in Transm

A weak bisimulation between two transition systems in general, is a relation between the systems such that the
following holds: if a transition step can be derived in system one, it should be possible to derive a “similar” (sequence
of) transition(s) in system two and if a transition step can be derived in system two, it should be possible to derive
a “similar” (sequence of) transition(s) in system one. To explain what we mean by “similar” transitions, we need the
notion of an idle transition. In a transition system, certain kinds of transitions can be labelled as an idle transition, for
example transitions derived using the while rule (Definition 13). These transitions can be considered “implementation
details” of a certain transition system and we do not want to take these into account when studying the relation between
this and another transition system. A non-idle transition in system one now is similar to a sequence of transitions in
system two if the following holds: this sequence of transitions in system two should consist of one non-idle transition
and otherwise idle transitions, and the non-idle transition in this sequence should be similar to the transition in system
one, i.e., the relevant elements of the configurations involved, should match.

In the context of our transition systems Transo and Transm, we can now phrase the following bisimulation lemma.

Lemma 1 (weak bisimulation). Let +∗ abbreviate (execute + apply(�1)+· · ·+ apply(�n)). Let Transm(P ) be the re-
striction of Transm to those transitions that are part of some sequence of transitions starting in initial
meta-configuration 〈P, s0〉, with s0 ∈ S an arbitrary mental state and let t ∈ {execute, apply(�) | � ∈ Rule}.
Then a weak bisimulation exists between Transo and Transm(interpreter), i.e., the following properties hold.

s →t s′ is a transition in Transo ⇒1
〈interpreter, s〉 →idle 〈+∗; interpreter, s〉 →t 〈interpreter, s′〉

is a transition in Transm(interpreter)

7 The result only holds if PR rules of the form E | �� �b are excluded from the set of rules under consideration, as was specified in Definition 4.
A relaxation of this condition would call for a slightly different interpreter to yield the equivalence result. For reasons of space and clarity, we will
however not discuss this possibility here.
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〈+∗; interpreter, s〉 →t 〈interpreter, s′〉
is a transition in Transm(interpreter) ⇒2

s →t s′is a transition in Transo

Proof. (⇒1) Assume s →t s′ is a transition in Transo for t ∈ {execute, apply(�) | � ∈ Rule}. Using Proposition 1, the
following then is a transition in Transm:

〈(execute + apply(�1) + · · · + apply(�n)); interpreter, s〉 →t 〈interpreter, s′〉. (1)

Furthermore, by the assumption that s →t s′ is a transition in Transo and by the assumption that no reactive rules
are contained in Rule (see introduction of Section 4), we know that the plan of s is not empty as both rule application
and basic action execution require a non-empty plan. Now, using the fact that the plan of s is not empty, the following
transition can be derived in Transm(interpreter):

〈interpreter, s〉 →idle 〈(execute + apply(�1) + · · · + apply(�n)); interpreter, s〉. (2)

The transitions (2) and (1) can be concatenated, yielding the desired result.
(⇒2) Assume 〈+∗; interpreter, s〉 →t 〈interpreter, s′〉 is a transition in Transm(interpreter). Then, 〈+∗, s〉 →t

〈E, s′〉 must be a transition in Transm (Definition 14). Therefore, by Proposition 1, we can conclude that s →t s′ is a
transition in Transo. �

We are now in a position to give the equivalence theorem of this section.

Theorem 1 (Oo = Om(interpreter)).

∀s ∈ S : Oo(s) = Om(interpreter)(s).

Proof. As equivalence of object-level and meta-level operational semantics holds for input state ⊥ by Definition 18,
we will only need to prove equivalence for input states s ∈ S. Proving this theorem amounts to showing the following:
s ∈ Oo ⇔ s ∈ Om(interpreter).

(⇒) Assume s ∈ Oo. This means that a sequence of transitions s0 →t1 · · · →tn s must be derivable in Transo. By
repeated application of Lemma 1, we know that then there must also be a sequence of transitions in Transm(interpreter)
of the following form:

〈interpreter, s0〉 →idle · · · →tn−1 〈interpreter, s′〉 →idle 〈+∗; interpreter, s′〉 →tn 〈interpreter, s〉. (3)

As s ∈ Oo, we know that there cannot be a transition s →tn+1 s′′ for some mental state s′′, i.e., it is not possible to
execute an execute or apply meta-action in s. Therefore, we know that the only possible transition from 〈interpreter, s〉
in (3) above, is · · · →idle 〈E, s〉. From this, we have that s ∈ Om(interpreter).

