Dynamic L ogic for Plan Revision in Agent
Programming

M. BIRNA VAN RIEMSDIJK, ICS, Utrecht University, P.O.Box 80.089, 3508 TB
Utrecht, The Netherlands.
Email: birna@cs.uu.nl

FRANK S. DE BOER|CS, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht,
The Netherlands and CWI, Amsterdam, The Netherlands and LIACS, Leiden
University, The Netherlands.

Email: frankb@cs.uu.nl

JOHN-JULES Ch. MEYERICS, Utrecht University, P.O.Box 80.089, 3508 TB
Utrecht, The Netherlands.
Email: j@cs.uu.nl

Abstract

In this paper, we present a dynamic logic for a propositional version of the agent programming language 3APL. A 3APL
agent has beliefs and a plan. The execution of a plan changes an agent’s beliefs. Plans can be revised during execution by
means of plan revision rules. Due to these plan revision capabilities of 3APL agents, plans cannot be analyzed by structural
induction as in for example standard propositional dynamic logic. We propose a dynamic logic that is tailored to handle the
plan revision aspect of 3APL. The logic is one for plans that are restricted in a certain way. For this logic, we give a sound
and complete axiomatization. Further, we discuss how this logic for restricted 3APL plans can be extended to a logic for
non-restricted plans and we discuss some example proofs, using the logic. Finally, we consider the relation between proving
properties of 3APL agents and proving properties of procedural programs.

Keywords Specification and verification of programs, agent programming languages, dynamic logic, operational semantics,
plan revision.

1 Introduction

An agent is commonly seen as an encapsulated computer system that is situated in some environment
and that is capable of flexible, autonomous action in that environment in order to meet its design
objectives [39]. Programming these flexible computing entities is not a trivial task. An important line
of research in this area, is researchomgnitiveagents. These are agents endowed with high-level
mental attitudes such as beliefs, desires, goals, plans, intentions, norms and obligations. Intelligent
cognitive agents should be able to use these mental attitudes in order to exhibit the desired flexible
problem solving behaviour.

The very concept of (cognitive) agents is thus a complex one. It is imperative that programmed
agents be amenable to precise and formal specification and verification, at least for some critical
applications. This is recognized by (potential) appliers of agent technology such as NASA, which
organizes specialized workshops on the subject of formal specification and verification of agents
[24, 186].

Vol. 16 No. 3, © The Author, 2006. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/logcom/exi084

376 Dynamic Logic for Plan Revision in Agent Programming

In this paper, we are concerned with the verification of agents programmed in (a simplified ver-
sion of) the cognitive agent programming langu@geL! [17, 37, 6]. This language is based on
theoretical research on cognitive notions [3, 5, 23, 27]. In the latest version [6], a 3APL agent has a
set of beliefs, a plan and a set of goals. The idea is that an agent tries to fulfill its goals by selecting
appropriate plans, depending on its beliefs about the world. Beliefs should thus represent the world
or environment of the agent; the goals represent the state of the world the agent wants to realize and
plans are the means to achieve these goals.

As explained, cognitive agent programming languages are designed to program flexible behaviour
using high-level mental attitudes. In the various languages, these attitudes are handled in different
ways. An important aspect of 3APL is the way in which plans are dealt with. A plan in 3APL can
be executed, resulting in a change of the beliefs of the &glloty, in order to increase the possible
flexibility of agents, 3APL [17] was endowed with a mechanism with which the programmer can
program agents that caavisetheir plans during execution of the agent. This is a distinguishing
feature of 3APL compared to other agent programming languages and architectures [22, 26, 12, 10,
21]. Theidea is that an agent should not blindly execute an adopted plan, but should be able to revise
it under certain conditions. As this paper focuses on the plan revision aspect of 3APL, we consider a
version of the language with only beliefs and plans, i.e. without goals. For more background on how
to incorporate goals in an agent programming language, we refer the reader to [37, 31, 32, 33, 38, 4].
We will use a propositional and otherwise slightly simplified variant of the original 3APL language
as defined in [17].

In 3APL, the plan revision capabilities can be programmed thrqalgh revision rules These
rules consist of a head and a body, both representing a plan. A plan is basically a sequence of so-
called basic actions. These actions can be executed. The idea is, informally, that an agent can apply
arule if it has a plan corresponding to the head of this rule, resulting in the replacement of this plan
by the plan in the body of the rule. The introduction of these capabilities now gives rise to interesting
issues concerning the characteristics of plan execution, as will become clear in the sequel. This has
implications for reasoning about the result of plan execution and therefore for the formal verification
of 3APL agents, which we are concerned with in this paper.

The outline of the paper is as follows. In Section 2, we address related work. After defining (a
simplified version of) 3APL and its semantics (Section 3), we propose a dynamic logic for proving
properties of 3APL plans in the context of plan revision rules (Section 4). As will become clear,
this is actually not a logic for general 3APL plans, but the plans that the logic can deal with are
restricted in a certain way. For this logic, we provide a sound and complete axiomatization (Section
5). In Section 6, we discuss how this logic for restricted 3APL plans can be extended to a logic for
non-restricted plans and we discuss some example proofs, using the logic. Finally, we consider the
relation between proving properties of procedural programs and proving properties of 3APL agents
in Section 7. In particular, we compare procedures with plan revision rules.

To the best of our knowledge, this is the first attempt to design a logic and deductive system for
plan revision rules or similar language constric@onsidering the semantic difficulties that arise
with the introduction of this type of construct, it is not a priori obvious that it would be possible at
all to design a deductive system to reason about these constructs. The main aim of this work was
thus to investigate whether it is possible to define such a system, and in this way also to get a better
theoretical understanding of the construct of plan revision rules. Whether the system presented in
this paper is also practically useful to verify 3APL agents, remains to be seen and will be subject to

13APL is to be pronounced as ‘triple-a-p-I'.
2A change in the environment is a possible “side effect” of the execution of a plan.
3Parts of this work have been published in [34].

Dynamic Logic for Plan Revision in Agent Programmin877

further research.

2 Related work

This research builds on a body of work done in the area of theoretical computer scidoomalse-
manticsandlogicsof programming languages [7]. A formal semantics for a programming language

is used to formally specify the meaning of the programs written in this language. Specifying the
meaning of a programming language using formal semantics is important for a number of reasons.
For example, the specification of a formal semantics can be used to identify issues and problems
with the language. Defining the semantics forces one to be precise, which might uncover problems
overlooked earlier. Also, the semantics can serve as a basis for comparing various languages. Fur-
ther, and most important in this context, it is a necessary prerequisite if one wants to do formal
verification of programs written in some language. One cannot claim to have proven that a program
satisfies a certain property, without knowing exactly what this program does.

Semantics of programming languages can be defined in different ways. One kind of semantics
is the so-called operational semantics (see Section 3.2 for further explanation), which is the kind of
semantics generally used to specify the meaning of 3APL. The operational semantics of plan revision
rules, which is important in this paper, is similar to that of procedures in procedural programming.
In fact, plan revision rules can be viewed as an extension of procedures. Logics and semantics for
procedural languages are for example studied in De Bakker [7]. Although the operational semantics
of procedures and plan revision rules are similar, techniques for reasoning about procedures cannot
be used for plan revision rules. This is due to the fact that the introduction of these rules results in
the semantics of the sequential composition operator no longer being compositional. We elaborate
on this issue in Sections 4 and 7. The issue has also been considered from a semantic perspective in
[35, 36].

With respect to verification, there are in general two approaches: model checking [9] and theorem
proving [7]. In model checking, a model is built describing the execution of the program, and it is
checked whether some temporal property is satisfied by this model. An example of work on model
checking in the area of agent programming languages is [2], in which model checking of the agent
programming language AgentSpeak is addressed.

In theorem proving, on which we focus in this paper, a program is proven to satisfy a certain
property using a logic with deductive system or axiomatization. Various logics can be used for this
purpose, such as Hoare logic (see [1] for a survey) and dynamic logic [15], which we use in this
paper. In the context of 3APL, a sketch of a dynamic logic to reason about programs written in this
language has been given in [37]. This logic, however, is designed to reason about a 3APL interpreter
or deliberation language, whereas in this paper we take a different viewpoint and reason about plans.
In [18], a programming logic (without axiomatization) was given for a fragment of 3APL without
plan revision rules.

Further, we mention related work in the field planning In general, planning deals with the
problem of how to get from some current state to a desired goal state through a sequence of actions
forming the plan. The way this problem is approached in this field, Egaychingor an appropriate
plan using a specification of the available actions and their preconditions and effects [25]. The
search space can however become quite large in realistic problems. Part of the planning research
thus involves the investigation of more efficient ways in which this search can be performed, and the
development of heuristics to guide this search.