(⇐) Assume that s ∈ Om(interpreter). Then there must be a sequence of transitions in Transm(interpreter) of the
form:

〈interpreter, s0〉 →idle 〈+∗; interpreter, s0〉 →t1 · · · →tn−1

〈interpreter, s′〉 →idle 〈+∗; interpreter, s′〉 →tn 〈interpreter, s〉 →idle 〈E, s〉.
From this, we can conclude by Lemma 1 that s0 →t1 · · · →tn−1 s′ →tn s �→ must be a sequence of transitions in
Transo. Therefore, it must be the case that s ∈ Oo. �

Note that it is easy to show that Oo = Om(P ) does not hold for all meta-programs P.

5. Denotational semantics

In this section, we will define the denotational semantics of meta-programs. The method used is the fixed point
approach as can be found in Stoy [17]. The semantics greatly resembles the one in de Bakker [1, Chapter 7] to which
we refer for a detailed explanation of the subject.
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A denotational semantics for a programming language in general is, like an operational semantics, a function taking
a statement P and a state s and yielding a state (or set of states in case of a non-deterministic language) resulting from
executing P in s. The denotational semantics for meta-programs is thus, like the operational semantics of Definition 18,
a function taking a meta-program P and mental state s and yielding the set of mental states resulting from executing
P in s, i.e., a function of type Prog → (S⊥ → ℘(S⊥)). 8 Contrary however to an operational semantic function, a
denotational semantic function is not defined using the concept of computation sequences and, in contrast with most
operational semantics, it is defined compositionally [18,10,1].

5.1. Preliminaries

In order to define the denotational semantics of meta-programs, we need some mathematical machinery. Most
importantly, the domains used in defining the semantics of meta-programs are designed as so-called complete partial
orders (CPOs). A CPO is a set with an ordering on its elements with certain characteristics. This concept is defined
in terms of the notions of partially ordered sets, least upper bounds and chains (see also de Bakker [1] for a rigorous
treatment of the subject).

Definition 20 (partially ordered set). Let C be an arbitrary set. A partial order � on C is a subset of C × C which
satisfies:
(1) c � c (reflexivity),
(2) if c1 � c2 and c2 � c1 then c1 = c2 (antisymmetry),
(3) if c1 � c2 and c2 � c3 then c1 � c3 (transitivity).

In the sequel, we will be concerned not only with arbitrary sets with partial orderings, but also with sets of functions
with an ordering. A partial ordering on a set of functions of type C1 → C2 can be derived from the orderings on C1
and C2 as defined below.

Definition 21 (partial ordering on functions). Let (C1, �1) and (C2, �2) be two partially ordered sets. An ordering
� on C1 → C2 is defined as follows, where f, g ∈ C1 → C2:

f � g ⇔ ∀c ∈ C1 : f (c) �2 g(c).

Definition 22 (least upper bound). Let C′ ⊆ C. z ∈ C is called the least upper bound of C′ if:
(1) z is an upper bound: ∀x ∈ C′ : x � z,
(2) z is the least upper bound: ∀y ∈ C : ((∀x ∈ C′ : x � y) ⇒ z � y).

The least upper bound of a set C′ will be denoted by
⊔

C′.

Definition 23 (least upper bound of a sequence). The least upper bound of a sequence 〈c0, c1, . . .〉 is denoted
by

⊔∞
i=0 ci or by

⊔〈ci〉∞i=0 and is defined as follows, where “c in 〈ci〉∞i=0” means that c is an element of the sequence
〈ci〉∞i=0:

⊔ 〈ci〉∞i=0 = ⊔{c | c in 〈ci〉∞i=0}.

Definition 24 (chains). A chain on (C, �) is an infinite sequence 〈ci〉∞i=0 such that for i ∈ N : ci � ci+1.

Having defined partially ordered sets, least upper bounds and chains, we are now in a position to define complete
partially ordered sets.

8 The type of the denotational semantic function is actually slightly different as will become clear in the sequel, but that is not important for the
current discussion.
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Definition 25 (CPO). A complete partially ordered set is a set C with a partial order � which satisfies the following
requirements:
(1) there is a least element with respect to �, i.e., an element ⊥ ∈ C such that ∀c ∈ C : ⊥ � c,
(2) each chain 〈ci〉∞i=0 in C has a least upper bound (

⊔∞
i=0 ci) ∈ C.

The semantics of meta-programs will be defined using the notion of the least fixed point of a function on a CPO.

Definition 26 (least fixed point). Let (C, �) a CPO, f : C → C and let x ∈ C.
• x is a fixed point of f iff f (x) = x.
• x is a least fixed point of f iff x is a fixed point of f and for each fixed point y of f: x � y.
The least fixed point of a function f is denoted by 
f .

Finally, we will need the following definition and fact.

Definition 27 (continuity). Let (C1, �1), (C2, �2) be CPOs. Then a function f : C1 → C2 is continuous iff for each
chain 〈ci〉∞i=0 in C1, the following holds:

f

( ∞⊔
i=0

ci

)
=

∞⊔
i=0

f (ci).

Fact 1 (fixed point theorem): Let C be a CPO and let f : C → C. If f is continuous, then the least fixed point 
f

exists and equals
⊔∞

i=0 f i(⊥), where f 0(⊥) = ⊥ and f i+1(⊥) = f (f i(⊥)).
For a proof, see, for example de Bakker [1].

5.2. Definition

We will now show how the domains used in defining the semantics of meta-programs are designed as CPOs. The
reason for designing these as CPOs will become clear in the sequel.

Definition 28 (domains of interpretation). Let W be the set of truth values of Definition 12 and let S be the set of
possible mental states of Definition 3. Then the sets W⊥ and S⊥ are defined as CPOs as follows:

W⊥ = W ∪ {⊥W⊥} CPO by �1 � �2 iff �1 = ⊥W⊥ or �1 = �2,

S⊥ = S ∪ {⊥} CPO analogously.

Note that we use ⊥ to denote the bottom element of S⊥ and that we use ⊥C for the bottom element of any other set
C. As the set of mental states is extended with a bottom element, we extend the semantics of boolean expressions of
Definition 12 to a strict function, i.e., yielding ⊥W⊥ for an input state ⊥.

In the definition of the denotational semantics, we will use an if-then-else function as defined below.

Definition 29 (if-then-else). Let C be a CPO, c1, c2, ⊥C ∈ C and � ∈ W⊥. Then the if-then-else function of type
W⊥ → C is defined as follows:

if � then c1 else c2 fi =
⎧⎨
⎩

c1 if � = tt,
c2 if � = ff ,
⊥C if � = ⊥W⊥ .

Because our meta-language is non-deterministic, the denotational semantics is not a function from states to states,
but a function from states to sets of states. These resulting sets of states can be finite or infinite. In case of bounded
non-determinism, 9 these infinite sets of states have ⊥ as one of their members. This property may be explained by
viewing the execution of a program as a tree of computations and then using König’s lemma which tells us that a
finitely-branching tree with infinitely many nodes has at least one infinite path (see [1]). The meta-language is indeed

9 Bounded non-determinism means that at any state during computation, the number of possible next states is finite.



250 M.B. van Riemsdijk et al. / Theoretical Computer Science 351 (2006) 240 –257

bounded non-deterministic, 10 and the result of executing a meta-program P in some state is thus either a finite set of
states or an infinite set of states containing ⊥. We therefore specify the following domain as the result domain of the
denotational semantic function instead of ℘(S⊥).

Definition 30 (T ). The set T with typical element � is defined as follows: T = {� ∈ ℘(S⊥) | � finite or ⊥ ∈ �}.

The advantage of using T instead of ℘(S⊥) as the result domain is that T can nicely be designed as a CPO with the
following ordering [5].

Definition 31 (Egli–Milner ordering). Let �1, �2 ∈ T . �1 � �2 holds iff either ⊥ ∈ �1 and �1 \ {⊥} ⊆ �2, or ⊥ /∈ �1
and �1 = �2. Under this ordering, the set {⊥} is ⊥T .

We are now ready to give the denotational semantics of meta-programs. We will first give the definition and then
justify and explain it.

Definition 32 (denotational semantics of meta-programs). Let �1, �2 : S⊥ → T . Then we define the following
functions.

�̂ : T → T = 
� · ⋃
s∈�

�(s),

�1 ◦ �2 : S⊥ → T = 
s · �̂1(�2(s)).

Let (�, �) ∈ S. The denotational semantics of meta-programs M : Prog → (S⊥ → T ) is then defined as follows.

M�execute�(�, �) =
{ {(�′, �′)} if � = a; �′with a ∈ BasicAction and T (a, �) = �′

∅ otherwise
M�execute� ⊥ = ⊥T

M�apply(�)�(�, �) =
{ {(�b ◦ �′, �)} if ��� and � = �h ◦ �′with � : �h | �� �b ∈ Rule

∅ otherwise
M�apply(�)� ⊥ = ⊥T

M�while b do P od� = 
�
M�P1; P2� = M�P2� ◦ M�P1�

M�P1 + P2� = M�P1� ∪ M�P2�

The function � : (S⊥ → T ) → (S⊥ → T ) used above is defined as 
�·
s·ifW(b)(s)then �̂(M�P �(s))else {s}fi,
using Definition 29.