While the general objective of planning, i.e. generating a plan with which the agent can achieve
its goals, is closely related to the objective of cognitive agent programming, the techniques that

378 Dynamic Logic for Plan Revision in Agent Programming

are used in the two fields differ. Planning involvesisoningabout the effects of actions, while
in a programming context it is therogrammerwho defines the available plans, together with the
situations in which they might be executed. In fact, the so-called Procedural Reasoning System [11]
on which most of today’s agent programming languages, including 3APL, are directly or indirectly
based, was proposed as an alternative to the traditional planning systienas in part motivated by
the observation that those systems require search through potentially large search spaces. In contrast
with research in the field of planning, research regarding agent programming languages involves
the design and investigation of approprigtegramming constructfor the specification of plans,
and in this paper we are concerned with the programming construct of plan revision rules of the
3APL language in particular. Also, the structure of plans generally differs between the two fields: in
planning, a plan often consists of a partially ordered set of actions, while in agent programming the
structure of plans is generally simpler.
Nevertheless, the general idea of plan revision as incorporated in 3APL is also being investigated
in the field of planning. In that context, it is mostly referred topéan repair. The motivation for
that work is similar to the motivation of the addition of plan revision capabilities to 3APL agents,
i.e. things may go wrong during execution of a plan since the agent executes its plans in some
environment, and in that case the agent will have to replan, or to adapt the old plan to the changed
circumstances [13, 28]. In theory, modifying an existing plan is (worst-case) no more efficient than
a complete replanning [19], but the idea is that in practice, plan repair is often more efficient [28].
While approaches to plan repair mostly involve reasoning about actions, there are also some ap-
proaches which use precompiled plans to do plan repair, such as [29, 8]. The latter approaches are
somewhat more closely related to plan revision as done in 3APL, since the way in which plans may
be repaired is prespecified in both approaches. Nevertheless, these approaches to plan repair are em-
bedded in a general planning framework, and the exact relation with plan revision as used in 3APL is
not immediately clear. Investigations along these lines fall outside the scope of this paper, but form
an interesting issue for future research.

3 3APL
3.1 Syntax

Below, we define belief bases and plans. A belief base is a set of propositional formulas. A plan is
a sequence of basic actions and abstract plans. Basic actions can be executed, resulting in a change
to the beliefs of the agent. An abstract plan can, in contrast with basic actions, not be executed
directly in the sense that it updates the belief base of an agent. Abstract plans serve as an abstraction
mechanism like procedures in procedural programming. If a plan consists of an abstract plan, this
abstract plan could be transformed into basic actions through the application of plan revision rules,
which will be introduced below.

In the sequel, a language defined by inclusion shall be the smallest language containing the spec-
ified elements.

DEFINITION 3.1 (belief bases)
Assume a propositional languagewith typical formulap and the connectives and — with the

4An exception to this distinction between planning and programming is formed by the language ConGolog [12], in which
both approaches are combined. ConGolog is based on the situation calculus, and a program written in the language is used to
constrain the search space for finding an appropriate plan.

SAbstract plans could also be modelled as non-executable basic actions.

Dynamic Logic for Plan Revision in Agent Programmin879
usual meaning. Then the set of belief basesith typical element is defined to bey(£).8

DEFINITION 3.2 (plans)
Assume that a s@&asicAction with typical element: is given, together with a sétbstractPlan with
typical elemenp.” Then the set of planBlan with typical elementr is defined as follows:

¢ BasicAction U AbstractPlan C Plan,
¢ if ¢ € (BasicAction U AbstractPlan) andw € Plan thenc ; w € Plan.

Basic actions and abstract plans are called atomic plans and are typically deneté&btechnical
convenience, plans are defined to have a list structure, which means, strictly speaking, that we can
only use the sequential composition operator to concatenate an atomic plan and a plan, rather than
concatenating two arbitrary plans. In the following, we will however also use the sequential compo-
sition operator to concatenate arbitrary plansandm, yielding 1 ; 2. The operator should in this
case be read as a function taking two plans that have a list structure and yielding a new plan that also
has this structure. The plan will thus be the prefix of the resulting plan.

We usex to denote the empty plan, which is an empty list. The concatenation of arf@ad the
empty list is equal tar, i.e.¢; 7 andr; € are taken to be identical to.

A plan and a belief base can together constitute a so-called configuration. During computation or
execution of the agent, the elements in a configuration can change.

DeFINITION 3.3 (configuration)
Let 3 be the set of belief bases and Rtin be the set of plans. ThelRlan x X is the set of
configurations of a 3APL agent.

Plan revision rules consist of a heagl and a bodyr,. Informally, an agent that has a plap, can
replace this plan by, when applying a plan revision rule of this form.

DEFINITION 3.4 (plan revision (PR) rules)
The set of PR rule® is defined as followsR = {7, ~ 7 | 74, 7 € Plan, 7y, # ¢}.2

Take for example a plam; b wherea andb are basic actions, and a PR rulé ~~ c. The agent can
then either execute the actiomgndb one after the other, or it can apply the PR rule yielding a new
plan ¢, which can in turn be executed. A plarconsisting of an abstract plan cannot be executed,
but can only be transformed using a procedure-like PR rule sugh-as.

Below, we provide the definition of a 3APL agent. The functibntaking a basic action and a
belief base and yielding a new belief base, is used to define how belief bases are updated when a
basic action is executed.

DEFINITION 3.5 (3APL agent)

A 3APL agentA is atuple(Rule, 7) whereRule C R is afinite set of PR rules arif: (BasicAction x

¥) — X is a partial function, expressing how belief bases are updated through basic action execu-
tion.

65 (L) denotes the powerset g

"Note that we use to denote an element from the propositional languégas well as an element frobstractPlan.
It will however be indicated explicitly which kind of element is meant.

8In [17], PR rules were defined to have a guard, i.e. rules were of thefgring ~» . For a rule to be applicable, the
guard should then hold. For technical convenience and because we want to focus on the plan revision aspect of these rules,
we however leave out the guard in this paper.

380 Dynamic Logic for Plan Revision in Agent Programming

3.2 Semantics

The semantics of a programming language can be defined as a function taking a statement and a
state, and yielding the set of states resulting from executing the initial statement in the initial state.
In this way, a statement can be viewed as a transformation function on states. In 3APL, plans can be
seen as statements and belief bases as states on which these plans operate. There are various ways
of defining a semantic function and in this paper we are concerned with the so-apdestional
semantics (see, for example, De Bakker [7] for details on this subject).

The operational semantics of a language is usually defined using transition systems [20]. A transi-
tion system for a programming language consists of a set of axioms and derivation rules for deriving
transitions for this language. A transition is a transformation of one configuration into another and it
corresponds to a single computation step. Met (Rule, 7) be a 3APL agent and I@&asicAction
be a set of basic actions. Below, we give the transition sySkems 4 for our simplified 3APL
language, which is based on the system given in [17]. This transition system is specific tglagent

There are two kinds of transitions, i.e. transitions describing the execution of basic actions and
those describing the application of a plan revision rule. The transitions are labelled to denote the
kind of transition. A basic action at the head of a plan can be executed in a configuration if the
function7 is defined for this action and the belief base in the configuration. The execution results
in a change of belief base as specified throtigand the action is removed from the plan.

DEFINITION 3.6 (action execution)
Let a € BasicAction.
T(a,0) =0’
(a;m,0) —ezec (T,07)

A plan revision rule can be applied in a configuration if the head of the rule is equal to a prefix of the
plan in the configuration. The application of the rule results in the revision of the plan, such that the
prefix equal to the head of the rule is replaced by the plan in the body of the rule. A;iule ¢

can for example be applied to the plarb; ¢, yielding the plarc; c. The belief base is not changed
through plan revision.

DEFINITION 3.7 (rule application)
Letp: mp ~» m € Rule.
<7Th§ T, U) —app <7Tb; , 0>

In the sequel, it will be useful to have a function taking a PR rule and a plan, and yielding the plan
resulting from the application of the rule to this given plan. Based on this function, we also define a
function taking a set of PR rules and a plan and yielding the set of rules applicable to this plan.