5.2.1. Meta-actions
The semantics of meta-actions is straight forward. The result of executing an execute meta-action in some mental

state s is a set containing the mental state resulting from executing the basic action of the plan of s. The result is empty
if there is no basic action on the plan to execute. The result of executing an apply(�) meta-action in state s is a set
containing the mental state resulting from applying � in s. If � is not applicable, the result is the empty set.

5.2.2. While
The semantics of the while construct is more involved, but we will only briefly comment on it. For a detailed

treatment, we again refer to de Bakker [1].
What we want to do, is define a function specifying the semantics of the while construct M�while b do P od�,

the type of which should be S⊥ → T , in accordance with the type of M. The function should be defined composi-
tionally, i.e., it can only use the semantics of the guard and of the body of the while. This is required for M to be
well-defined.

10 Only a finite number of rule applications and action executions are possible in any state.
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The requirement of compositionality is satisfied, as the semantics is defined to be the least fixed point of the operator
�, which is defined in terms of the semantics of the guard and body of the while.

The least fixed point of an operator does not always exist. By the fixed point theorem however (fact 1), we know
that if the operator is continuous (Definition 27), the least fixed point does exist and is obtainable within � steps. By
proving that � is continuous, we can thus conclude that 
� exists and therefore that M is well-defined.

Theorem 2 (continuity of �). The function � as given in Definition 32 is continuous.

Proof. See Appendix A. �

Note that in the definition of �, the function � is of type S⊥ → T and M�P �(s) ∈ T . This � can thus not be applied
directly to this set of states in T, but it must be extended using theˆoperator to be of type T → T .

5.2.3. Sequential composition and non-deterministic choice
The semantics of the sequential composition and non-deterministic choice operator is as one would expect.

6. Equivalence of meta-level operational and denotational semantics

In this section, we will state that the operational semantics for meta-programs is equal to the denotational semantics
for meta-programs and we will relate this to the equivalence result of Section 4. We will furthermore discuss the issue
of defining a denotational semantics for object-level 3APL.

6.1. Equivalence theorem

Theorem 3 (Om = M). Let Om : Prog → (S⊥ → ℘(S⊥)) be the operational semantics of meta-programs
(Definition 18) and let M : Prog → (S⊥ → T ) be the denotational semantics of meta-programs (Definition 32).
Then, the following equivalence holds for all meta-programs P ∈ Prog and all mental states s ∈ S⊥.

Om(P )(s) = M(P )(s).

Proof. See Appendix B. �

In Section 4, we stated that the object-level operational semantics of 3APL is equal to the meta-level operational
semantics of the interpreter we specified in Definition 19. Above, we then stated that it holds for any meta-program
that its operational semantics is equal to its denotational semantics. This holds in particular for the interpreter of
Definition 19, i.e., we have the following corollary.

Corollary 1 (Oo = M(interpreter)). From Theorems 1 and 3 we can conclude that the following holds.

Oo = M(interpreter).

6.2. Denotational semantics of object-level 3APL

Corollary 1 states an equivalence between a denotational semantics and the object-level operational semantics for
3APL. The question is, whether this denotational semantics can be called a denotational semantics for object-level
3APL.

A denotational semantics for object-level 3APL should be a function taking a plan and a belief base and returning
the result of executing the plan on this belief base, i.e., a function of type � → (�⊥ → ℘(�⊥)) or equivalently 11 ,
of type (� × �) → ℘(�⊥). The type of M(interpreter), i.e., S⊥ → ℘(S⊥), 12 does not match the desired type. This
could however be remedied by defining the following function.

11 For the sake of argument, we for the moment disregard a ⊥�⊥ input.
12 M(interpreter) is actually defined to be of type S⊥ → T , but T ⊂ ℘(S⊥), so we may extend the result type to ℘(S⊥).



252 M.B. van Riemsdijk et al. / Theoretical Computer Science 351 (2006) 240 –257

Definition 33 (N ). Let snd be a function yielding the second element, i.e., the belief base, of a mental state in S and
yielding ⊥�⊥ for input ⊥. This function is extended to handle sets of mental states through the function ˆ, as was done
in Definition 32. Then N : S⊥ → ℘(�⊥) is defined as follows.

N = 
s · ŝnd(M�interpreter�(s)).

Disregarding a ⊥ input, the function N is of the desired type (� × �) → ℘(�⊥). The question now is, whether
it is legitimate to characterize the function N as being a denotational semantics for 3APL. The answer is no, because
a denotational semantic function should be compositional in its program argument, which in this case is �. This is
obviously not the case for the function N and therefore this function is not a denotational semantics for 3APL.

So, it seems that the specification of the denotational semantics for meta-programs cannot be used to define a
denotational semantics for object-level 3APL. The difficulty of specifying a compositional semantic function is due to
the nature of the PR rules: these rules can transform not just atomic statements, but any sequence of statements. The
semantics of an atomic statement can thus depend on the statements around it. We will illustrate the problem using an
example.

a � b

b; c � d

c � e

Now the question is, how we can define the semantics of a; c. Can it be defined in terms of the semantics of a and c?
The semantics of a would have to be something involving the semantics of b and the semantics of c something with
the semantics of e, taking into account the PR rules given above. The semantics of a; c should however also be defined
in terms of the semantics of d, because of the second PR rule: a; c can be rewritten to b; c, which can be rewritten
to d. Moreover, if b is not a basic action, the third rule cannot be applied and the semantics of e would be irrelevant.
So, although we do not have a formal proof, it seems that the semantics of the sequential composition operator 13 of a
3APL plan or program cannot be defined using only the semantics of the parts of which the program is composed.

Another way to look at this issue is the following. In a regular procedural program, computation can be defined using
the concept of a program counter. This counter indicates the location in the code of the statement that is to be executed
next or the procedure that is to be called next. If a procedure is called, the program counter jumps to the body of this
procedure. Computation of a 3APL program cannot be defined using such a counter. Consider for example the PR
rules defined above and assume an initial plan a; c. Initially, the program counter would have to be at the start of this
initial plan. Then the first PR rule is “called” and the counter jumps to b, i.e., the body of the first rule. According to
the semantics of 3APL, it should be possible to get to the body of the second PR rule, as the statement being executed
is b; c. There is however no reason for the program counter to jump from the body of the first rule to the body of the
second rule.

7. Related work and conclusion

The concept of a meta-language for programming 3APL interpreters was first considered by Hindriks [8]. Our meta-
language is similar to, but simpler than Hindriks’ language. The main difference is that Hindriks includes constructs
for explicit selection of a PR rule from a set of applicable ones. These constructs were not needed in this paper. Dastani
defines a meta-language for 3APL in [4]. This language is similar to, but more extensive than Hindriks’ language.
Dastani’s main contribution is the definition of constructs for explicit planning. Using these constructs, the possible
outcomes of a certain sequence of rule applications and action executions can be calculated in advance, thereby providing
the possibility to choose the most beneficial sequence. Contrary to our paper, these papers do not discuss the relation
between object-level and meta-level semantics, nor do they give a denotational semantics for the meta-language.

Concluding, we have proven equivalence of an operational and denotational semantics for a 3APL meta-language.
We furthermore related this 3APL meta-language to object-level 3APL by proving equivalence between the semantics

13 Or actually of the plan concatenation operator •.
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of a specific interpreter and object-level 3APL. Although these results were obtained for a simplified 3APL language,
we conjecture that it will not be fundamentally more difficult to obtain similar results for full first order 3APL. 14

As argued in the introduction, studying interpreter languages of agent programming languages is important. In the
context of 3APL and PR rules, it is especially interesting to investigate the possibility of defining a denotational or
compositional semantics, for such a compositional semantics could serve as the basis for a (compositional) proof
system. It seems, considering the investigations as described in this paper that it will however be very difficult if not
impossible to define a denotational semantics for object-level 3APL. As it is possible to define a denotational semantics
for the meta-language, an important issue for future research will be to investigate the possibility and usefulness of
defining a proof system for the meta-language, using this to prove properties of 3APL agents.

Appendix A. Continuity of �

The function � : (S⊥ → T ) → (S⊥ → T ) from Definition 32 is defined as follows:


� · 
s · if W(b)(s) then �̂(M�P �(s)) else {s} fi.
In this section, we prove continuity of this function. The proof is analogous to continuity proofs given in [1]. In
Definition 27, the concept of continuity was defined. As we will state below in fact 2, an equivalent definition can be
given using the concept of monotonicity of a function.

Definition 34 (monotonicity). Let (C, �), (C′, �) be CPOs and c1, c2 ∈ C. Then a function f : C → C′ is monotone
iff the following holds:

c1 � c2 ⇔ f (c1) � f (c2).

Fact 2 (continuity): Let (C, �), (C′, �) be CPOs and let f : C → C′ be a function. Then

for all chains 〈ci〉∞i=0 in C : f

( ∞⊔
i=0

ci

)
=

∞⊔
i=0

f (ci)

⇔
f is monotone and for all chains 〈ci〉∞i=0 in C : f

( ∞⊔
i=0

ci

)
�

∞⊔
i=0

f (ci).

Proof. For a proof, we refer to [15]. �

Below, we will prove continuity of � by proving that � is monotone and that for all chains 〈�i〉∞i=0 in S⊥ → T , the
following holds: �(

⊔∞
i=0 �i ) � ⊔∞

i=0 �(�i ).