DEFINITION 3.8 (rule application)
Let R be the set of PR rules and Rkan be the set of plans. Let: 7, ~ 7, € R andw, ©’ € Plan.
The partial functiorupply : (R x Plan) — Plan is then defined as follows:

ly(p)(m) = my; if = ;7
aPPYYPIAT) =1 undefined otherwise

The functionapplicable : (p(R) x Plan) — p(R) yielding the set of rules applicable to a certain
plan, is then as followsapplicable(Rule,) = {p € Rule | apply(p)(w) is defined.

Using the transition system, individual transitions can be derived for a 3APL agent. These transitions
can be put in sequence, yielding transition sequences. From a transition sequence, one can obtain

Dynamic Logic for Plan Revision in Agent Programmin8§81

a computation sequendasy removing the plan component of all configurations occurring in the
transition sequence. In the following definitions, we formally define computation sequences and we
specify the function yielding these sequences, given an initial configuration.

DEFINITION 3.9 (computation sequences)
The set™* of finite computation sequences is defined{as, ..., 0;,...,0, | 0, € £,1 < i <
n,n € N}.

DEFINITION 3.10(function for calculating computation sequences)
Letz; € {exec,app} for 1 < i < m. The functionC* : (Plan x ¥) — p(X7) is then as defined
below:

CA(m,0) ={0,...,0m €T |0 =(1,0) =4, ... =0, (€,0m)
is a finite sequence of transitionsTinans 4 }.

Note that we only take into account successfully terminating transition sequences, i.e. those se-
guences ending in a configuration with an empty plan. Using the function defined above, we can
now define the operational semantics of 3APL.

DEFINITION 3.11(operational semantics)
Letx : ¥T — 3 be a function yielding the last element of a finite computation sequence, extended
to handle sets of computation sequences as follows, whé&eome set of indicess({d; | i €
I}) = {x(8;) | i € I}. The operational semantic functié®* : Plan — (X — (X)) is defined as
follows:

OA(m)(0) = k(CH(m,0)).

We will sometimes omit the superscridtto functions as defined above, for reasons of presentation.

EXAMPLE 3.12
Let.A be an agent with PR rule®; a ~~ b, p ~» ¢}, wherep is an abstract plan and b, ¢ are basic
actions. Letr, be the belief base resulting from the executiom afi o, i.e.7 (a,0) = oy, letogy
be the belief base resulting from executing firstnd therb in o, etc.

ThenCA(p;a)(o) = {(o,0,03),(0,0,0.,0c)}, Which is based on the transition sequences
(pra,0) —app (b,0) —ewec (6,08) ANA(P;a,0) —app (€;0,0) —epec (@,0c) —ezec (€,0ca)-
We thus have tha®(p; a)(c) = {0y, 0ca}-

4 Plan revision dynamiclogic

In programming language research, an important area is the specification and verification of pro-
grams. Program logics are designed to facilitate this process. One such logic is dynamic logic
[14, 15], with which we are concerned in this paper. In dynamic logic, programs are explicit syn-
tactic constructs in the logic. To be able to discuss the effect of the execution of a progmathe

truth of a formulag, the modal construdtr]¢ is used. This construct intuitively states that in all
states in whichr halts, the formulap holds.

Programs in general are constructed from atomic programs and composition operators. An exam-
ple of a composition operator is the sequential composition operator (;), where the program
intuitively means thatr, is executed first, followed by the executionmf. The semantics of such a
compound program can in general be determined by the semantics of the parts of which it is com-
posed. This compositionality property allows analysis by structural induction (see also [30]), i.e.
analysis of a compound statement by analysis of its parts. Analysis of the sequential composition

382 Dynamic Logic for Plan Revision in Agent Programming

operator by structural induction can in dynamic logic be expressed by the following formula, which
is usually valid: [m1;m2]¢ < [m1][m=2]¢. For 3APL plans on the contrary, this formula does not
always hold. This is due to the presence of PR rules.

We will informally explain this using the 3APL agent of Example 3.12. As explained, the opera-
tional semantics of this agent, given initial plaju and initial stater, is as follows:O(p; a)(c) =
{0y, 0.4 }. Now compare the result of first ‘executifig) in o and then executing in the resulting
belief base, i.e. compare the €2ta)(O(p)(o)). In this case, there is only one successfully termi-
nating transition sequence and it ends'ip, i.e. O(a)(O(p)(0)) = {ocq}. Now, if it were the case
thato., = ¢ butoy, [~ ¢, the formulalp; a]¢ « [p][a]¢ would not hold?

Analysis of plans by structural induction in this way thus does not work for 3APL. In order to be
able to prove correctness properties of 3APL programs however, one can perhaps imagine that it is
important to havesomekind of induction. As we will show in the sequel, the kind of induction that
can be used to reason about 3APL programs, is induction omutmder of PR rule applications in
a transition sequencaNe will introduce a dynamic logic for 3APL based on this idea.

4.1 Syntax

In order to be able to do induction on the number of PR rule applications in a transition sequence, we
introduce so-callecestricted plans These are plans, annotated with a natural nufbkrformally,

if the restriction parameter of a plan+is the number of rule applications during execution of this
plan cannot exceexql.

DEFINITION 4.1 (restricted plans)

Let Plan be the language of plans and t = N U {—1}. Then, the languag®lan,. of restricted
plans is defined agr ', | # € Plan,n € N~ }.

Below, we define the language of dynamic logic in which properties of 3APL agents can be ex-
pressed. In the logic, one can express properties of restricted plans. As will become clear in the
sequel, one can prove properties of the plan of a 3APL agent by proving properties of restricted
plans.

DEFINITION 4.2 (plan revision dynamic logidRDL))

Let 7], € Plan, be a restricted plan and lgt be a 3APL agent (Definition 3.5). Then the language

of dynamic logicLprp With typical element is defined as follows:

* L C LproL,
*if ¢ € LproL, then[n],]¢ € LproL,
*if ¢,¢" € LproL, then—¢ € LprpL andg A ¢ € LprpL.

4.2 Semantics

In order to define the semantics BRDL, we first define the semantics of restricted plans. As for
ordinary plans, we also define an operational semantics for restricted plans. We do this by defining
a function for calculating computation sequences, given an initial restricted plan and a belief base.

SWe will use the word ‘execution’ in two ways. First, as in this context, we will use it to denote the execution of an
arbitrary plan in the sense of going through several transition of éype or app, starting in a configuration with this plan
and resulting in some final configurations. Second, we will use it to refer to the execution of a basic action in the sense of
going through a transition of typecec.
19/ particular, the implication would not hold from right to left.
110r with the number-1, it will become clear in the sequel why we need this.

Dynamic Logic for Plan Revision in Agent Programmin883

DeFINITION 4.3 (function for calculating computation sequences)

Letx; € {exec,app} for1 < i < m. Let N,,,(0) be a function yielding the number of transitions
of the forms; —,, s:+1 in the sequence of transitiois The functiorC;“ : (Plan, x3) — p(XT)

is then as defined below.

CArln,0)={0,...,0m €XT |0 = (m,0) =4, ... —u, (6,0m)
is a finite sequence of transitionsTinans 4 where0 < N, (0) < n}

As one can see in the definition above, the computation sequéfices,,, o) are based on transi-
tion sequences starting in configuratign o). The number of rule applications in these transition
sequences should be betwdeandn, in contrast with the functio of Definition 3.10, in which
there is no restriction on this number.

Based on the functiod:*, we define the operational semantics of restricted plans by taking the
last elements of the computation sequences yielde@hyThe set of belief bases is empty if the
restriction parameter is equal tel.

DEFINITION 4.4 (operational semantics)
Let x be as in Definition 3.11. The operational semantic funcith : Plan, — (X — p(X)) is
defined as follows:

k(CA(Tln, 0 if n
o) = { JEE) nzo,

Using the operational semantics of restricted plans, we can now define the semantics of plan revision
dynamic logic.

DEFINITION 4.5 (semantics dPRDL)
Let p € L be a propositional formula, let, ¢’ € LprpL and let=, be the entailment relation
defined forL as usual. The semanties4 of Lprpy is then as defined below.

o Fa p & oFcp

o Ea [t & Vo € OA(nln)(0):0' Fad
o FEa ¢ & oFEaP

o }Z_A oNY & J}Z_Agf)andO":A¢l

As O;“ is defined in terms of agem, so is the semantics alprp.. We use the subscripd to
indicate this. LeRule C R be afinite set of PR rules. 7', 0 : o |=(ryie,7) ¢, WE Writ€ [=Ruie ¢.