Lemma 2 (monotonicity of �). The function � as given in Definition 32 is monotone, i.e., the following holds for all
�i , �j ∈ S⊥ → T :

�i � �j ⇒ �(�i ) � �(�j ).

Proof. Take arbitrary �i , �j ∈ S⊥ → T . Let �i � �j . Then we need to prove that ∀s ∈ S⊥ : �(�i )(s) � �(�j )(s).
Take an arbitrary s ∈ S⊥. We need to prove that �(�i )(s) � �(�j )(s), i.e., that

if W(b)(s) then �̂i (M�P �(s)) else {s} fi � if W(b)(s) then �̂j (M�P �(s)) else {s} fi.
We distinguish three cases.

(1) Let W(b)(s) = ⊥W⊥ , then to prove: {⊥} � {⊥}. This is true by Definition 31.
(2) Let W(b)(s) = ff , then to prove: {s} � {s}. This is true by Definition 31.

14 The requirement of bounded non-determinism will in particular not be violated.
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(3) Let W(b)(s) = tt, then to prove: �̂i (M�P �(s)) � �̂j (M�P �(s)). Let �′ = M�P �(s). Using the definition of
�̂, we rewrite what needs to be proven into

⋃
s′∈�′ �i (s

′) � ⋃
s′∈�′ �j (s

′). Now we can distinguish two cases.

(a) Let ⊥ /∈ ⋃
s′∈�′ �i (s

′). Then to prove:
⋃

s′∈�′ �i (s
′) = ⋃

s′∈�′ �j (s
′). From the assumption that ⊥ /∈⋃

s′∈�′ �i (s
′), we can conclude that ⊥ /∈ �i (s

′) for all s′ ∈ �′. Using the assumption that �i (s) � �j (s) for

all s ∈ S⊥, we have that �i (s
′) = �j (s

′) for all s′ ∈ �′ and therefore
⋃

s′∈�′ �i (s
′) = ⋃

s′∈�′ �j (s
′).

(b) Let ⊥ ∈ ⋃
s′∈�′ �i (s

′). Then to prove: (
⋃

s′∈�′ �i (s
′)) \ {⊥} ⊆ ⋃

s′∈�′ �j (s
′), i.e.,

⋃
s′∈�′(�i (s

′) \ {⊥}) ⊆⋃
s′∈�′ �j (s

′). Using the assumption that �i (s) � �j (s) for all s ∈ S⊥, we have that for all s′ ∈ �′, either

�i (s
′) \ {⊥} ⊆ �j (s

′) or �i (s
′) = �j (s

′), depending on whether ⊥ ∈ �i (s). From this we can conclude that⋃
s′∈�′(�i (s

′) \ {⊥}) ⊆ ⋃
s′∈�′ �j (s

′).
As we now have that � is monotone, proving continuity comes down to proving the following lemma. �

Lemma 3. For all chains 〈�i〉∞i=0 in S⊥ → T , the following holds:

�

( ∞⊔
i=0

�i

)
�

∞⊔
i=0

�(�i ).

Proof. We have to prove that for all chains 〈�i〉∞i=0 in S⊥ → T and for all s ∈ S⊥, the following holds:
(�(

⊔∞
i=0 �i ))(s) � (

⊔∞
i=0 �(�i ))(s). Take an arbitrary chain 〈�i〉∞i=0 in S⊥ → T and an arbitrary state s ∈ S⊥. Then

to prove:

if W(b)(s) thenˆ
( ∞⊔

i=0
�i

)
(�) else {s} fi �

∞⊔
i=0

if W(b)(s) then �̂i (�) else {s} fi,

where � = M�P �(s). We distinguish three cases.

(1) Let W(b)(s) = ⊥W⊥ , then to prove: {⊥} � ⊔∞
i=0 {⊥}, i.e., {⊥} � {⊥}. This is true by Definition 31.

(2) Let W(b)(s) = ff , then to prove: {s} � ⊔∞
i=0 {s}, i.e., {s} � {s}. This is true by Definition 31.

(3) Let W(b)(s) = tt, then to prove: ˆ (⊔∞
i=0 �i )(�) � ⊔∞

i=0 �̂i (�). If we can prove that ∀� ∈ T : ˆ (⊔∞
i=0 �i )(�) �⊔∞

i=0 �̂i (�), i.e.,ˆ(⊔∞
i=0 �i ) � ⊔∞

i=0 �̂i , we are finished. A proof of the continuity of ˆ is given in de Bakker [1],
from which we can conclude what needs to be proven. �

Proof of Theorem 2. Immediate from Lemmas 2 and 3 and fact 2. �

Appendix B. Theorem 3

We prove the theorem using techniques from Kuiper [9]. Kuiper proves equivalence of the operational and denotational
semantics of a non-deterministic language with procedures but without a while construct. The proof involves structural
induction on programs.As the cases of sequential composition and non-deterministic choice have been proven by Kuiper
(and as they can easily be adapted to fit our language of meta-programs), we will only provide a proof for the atomic
meta-actions and for the while construct. For a detailed explanation of the general ideas of the proof, we refer to
Kuiper [9].

In our proof, we will use a number of lemmas from Kuiper or slight variations thereof. We restate those results here.

Lemma 4. Let W(b)(s) = tt. Then the following holds.

O(while b do P ′ od)(s) = O(P ′; while b do P ′ od)(s)
M(while b do P ′ od)(s) = M(P ′; while b do P ′ od)(s)

Lemma 5.

O(P ′; while b do P ′ od)(s) = O(while b do P ′ od) ◦ O(P ′)(s)
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Lemma 6. For all s ∈ S and P ∈ Prog for which C(P )(s) ∈ ℘(S+), C(P )(s) is a finite set.

We will now explain how the equivalence will be proven. The way to prove the equivalence result as was done by
Kuiper, is the following. In case Cm(P )(s) ∈ ℘(S+), induction on the sum of the lengths of the computation sequences
in Cm(P )(s) is applied, thus proving Om(P )(s) = M(P )(s) in this case 15 . In case there is an infinite computation
sequence in C(P )(s) and so ⊥ ∈ O(P )(s), we prove O(P )(s) \ {⊥} ⊆ M(P )(s) by induction on the length of
individual computation sequences. This yields O(P ) � M(P ). Proving M(P ) � O(P ) by standard techniques then
completes the proof.

Proof of Theorem 3. O(P )(s) = M(P )(s) holds trivially for s = ⊥, so in the sequel we will assume s ∈ S.

1. O(P )(s) � M(P )(s).

Case A: ⊥ /∈ O(P )(s) i.e., C(P )(s) ∈ ℘(S+).

If C(P )(s) ∈ ℘(S+), then we prove O(P )(s) = M(P )(s) by cases, applying induction on the sum of the lengths
of the computation sequences.

(1) P ≡ execute.
Let (�, �) ∈ S and � = a; �′, with �′ ∈ �. If T (a, �) = �′ (which implies that a ∈ BasicAction), then the
following can be derived directly from Definitions 18, 16 and 32: O(execute)(�, �) = �(C(execute)(�, �)) =
{(�′, �′)} = M(execute)(�, �). If T (a, �) is undefined—meaning that either a ∈ BasicAction and T (a, �) is
undefined for this input, or a /∈ BasicAction—we have O(execute)(�, �) = ∅ = M(execute)(�, �).

(2) P ≡ apply(�).
The proof is similar to the proof for execute.

(3) P ≡ while b do P ′ od.
In case W(b)(s) = ff , we have that O(while b do P ′ od)(s) = {s} = M(while b do P ′ od)(s) by definition. In
the sequel, we will show that the equivalence also holds in case W(b)(s) = tt.
The function “length” yields the sum of the lengths of the computation sequences in a set. From the assumption
that C(P )(s) ∈ ℘(S+), we can conclude that C(P )(s) is a finite set (Lemma 6). From Definition 17, we can then
conclude the following.

length(C(P ′)(s)) < length(C(P ′; while b do P ′ od)(s)) < ∞
length(C(while b do P ′ od)(�(C(P ′)(s)))) < length(C(P ′; while b do P ′ od)(s)) < ∞

So, by induction we have:

O(P ′)(s) = M(P ′)(s),
O(while b do P ′ od)(�(C(P ′)(s))) = M(while b do P ′ od)(�(C(P ′)(s))).

The proof is then as follows.

O(while b do P ′ od)(s)
= O(P ′; while b do P ′ od)(s) (Lemma 4)

= O(while b do P ′ od) ◦ O(P ′)(s) (Lemma 5)

= O(while b do P ′ od)(�(C(P ′)(s))) (Definition 18)

= M(while b do P ′ od)(�(C(P ′)(s))) (Induction hypothesis)
= M(while b do P ′ od)(O(P ′)(s)) (Definition 18)

= M(while b do P ′ od) ◦ M(P ′)(s) (Induction hypothesis)
= M(P ′; while b do P ′ od)(s) (Definition 32)

= M(while b do P ′ od)(s) (Lemma 4)

15 In the sequel, we will omit the subscript “m” to C and O which is used to denote that we are dealing with the meta-language.
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Case B: ⊥ ∈ O(P )(s).