5 Theaxiom system

In order to prove properties of restricted plans, we propose a deductive syst&RDBdrin this
section. Rather than proving properties of restricted plans, the aim is however to prove properties of
non-restricted 3APL plans. The idea is that this can be done using the axiom system for restricted
plans, by relating the semantics of restricted plans to that of non-restricted plans. We will explain
and elaborate on this in Section 6.

DEFINITION 5.1 (axiom systemASgule))
Let BasicAction be a set of basic actiondbstractPlan be a set of abstract plans aRdle C R
be a finite set of PR rules. Let € BasicAction, let p € AbstractPlan, let ¢ € (BasicAction U

384 Dynamic Logic for Plan Revision in Agent Programming

AbstractPlan) and letp range overpplicable(Rule, ¢;). The following are then the axioms of the
systemASgyle.

(PRDLL) [w[_1]¢

(PRDL2) [plo]¢

(PRDL3) [e[n]d < ¢ with0 <n
(PRDL4) [e;7ln]é < [clol[mln]d A A lapply(p, c;m)ln-1]¢ with0 <n
(PL) axioms for propositional logic

(PDL) [Tla](¢ — ¢') — ([7lnld — [7la]¢")

The following are the rules of the systefSgye.

(GEN)
¢
[7ln]d
(MP)
b L= 62
b2

As the axiom system is relative to a given set of PR riiek, we will use the notatiofirgye ¢ to
specify thatp is derivable in the systeSg,.. above.

We will now explain thePRDL axioms of the system. The other axioms and the rules are stan-
dard for propositional dynamic logi®DL) [14]. We start by explaining the most interesting axiom:
(PRDL4). We first observe that there are two types of transitions that can be derived for a 3APL
agent: action execution and rule application (see Definitions 3.6 and 3.7). Consider a configura-
tion (a; 7w, o) wherea is a basic action. Then during computation, possible next configurations are
(7, 0")*? (action execution) anthpply(p, a; 7), o) (rule application) wherg ranges over the appli-
cable rules, i.eapplicable(Rule, a; 7).12 We can thus analyse the planr by analysingr after the
execution ofz, and the plans resulting from applying a rule, igply(p, a; 7).1* The execution of an
action can be represented by the nunibas restriction parameter, yielding the first term of the right-
hand side of PRDL4): [a[o][7 [.]#.1> The second term is a conjunction [@fply(p, c;) [n—1]¢
over all applicable rules. The restriction parameteris— 1 as we have ‘used’ one of ourpermit-
ted rule applications. The first three axioms represent basic properties of restricted PRIDEL)
can be used to eliminate the second term on the right-hand side of &RiRDL4), if the left-hand
side is[c; 7[o]¢. (PRDL2) can be used to eliminate the first term on the right-hand sidBRDL4),
if cis an abstract plan. As abstract plans can only be transformed through rule application, there will
be no resulting states if the restriction parameter of the abstract planes if no rule applications
are allowed.(PRDL3) states that iy is to hold after execution of the empty plan, it should hold
‘now’. It can be used to derive properties of an atomic plahy using axiom(PRDL4) with the
planc;e.

5.1 Soundness

The axiom system of Definition 5.1 is sound.

12pssuming thatl (a, o) = o’.

13gee Definition 3.8 for the definitions of the functiomsply andapplicable.

14Note that one could say we analyse a ptam partly by structural induction, as it is partly analysed in terms ahd.
15In our explanation, we consider the case whei®a basic action, but the axiom holds also for abstract plans.

Dynamic Logic for Plan Revision in Agent Programmin885

THEOREM5.2 (soundness)
Let ¢ € LprpL- LetRule C R be an arbitrary finite set of PR rules. Then the axiom sysi&g, .
is sound, i.e.

FRule @ = FRule ¢

PROOFE We prove soundness of tHeRDL axioms of the systen\Sg,.. In the following, let
7w € Plan be an arbitrary plan and let € LprpL be an arbitraryPRDL formula. Furthermore,
A = (Rule, 7') and|= ruie, 7y Will be abbreviated by=ric.

(PRDL1) To prove:V7T ,o : 0 FRrue [7[-1]¢. Leto € ¥ be an arbitrary belief base and {Etbe an
arbitrary belief update function. We have thal=ry. [1]_1]¢ < Vo' € OA (n]_1)(0) : 0’ F=Ruke
¢ by Definition 4.5. Furthermore):* (x| _)(c) = () by Definition 4.4, trivially yielding the desired
result.

(PRDL2) Let p € AbstractPlan be an arbitrary abstract plan. To provéT ,o : 0 Frule [P[o]-
Let o € ¥ be an arbitrary belief base and [Etbe an arbitrary belief update function. We have
that o Frue [p Jo]¢ & Yo' € OA(plo)(o) : o Erue ¢ by Definition 4.5. Furthermore,
OA(plo) (o) = 0 by Definition 3.6, trivially yielding the desired result.

(PRDL3) To prove:V7,0 : 0 ERrue [€[n]¢ < ¢ Wheren > 0,i.e.VT,0 : (0 Frue [€ln]¢ <
0 Erue ¢). Leto € X be an arbitrary bellef base and {Etbe an arbitrary belief update function.
By Definition 4.3, we have thaA([,,, o) = {o} wheren > 0, i.e.

K(CA(eln,0)) = {0} (5.1)
By Definitions 4.5 and 4.4 and (5.1), we have the following, yielding the desired result:
0 Erue [€la]¢ & Vo' € Of(eln)(0) : 0/ Erue ¢

& Vo' € k(CAeln, 7)) : 0! FRule ¢
& 0 FRue ¢

-(PRDL4) To prove: V7,0 : 0 ErueT) [T [a]d < [clol[m [n]oA A, lapply(p, c;) [n-1]¢,
l.e.

VT,0:0 ERue,) [6;TIn]¢ < VT ,0: 0 ERue,1) [clo][m]n]¢ and

VT,0:0 E(Rule,T) /\ apply(p, ¢; ™) ln—1]®.
P

Let 0 € ¥ be an arbitrary belief base and [&tbe an arbitrary belief update function. Assume
¢ € BasicAction and furthermore assume th@at 7, o) —cuecute (7, 01) IS @ transition inTrans 4,
i.e.k(CA(clo,0)) = {01} by Definition 4.3. Letp range overpplicable(Rule, c;). Now, observe
the following by Definition 4.3:

R(C (e Ty) = K(CA (T 1w, 01)) U R(CF (apply(p, s 7)1,). (5.2)
P

If ¢ € AbstractPlan or if a transition of the formic; 7, 0) —czecute (T, 01) IS NOt derivable, the first
term of the right-hand side of (5.2) is empty.

386 Dynamic Logic for Plan Revision in Agent Programming

(=) Assumes Fgrue [c;7 [4]0, i.e. by Definition 4.5v0’ € OA(c;7 [n,0) © 0’ FERrue ¢, i.€.
by Definition 4.4:

Yo' € H(C{f‘(c; Tln, o)) : 0 ERule ¢ (5.3)

To prove: (A)o [=rute [clo][mln]¢ and (B)o Frue A, lapply(p, ¢; m)ln-1]¢.

(A) If ¢ € AbstractPlan or if a transition of the form(c; 7, 0) —cpecute (w,01) iS not derivable,
the desired result follows immediately from axigfdRDL2) or an analogous proposition for non-
executable basic actions.dfe BasicAction, we have the following from Definitions 4.5 and 4.4.

g):Rule [CFO] [ﬂn]¢ e VOJ € 024(0[070) to’ ':Rule [W{nkb
& VYo' € O(clo,0) : VYo" € O ln,0') 1 0" ERue ¢
& Vo' € k(CAclo,0)) : Yo" € k(CA T, 0")) : 0" ERue ¢
& Vo' € k(CAHTln,01)) : 0" ERule ¢

(5.4)

From (5.2), we have that(CA(7[,,,01)) C k(CA(c; mln,). From this and assumption (5.3), we
can now conclude the desired result (5.4).

(B) Let ¢ € (BasicAction U AbstractPlan) and letp € applicable(Rule, c; 7). Then we want to
proves =ruie [apply(p, ¢;) n—1]¢. From Definitions 4.5 and 4.4, we have the following:

o Erue lapply(p, c;m)ln—1]¢ < Vo' € OA(apply(p,c;T)In-1,0) : 0’ FERrue ¢ (5.5)
& Vo' € k(CA(apply(p, ¢;T)In-1,0)) : ' FRule ¢ '

From (5.2), we have that(C;* (apply(p, ¢; m)n—1,0)) C &(CA(c; [, o). From this and assump-
tion (5.3), we can now conclude the desired result (5.5).