If P and s are such that ⊥ ∈ O(P )(s) then we prove by cases that O(P )(s)\{⊥} ⊆ M(P )(s), applying induction on
the length of the computation sequence corresponding to that outcome, i.e., we prove that for s′ �= ⊥: s′ ∈ O(P )(s) ⇒
s′ ∈ M(P )(s)).
(1) P ≡ execute and P ≡ apply(�).

Equivalence was proven in case A.
(2) P ≡ while b do P ′ od.

Consider a computation sequence 	 = 〈s1, . . . , sn(= s′)〉 ∈ C(while b do P ′ od)(s). From Definition 17 of
the function C, we can conclude that there are intermediate states sj , sj+1 �= ⊥ in this sequence 	, i.e., 	 =
〈s1, . . . , sj , sj+1, . . . , sn(= s′)〉 (where s1 can coincide with sj ), with sj = sj+1 and moreover: 〈s1, . . . , sj 〉 ∈
C(P ′)(s) and 〈sj+1, . . . , sn〉 ∈ C(while b do P ′ od)(sj ). The following can be derived immediately from the
above.

length(〈s1, . . . , sj 〉) < length(〈s1, . . . , sn〉)
length(〈sj+1, . . . , sn〉) < length(〈s1, . . . , sn〉)

We thus have the following induction hypothesis.

sj ∈ O(P ′)(s) ⇒ sj ∈ M(P ′)(s)
s′ ∈ O(while b do P ′ od)(sj ) ⇒ s′ ∈ M(while b do P ′ od)(sj )

As 〈s1, . . . , sj 〉 ∈ C(P ′)(s), we know that sj ∈ O(P ′)(s) (Definition 18) and similarly we can conclude that
s′ ∈ O(while b do P ′ od)(sj ). We thus have, using the induction hypothesis that: sj ∈ M(P ′)(s) and s′ ∈
M(while b do P ′ od)(sj ). From this we can conclude the following, deriving what was to be proven.

s′ ∈ M(P ′; while b do P ′ od)(s) (Definition 32)

s′ ∈ M(while b do P ′ od)(s) (Lemma 4)

2. M(P )(s) � O(P )(s)

(1) P ≡ execute.
Equivalence was proven in case (1).

(2) P ≡ apply(�).
Equivalence was proven in case (1).

(3) P ≡ while b do P ′ od.
We will use induction on the entity (i, length(P )) where length(P ) denotes the length of the statement P and we
use a lexicographic ordering on these entities, i.e., (i1, l1) < (i2, l2) iff either i1 < i2 or i1 = i2 and l1 < l2. Clearly,
length(P ′) < length(while b do P ′ od) holds. Therefore (i, length(P ′)) < (i, length(while b do P ′ od)) holds.

We know that M(while b do P ′ od) = 
� = ⊔∞
i=0 �i (⊥S⊥→T ) by continuity of � (Theorem 2). Let

�i = �i (⊥S⊥→T ). We thus need to prove that
⊔∞

i=0 �i � O(while b do P ′ od). So, if we can prove that
�i � O(while b do P ′ od) holds for all i, we will have the desired result. We will prove this by induction on the
entity (i, length(P )). As (i, length(P ′)) < (i, length(while b do P ′ od)) and (i, l) < (i + 1, l), our induction
hypothesis will be:

M(P ′) � O(P ′) and �i � O(while b do P ′ od).

The induction basis is provided as �0 = ⊥S⊥→T � O(while b do P ′ od) holds. From this we have to prove that
for all s ∈ S : �i+1(s) � O(while b do P ′ od)(s). Take an arbitrary s ∈ S. We have to prove that:

�(�i )(s) � O(while b do P ′ od)(s) i.e., by Definition 32
�̂i (M(P ′)(s)) � O(while b do P ′ od)(s) i.e., by Lemmas 4 and 5
�̂i (M(P ′)(s)) � O(while b do P ′ od)(O(P ′)(s)) (∗).

We know that M(P ′)(s) = O(P ′)(s) by the induction hypothesis and the fact that we have already proven
M(P ′)(s) � O(P ′)(s). Let �′ = M(P ′)(s) = O(P ′)(s) and let s′ ∈ �′. By the induction hypothesis, we
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have that �i (s
′) � O(while b do P ′ od)(s′) for all s′ ∈ S⊥. From this, we can conclude that

⋃
s′∈� �i (s

′) �⋃
s′∈� O(while b do P ′ od)(s′) (see, the proof of Lemma 2), which can be rewritten into what was to be proven

(∗) using the definitions of �̂i and function composition. �
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