() Assumes Erue [clo][m [n]¢ ando Erue A lapply(p; c;) [n-1]d, ie. Vo' € K(CA(T I
,01)) : 0’ Frute ¢ (5.4) andvo’ € x(CH(apply(p, ¢;7)1n-1,0)) : 0" Frue ¢ (5.5).
To prove:o [=rule [¢;7[n]0, i.6.Y0" € k(CA(c;Tln,0)) : 0/ Erue ¢ (5.3). If ¢ € AbstractPlan
or if a transition of the form(c; 7,) —capecute (T, 01) is Not derivable, we have tha(C:A(c; 7 [,
0)=U, w(CA(apply(p, ¢; ™) a1, 0)) (5.2). From this and the assumption, we have the desired
result.

If ¢ € BasicAction and a transition of the forn; 7, 0) —ezecute (7, 01) iS derivable, we have
(5.2). From this and the assumption, we again have the desired result. [|

5.2 Completeness

In order to prove completeness of the axiom system, we first prove Proposition 5.5, which says that
any formula fromCprpL can be rewritten into an equivalent formula where all restriction parameters
are(. This proposition is proven by induction on the size of formulas. The size of a formula is
defined by means of the functicfize : Lprp. — N2. This function takes a formula fromiprpL

and yields a triplgz, y, z), wherex roughly corresponds to the sum of the restriction parameters
occurring in the formulay roughly corresponds to the sum of the length of plans in the formula and

z is the length of the formula. The idea is, that the size of a formuldfigll restriction parameters

are0. In order to make the induction technically possible, we however also need to incorporate the
length of plans and of the formula into the functigne. This is explained further after the definition

of the function.

Dynamic Logic for Plan Revision in Agent Programmin887

DEFINITION 5.3 (size)
Let the following be a lexicographic ordering on tuplesy, z) € N*:

(x1,91,21) < (@2, 72, 22) iff
xr1 < 22 OF (xl = I andy1 < yg) or (.’L‘l = I andy1 = Yo andz; < 2’2).

Let maz be a function yielding the maximum of two tuples frdéi and letf ands respectively be

functions yielding the first and second element of a tuple / beta function yielding the number of
symbols of a syntactic entity and I&&) = 0. The functionsize : LprpL — N? is then as defined
below.

S Rtz i ¢ s(oize(9). il

. _ n—+ szze I(m) + s(size(d)), ([7]n]P ifn>0
size([n[n]¢) = { szze ,s(size(9)), l([7[n])) otherwise
size(—¢) = (f(size()) (szze(¢)) 1(—¢))

size(p AN @') = (f(max(size(d),size(¢d))), s(max(size(@), size(¢'))),l(d N ¢'))

Note that when calculating the plan length of a formulg, ¢, i.e. the second element of the tuple
size([r [n]®), the length ofr is added to the length of the plansdnin casen > 0. If however

n = 0 orn = —1, the length ofr is not added to the length of the plans dnand s(size(¢)) is
simply returned. This definition of the functiefize results in the fact that a formutain which all
restriction parameters afgor —1), will satisfy size(¢) = (0,0,1(#)). Further, this definition gives
us thatsize([c[o][m []¢) is smaller thansize([c; 7 [,,]¢), which is needed in the proof of Lemma
5.4, which will be used in the proof of Proposition 5.5.

Clause (5.7) of Lemma 5.4 specifies that the right-hand side of af®RDL4) is smaller than
the left-hand side. This axiom will usually be used by applying it from left to right to prove a
formula such as$r[,]¢. Intuitively, the fact that the formula will get ‘smaller’ as specified through
the functionsize, suggests convergence of the deduction process.

LEMMA 5.4
Let ¢ € LprpL, letc € (BasicAction U AbstractPlan), let p range overpplicable(Rule, ¢;) and
letn > 0. The following then hold:

size(p) < size([eln]p) (5.6)

size([clo][m[n]d N /\[apply(p,) [n-1]®) < size([c; 7w [n]P) (5.7)
p

size(p) < size(dp A @) (5.8)

size(¢') < size(p A @) (5.9)

PROOF First, we prove (5.6). From Definition 5.3, we have

size([eln]@) = (n+ f(size(9)), s(size()), l([eln]@))-

This is bigger thaize(¢).
Now we prove (5.7). We have the following from Definition 5.3, using that 0:

size([c; wln]o) = (n+ f(size()),l(c;m) + s(size(¢)), U[c; 7l @),
size([clo][m[n]9) (n + f(size()),(m) + s(size(9)), L([clo][xT1]$)),
size([apply(p, c;m)ln-1]9) = ((n—1)+ f(size(9)),(apply(p,c;))

+s(size(9)),1 ([apply(p,c ™)In-1]9))-

388 Dynamic Logic for Plan Revision in Agent Programming

Let F' = [clo][7[n]e @andS = [apply(p, ¢;) [n—1]¢. Thenmax(size(F), size(S)) = size(F) for
any PR rulep. Thus,size(F' A A, S) = (n+ f(size(¢)), l(m) + s(size(9)), l(F A A\, S)), which
is smaller tharsize([c; 7[,]¢), yielding the desired result.

Finally, we prove (5.8) and (5.9). First, we show thate(¢) < size(o A ¢'), which we will refer
to by R. We thus have to show:

(f(size(9)), s(size(9)), l(¢)) <
(f(maz(size(9), size('))), s(maz(size(9), size(¢))), l(¢ A ¢')).

If f(size(9)) < f(max(size(p),size(¢’))), we haveR. If f(size(¢)) = f(maz(size(ep),
size(¢'))) and s(size(¢)) < s(max(size(d), size(¢’))), we again haveR. If s(size(¢)) =
s(max(size(¢), size(¢'))), we also haveR, becausé(¢) < (¢ A ¢'). Covering all cases, this
yields the desired result. The same line of reasoning can be applied tashddw) < size(qﬁ/\qﬁ';

Now we can formulate and prove the following proposition.

PROPOSITIONS.5
Any formula¢ € LprpL can be rewritten into an equivalent formubap. where all restriction
parameters are, i.e.:

V¢ € LproL : IdppL € Lerol : size(gppL) = (0,0, (¢ppL)) and Frue ¢ < dppL.

PrROOF The fact that a formula has the property that it can be rewritten as specified in the propo-
sition, will be denoted by DL(¢) for reasons that will become clear in the sequel. The proof is by
induction onsize(¢).

*o=p

szze() =(0,0,I(p)) and letppp. = p, thenPDL(p).
= Irlnle ¢/

If n = —1, we have thafr [,]¢’ is equivalent withT (PRDL1). As PDL(T), we also have
PDL([r,]¢’) in this case.
Letn = 0. We then have thatize([r[,]¢") = (f(size(¢")), s(size(¢d)), ([x]n]¢")) is greater
thansize(¢') = (f(size(¢')), s(size(¢’)),1(¢’)). By induction, we then haveDL(¢’), i.e. ¢’
can be rewritten into an equivalent formutg,,, , such thatszze(¢PDL) (0,0,1(dpp)). As
size([mln]¢ppL) = (0,0, 1([7[n]dppL)), We havePDL([x[,]¢pp,) and thereforéDL([7[,]¢").
Letn > 0. Letw = e¢. By Lemma 5.4, we haveize(¢') < size([e[,]¢’). Therefore, by induc-
tion, PDL(¢'). As [e],]¢’ is equivalent withp’ by axiom(PRDL3), we also hav@®DL([e[,]¢’).
Now letm = c; " and letL = [¢; 7'[,,]¢" and R = [clo][7'[n]¢ AN lapply(p, c; 7')[n—1]¢'. By
Lemma 5.4, we have thatze(R) < size(L). Therefore, by induction, we haRDL(R). As R
andL are equivalent by axiorfPRDL4), we also hav®DL (L), yielding the desired result.

«o=-¢/
We have thakize(—¢') = (f(size(¢')), s(size(d')),l(—¢")), which is greater tharize(¢').
By induction, we thus havBDL(¢’) andsize(¢pp,) = (0,0,(¢pp)). Then,size(—¢pp,) =
(0,0, (—¢pp.)) and thusPDL(~¢pp,) and thereforé®DL(—¢’).

“p=0' ne
By Lemma 5.4, we haveize(¢') < size(¢' A¢") andsize(¢”) < size(¢' A¢"). Therefore, by
induction,PDL(¢") andPDL(¢") and therefor@ize(¢pp,) = (0,0,1(¢pp,) andsize(dpp,) =

Dynamic Logic for Plan Revision in Agent Programmin889

(0,0,1(¢ppL))- Then,size(dpp, A dpp) = (0,0,1(dpp. A ¢pp)) and thereforesize((¢ A
¢"eoL) = (0,0,1((¢" A ¢")ppL)) and we can concludeDL((¢' A ¢)ppL) and thusPDL(¢' A
@),

Although structural induction is not possible for plans in generas, fitossible if we only consider
action execution, i.e. if the restriction parameted.ighis is specified in the following proposition,
from which we can conclude that a formuawith size(¢) = (0,0, 1(¢)) satisfies all standarfdDL
properties.

PROPOSITIONS.6 (sequential composition)
LetRule C R be afinite set of PR rules. The following is then derivable in the axiom sy&f&m.:

FRute [m15 T2[0]¢ < [m1]o][m2l0]@

PROOEF If 11 = ¢, we have[ry [o] < [e [o][m=2 [o]¢ by axiom (PRDL3). Otherwise, letc; €
(BasicAction U AbstractPlan) for i > 1, letm = ¢1;...;¢,, With n > 1. Through repeated

application of axiom(PRDL4), first from left to right and then from right to left (also using axiom
(PRDL1) to eliminate the rule application part of the axiom), we derive the desired fésult.

[c15.. .5 Cnmalo]@
[cilo]lc2; - . - ens malol@

[m1;m2[0]@
'[C.Jo][cz fo] . - [enlo][m2lo]®
[e1; c2lol[eslo] - - - [enlo][m2l0] @

.[(;1.;~--;CnF0H7T2f0}¢

[T1lo][m2lo]@

11111111

THEOREM5.7 (completeness)
Let ¢ € LprpL and letRule C R be a finite set of PR rules. Then the axiom syst&&x,. is
complete, i.e.

FRule ® = FRule ¢-

PROOF. Let¢ € LprpL. By Proposition 5.5 we have that a formulap, exists such thatg,e ¢ —
¢ppL andsize(gppL) = (0,0,1(¢ppL)) and therefore by soundnessA8ryie also=rue ¢ — dppL-
Let pppL be a formula with these properties.

FRue @ < FRule ®PDL (FRule ¢ < ¢pDL)

= FRule ®PDL (completeness d?DL)
< FRrue ¢ (FRule @ < ¢pDL)

The second step in this proof needs some justification. The general idea is tRBtLa#ixioms
and rules are applicable to a formutap, and moreover, these axioms and rules are contained in
our axiom systenASg,e. As PDL is complete, we have=rue ¢ppL = Frule ¢ppL. There are

16We use the notatioth; « ¢ « ¢3 < ..., which should be read as a shorthanddgr— ¢- andgs — ¢3 and. ..
This notation will also be used in the sequel.

390 Dynamic Logic for Plan Revision in Agent Programming

however some subtleties to be considered, as our action language is not exactly the same as the
action language d?DL, nor is it a subset (at first sight).

The action language dPDL is built using basic actions, sequential composition, test, non-
deterministic choice and iteration. The action languag@RIDL is built using basic actions, ab-
stract plans, empty plans and sequential composition. If we for the moment disregard abstract plans
and empty plans, the languaB&DL is a subset of the langua@®L. If we take the subset ¢tDL
axioms and rules dealing with formulas in this subset, this axiom system should be complete with
respect to these formulas.

The action language of fuPRDL, however, also contains abstract plans and empty plans. The
guestion is, how these should be axiomatized such that we obtain a complete axiomatization. In
order to answer this question, we make the following observation. In a forgpgla abstract and
empty plans can only occur with(arestriction parameter by definition. Further, the semantics of
a formula[p[o]¢ppL Wherep is an abstract plan, is similar to the semantics ofthgl statement
of (an extended version oPDL. The set of states resulting from “execution” of both statements is
empty!’ The semantics of a formula [o]¢pp. is similar to the semantics of thekip statement
of PDL. The set of states resulting from the execution of both statements in arstafe'},* i.e.
the semantics is the identity relation. The action languageRidL can thus be considered to be a
subset of the action languageRIDL, wherep|, ande[, correspond respectively ftail andskip.

Now, fail andskip are not axiomatized in the basic axiom syster®DL. These statements are
however, defined a3? and1? respectively and the test statemirgxiomatized{)?]¢ < (v — ¢).

We now fill in 0 and1 for ¢ in this axiom, which gives us the following.

06 (0-8) o [076 o [faills
[l?kb —(1—-9¢9) < [1?]¢ —¢ < [Skip]¢ — ¢

The statement$ail andskip are thus implicitly axiomatized through the axiomatization of the
test. For our axiom system to be complete for formulas, , it should thus contain thEDL ax-

ioms and rules that are applicable to these formulas, that is, the axiom for sequential composition,
the axioms forfail andskip as stated above, the axiom for distribution of box over implication
and the rulesNIP) and GEN). The latter three are explicitly contained Abg,e. The axiom for
sequential composition is derivable in the syst#&$g, . for formulasgpp, , by Proposition 5.6. Ax-

iom (PRDL2) for pJo corresponds with the axiom fdmil. The axiom forel,, corresponding with

the axiom forskip, is an instantiation of axioiPRDL3). Axiom (PRDL3), i.e. the more general
version of[e[o]¢ — ¢, is needed in the proof of Proposition 5.5, which is used elsewhere in this
completeness proof.

We conclude with a remark with respect to axid®PRDL3). In the proof above, we explained
that the semantics off, andskip are equivalent. As it turns out (see Proposition 5[8)g]¢ is
equivalent withle[,,]¢, as can be proven from axiofRDL3), which is thus also equivalent with
skip.

PROPOSITION5.8 (empty plan)
LetRule C R be afinite set of PR rules. The following is then derivable in the axiom syAt&g)..

Frute [€]0]® < [eln]d With 0 < n

17An abstract plamp cannot be executed directly, it can only be transformed using PR rules. The restriction parameter is,
however)0, so no PR rules may be applied and the®@gt([plo]¢) (o) = 0 for all A ando.
84 ([elolgpoL) (0) = {0} = w(C([elo]¢poL) () = O ([elo]dpoL) (o).

Dynamic Logic for Plan Revision in Agent Programming§91

PROOF
1. [eln][elo]® < [elo]d (PRDL3)
2. [elo]p < ¢ (PRDL3)
3. [eln]lelo]d < [eln]d 2, (GEN), (PDL)
4. [elo]o < [eln]d 1,3, (PL)

6 Proving propertiesof non-restricted plans

In Sections 4 and 5 we have presented a logic for restricted plans with sound and complete axioma-
tization. This means that it should be possible to construct a proof for a fofmula]¢ if and only
if it is true for a given agent. This might be considered an interesting result, but our ultimate aim is
to prove properties of non-restricted 3APL plans.

The semantics of restricted plans is closely related to the semantics of non-restricted plans. Using
this relation, we will show how the proof system for restricted plans can be extended to a proof
system for non-restricted plans. Then we will discuss the usability of this system, using examples.

6.1 From restricted to non-restricted plans

We first add the following clause to the langua@ie:p. (Definition 4.2)1° yielding a language that

we will call Lprpy+: if ¢ € LprpL+ andw € Plan, then[r]¢ € LprpL+. By means of this construct,

we can thus specify properties of non-restricted plans. We define the semantics of this construct in
terms of the operational semantics of non-restricted plans as follows.

DEFINITION 6.1 (semantics dPRDL™)

Let A be a 3APL agent (Definition 3.5). The semantics of formulas not of the fafg with

¢ € LprpL+ IS as in Definition 4.5. The semantics of formulas of the fort is as defined below:
0 =41 © Vo' € OMx) (o) : 0" Ea @

This definition thus takes the operational semantics of non-restricted plans to define the semantics
of constructs of the fornfir]¢. In the following proposition, we relate the operational semantics of
plans and the operational semantics of restricted plans.

PROPOSITIONG.2
U 0r(@n)(0) = O(7)(0)
ne N
ProOF Immediate from Definitions 4.4, 4.3, 3.11 and 3.10. [|

From this proposition, we have the following corollary, which shows how the condtriigi¢ is
related to the constru¢t]e.

COROLLARY 6.3

VneN:olA[rlu]e & Vo' € OA(m)(0):0' |Ead
& o= n)e

19Replacing each occurrence Bprp in this definition byLpgp, + -

392 Dynamic Logic for Plan Revision in Agent Programming
PrROOF Immediate from Proposition 6.2, Definition 4.5 and Definition 6.1. [|

From this corollary, we can conclude that we can prove a property of the [felgnby proving
¥n € N : Frue [7[n]¢, using the system for restricted plans. This idea can be captured in a proof
rule as follows.

DEFINITION 6.4 (proof rule for non-restricted plans)

[7Tn]d, n €N
[7]

This rule should be read as having an infinite number of premissesr i@, 7 [1]®, [7 [2]®,
... (see also [15]). Deriving a formular]¢ using this infinitary rule thus requires infinitely many
premisses to have been previously derived.

The rule is sound by Corollary 6.3. The syst&$r,. for restricted plans (Definition 5.1) taken
together with the rule above, is a complete axiom systenPRDL™: if [r]¢ is true then each
of the premisses of the rule is true (Corollary 6.3) and each of these premisses can be proven by
completeness cASgye. The notion of a proof in this case is, however, non-standard, as a proof can
be infinite. This completeness result is therefore theoretical, and putting the system to use in this
way is obviously problematic.

One way to try to deal with this problem is the following. The idea is that properties of the form
¥n € N : Frye [7]]¢ can be proven binductiononn, rather than provingr|,,|¢ for eachn. If we
can prover[o]¢ andvn € N : ([7[,]¢ Frue [7[rn+1]¢), we can conclude the desired property. In
the next section we will illustrate how this could be done, using examples. The examples, however,
show that it is not obvious that this kind of induction can be applied in all cases.

6.2 Examples

EXAMPLE 6.5

Let A be an agent with one PR rule, iRule = {a;b ~~ ¢} and let7 be such thaja[o]¢, [blo]¢
and|c [o]¢. We now want to prove thatn : [a;b],]¢. We have[a;b[o]¢ by using that this is
equivalent toalo][b[o]¢ by Proposition 5.6. The latter formula can be derived by applyGEN)
to [blo]¢. We provevn € N : ([a; bl,]¢ Frule [¢; blnt1]¢) by taking an arbitrary: and proving that
[a;b]n]® FRrule [@; bln41]¢. Using(PRDL4) and(PRDL3), we have the following equivalences:

[a;bln]e < [alo][bl,]¢ A eln-1lo
< [afo][blo][eln]® A [clo][eln-1]0
< [alo][blo]e A lelolo.
Similarly, we have the following equivalences fat bl,,.1]¢, yielding the desired result:
[a; bl i1l < alol[bln+1]0 A eln]¢
< lalo][blo][eln+1]é A [clo][eln]o
< lalo][blo] A elo]g.

EXAMPLE 6.6

We will prove a property of a very simple 3APL agent using axid®®DL4) and induction on the
number of PR rule applications. Our agent has one PR Ril¢e = {a ~> a;a}. Furthermore,
assume thaf is defined such thdt [y]¢. We want to prove the followingyn € N : [a[,]¢. In

order to prove the desired result by induction on the number of PR rule applications, we thus have to

Dynamic Logic for Plan Revision in Agent Programmin893

provelalo]¢ andVn € N : [al,]é Frue [alns1]@. [alo]é was given. Let! denote a sequence of
of lengthi, with a® = €. The premiss of the second conjunct can be rewritten using agf®DL4)
as follows:

[aln]é

111?

[alo]o A [alo][aln—1]0 A [(a; a; a)—2]@
l[aln=1]¢ A [alo][(a; a)[n—2]® A [(a; a; a; a)[n—3]d

o [alo]é A [alollala_s]d A . A falo][(a™) o) A [(as (a™))lolé.

So, in order to provéul,,+1]¢, we may assume — among other thingsefs, | ¢,
[(a;a) Tn-1]®, [(a;a;a)n—2]®, ..., [(a;(a™))]o]¢ (last conjunct of each line). Equivalently, we
may thus assume the followirt§.

/\[(a; (a'))ln—il for0 <i<n. (6.1)

%

The consequent, i.u[,+1]¢, can be rewritten using axio(f’RDL4) as below:

[alnt1]e < [alold Al(a;a)ln]o
— [alo]o A alo]laln]é A [(a;a;a)[n—1]¢
— [alo]o A alo][aln]® A [alo][(a; @)l n-1]¢ A [(a; a; a;a)ln—2]d (6.2)

o [alolé A lalollal)é A ... Alalo)[(a: (@) olé A [(asa (@)oo

As [al,+1]¢ is equivalent to all of the lines on the right-hand side of (6.2), we may prove any of
these lines, in order to prove the desired result. As it turns out, it is easiest to prove the last line.
The reason is that in this case, the last conjunct has a restriction parameter of 0. We can thus use
Proposition 5.6 for sequential composition to prove this conjunct as follows:

1. [alo]o assumption

2. [(a;a;(a™" 1))fo][afo]¢ 1, (GEN)

3. [(a;a;(a™1);a)lo)e 2, Proposition 5.6
4. [(a;a;(a™))]o]e 3, definition of a’

Proving the other part of the last line of (6.2), i&,[alo][(a; (a*)) [,—i]¢ for 0 < i < n, can be
done by applyingGEN) to each of the conjuncts of (6.1), yielding the desired result.

The important thing to note about this example is that the rewriting of formulagdikg¢ using
(PRDL4), terminates. This is because the number of rewrite steps is restrictedIbye did not
have this restriction parameter, we might have the following variatPBDL4):

[e; 7] < [elo][wlo A J\lapply(p, ¢;)] o2

p

2ONote thatalo][(a®)In]é — [alo][eln]¢ and[alo][eln]® < [alo]e, using axiom(PRDL3).

2lwe use the O-restriction parameter here to distinguish between rule application and action exec\tion]g.és true,
if and only if [w]¢ is true after the execution efand¢ is true after the plans resulting from the application of the PR rules of
the agent.

394 Dynamic Logic for Plan Revision in Agent Programming

An attempt at provinda]¢ for an agent with the PR rule of Example 6.6 and this ‘axiom’, would
however result in infinite regression:

< lalo]¢ A la; ald
< lalo]g A [alo]la]é A [a; a; alé
< [alol¢ Alalolla]¢ Alalo][a; a]g Ala; a; a; al¢

In the example above, we have proven the desired result in our axiom system, using the key axiom
(PRDL4). Another way to look at an agent with only the PR rule~ a;a, is by considering

the language of plans that is ‘generated’ by this rule. By doing this, a much simpler proof can be
obtained.

EXAMPLE 6.7
We take again the agent of Example 6.6, i.e. an agent with one PR r#e:; a, and with[a[o]¢.
We want to prove agaivin € N : [a],,]¢. Taking into account the PR rule that is given and the initial
plana, one can conclude that the action sequences that can be executed by this agent, are sequences
of a of an arbitrary length. Given this, one could instead prawec N7 : [a" [¢]¢, whereN™ is
the set of positive natural numbe¥sWe prove this by taking an arbitraryand provinga™[o)¢ for
thisn.
1. [alo]e assumption
2. lalo]lalo]e 1, GEN
3. [a;alo]o 2, proposition 5.6

(a™ o)

Obviously, this proof is much shorter than the proof of Example 6.6. Itis, however, obtained through
meta-reasoning about the PR rules of the agent. In the desired Yesut N* : [a" [¢]¢, the
restriction parameter i8. The application of PR rules has thus in effect been eliminated from the
expression in the object language.

Meta-reasoning could be done in this simple case: the PR rule actually generates the language
of plans that can be represented by the simple regular exprassid?PR rules in general however
do not only generate languages that can be represented by regular expressions. In particular, rules
of the formp ~~ =, wherep is an abstract plan, can be compared with parameterless recursive
procedures (see also Section 7), which can in turn be linked to context-free programs [15, Chapter
9]. Furthermore, PR rules can have the form ~~ m,, where the head is an arbitrary plan. It is
thus not obvious that a meta-argument about the plans generated by the agent can be constructed in
the general case. Investigations along these lines are however not within the scope of this paper and
remain for future research.

In the next example, we will use Proposition 6.9 below, in the proof of which we use the following
lemma.

LEMMA 6.8
LetRule C R be afinite set of PR rules. The following is then derivable in the axiom syAt&g)..

FRule [W[nkb - [W[OMS

22The resultyn € N : [a[]¢ that we want to prove specifies that always at least one agtisexecuted: ifn = 0, the
required result ia [o]#, which specifies the execution af The result does not require provifigl, ¢, which would be
provable if we would assumgto be valid.

Dynamic Logic for Plan Revision in Agent Programmin895

PROOEF Let ¢; € (BasicAction U AbstractPlan) for ¢ > 1 and letr = ¢;;...;¢p, Withm > 1.
Through repeated application of axiqfRDL4), from left to right, then usingPRDL3) to get rid

of [e],,] and then using Proposition 5.6 for sequential composition with a O restriction parameter, we
derive the desired result.

['/T fn]ﬁb

LLLLLLL
£
T

In the following proposition, we use some notation that we will first explain. The notation
(PRDL4);([7 I+]@), with 0 < i < n, denotes the formula that results from rewritiagl,,]¢ us-
ing (PRDL4) from left to right, such that all restriction parameters are either ;. Formulas of
the form|el,,]¢ are replaced by, using axiom(PRDL3). In this process(PRDL4) may only be
applied to a formuldn|,,]¢ if m > i.

Take, for example, the agent of Example 6.6 with~~ a;a as the only PR rule. The for-
mula (PRDL4)3([a I5]¢) then for example, denotes the formutalo]¢ A [a [o]la To]¢ A [a o]
[a; als]é A [a; a; als]¢, which can be obtained by rewriting the formidd;]¢ as below.

lals]¢p < [afo][dskb/\ [a; als]o
< lalo]® A lalol[ala]¢ A [a; a; al5]
< alo]® A [alo][alo][€]4]¢>/\[lollas als]o A la; a; als]é
« lalo]® A [alo][alo]¢ A [alo][a; als]e A [a; a; al3]¢

The idea is thus, that formulas of the fofnt,,,|¢ are rewritten until formulas are obtained withs
the restriction parameter. A formula[;]¢ may not be rewritten.

Any formula[r [,]¢ can be rewritten into a formulPRDL4);([7 [,,]¢) with 0 < ¢ < n. An
application of(PRDL4) to a formula[r [,,]¢ yields two conjuncts (the second of which is again a
conjunction). The first conjunct is smaller in plan size thah,,]#.2> Each conjunct of the second
conjunct is smaller thafir [,,,]¢ with respect to the restriction parameter. With each rewrite step,
we thus have a decrease either in plan size or in size of the restriction parameter of each resulting
conjunct. This can thus continue for each conjunct until either the plan size (minus the plan size of
¢) is 0 or the non-zero restriction parameters are equal to

Another notation that we will use i®0(¢), denoting the formula that results from replacing all
restriction parameters i by 0.

PROPOSITIONG.9 (restriction parameter)
LetRule C R be afinite set of PR rules. The following is then derivable in the axiom sy&&m.:

Frule [Tln]d — [rlilowith —1 <i<n

23The second element eize(F), whereF denotes the first conjunct, is smaller than the second element@f{r [,] 6.

396 Dynamic Logic for Plan Revision in Agent Programming

PrROOE If i = —1, the desired result follows immediately by axigitRDL1). We will now prove
the result fori > 0.

1. [wla)¢ < (PRDL4), ;([x].]¢) (PRDL4)

2. [wli]e (PRDL4)0([B (PRDL4)

3. (PRDL4),,_;([rla]®) — toO((PRDL4),,_;([7]n]®)) Lemma 6.8

4. toO((PRDL4),,—;([7[n]®)) <> (PRDL4)o([7]4]9) syntactic equality

5. (PRDL4),_i([[n]¢) — (PRDL4)o([r]:]¢) 3,4

6. [rln]¢ — [7lio 1,2,5.

Step 4 is justified, because bdtRRDL4),, _;([7[,]¢) and(PRDL4)y([7[;]¢) result from the same
number of applications ofPRDL4) to [[,]¢ and[r [;]¢ respectively. The latter two formulas are
syntactically equal, except for the restriction parameter. The formBB®L4),,_;([7 [,,]¢) and
(PRDL4)([7 [;]¢) are thus also syntactically equflexcept for the restriction parameters, which
aren —1 or 0 in the first case andin the latter. Setting the restriction parameters of the first formula
to 0, will thus give us equivalent formulas. [|

EXAMPLE 6.10

We now consider an agent with two PR rul&stle = {a ~ «a;a, a;a;a ~ b} and we assume that
[alo]¢ and[blo]¢. We want to prové/n € N : [al,]¢. Along similar lines of reasoning to those in
Example 6.6, i.e. by using axiofPRDL4) to rewrite[a[,]¢, we can conclude that we may again
use assumption (6.1) from Example 6.6: We have to prove the following, taking the ‘last line’ of the
rewriting of [al,,11]¢ by (PRDL4).

/\[GFO][(CL; (@)n-il for0<i<n (6.3)
Al (@) lnile for2<i<n (6.4)
[(a;a; (a™))lo]é (6.5)

The formulas (6.3) and (6.5) were proven in the example above, using assumption (6.1). We will
prove (6.4) by proving\,[(a’~?)[,,—;]¢ and using GEN) to derive the desired formula.

In the proof below, leB < ¢+ < n and let0 < r < n in the firstline and) < r < n — 3 in the
second line.

Lo Ala (@)ln—r]d assumption (6.1)
2. Al (@)ln—r-3]o 1, Proposition 6.9
3. Nil(a; (@72)l—ilo wherer =i — 3
4. N (@)il definition ofa’
5. Nilblo]l(@) n—il¢ _ 4, (GEN)

6. A;bloll(@) nile = AJ(b; (a"7?))ln—i]¢ (PRDL4)

7. Nl (@2)nie 5,6, (MP).

The above provegb; (a'=2))[,_s|¢ for 3 <i < n. If i = 2, we need to prové|, _»]¢. According
to axiom(PRDL4), this is equivalent to provinf[]¢.2> This was given, so we are done.

In Section 6.1, we have presented an infinitary axiom system to prove the properties of non-restricted
3APL plans. As an infinitary axiom system is difficult to use, we have suggested using induction

24That is, modulo swapping of conjuncts.
25By (PRDL4) we havelbl,,—2]¢ < [blo][eln—2]¢ and by(PRDL3): [blo][eln—2]¢ < [blo]o-

Dynamic Logic for Plan Revision in Agent Programmin897

on the number of PR rule applications, i.e. on the restriction parameter, in an expression. Some
examples have been worked out to illustrate this approach. As the examples show, it is doable (at
least for the example cases) to use induction on the number of PR rule applications. It is however a
fairly complicated undertaking. Future research will have to show whether this type of reasoning is
amenable to some kind of automation, and what the limits of the approach are.

7 PR rulesversusprocedures

As stated in the introduction, the operational semantics of (parameterless) procedures is similar to
that of PR rules. The operational semantics of a proceduseS wherep is the procedure name and

the statemen$ is the body of the procedure, can be defined by a transftipf’, o) — (S;.5,0),

whereS’ is a statement. If we compare this semantics to the semantics of PR rules of Definition 3.7,
we can see that both are so-called body-replacement semantics: if the head of a PR rule or the name
of a procedure occur at the head of a statement that is to be executed, the head or the procedure name
are replaced by the body of the rule or the procedure respectively.

Because of this similarity, one might think that techniques used for reasoning about procedures
can be used to reason about PR rules. This however turns out not to be the case, due to the non-
compositional semantics of the sequential composition operator in 3APL (see introduction to Section
4). In this section, we will elaborate on this issue by studying inference rules of Hoare logic for
reasoning about procedures (see, for example, [7, 1] for a detailed explanation of Hoare logic). We
will also show that reasoning by induction on the number of PR rule applications and reasoning
about procedures using Hoare logic inference rules, although very different at first sight, actually do
have similarities.

7.1 Reasoning about Procedures

Hoare logic is used for reasoning about programs. Inference rules are defined to derive so-called
Hoare triples. A Hoare triple is of the forfw; } S {¢2} and intuitively means that if; holds, ¢

will always hold after the execution of the statem&rf To reason abouton-recursiveprocedures,

the following inference rule can be defined for a procegure- S (for simplicity, we assume we

only have one procedure) with procedure ngnaad bodys.

{#1} S {¢2}
{1} p {2}

The rule states that if we can prove tltatholds after the execution of the bodyof the procedure
(assumingp; holds before execution), we can infer tligtholds after the procedure call

If the procedurey <= S is recursive that is, ifp is called inS, the rule above will still be sound,
but a system with only this rule for reasoning about procedure calls will not be complete (see also
[1]). An attempt at proving ¢, } p {¢2} results in an infinite regression. The following rule [1],
which is a variant of so-called Scott’s induction rule (see for example [7]), is meant to overcome this
difficulty.

DEFINITION 7.1 (Scott’s induction rule)

{91} p {2} F {d1} S {2}
{#1} p {92}

26The Hoare triple{¢1} S {¢=2} can be characterized in dynamic logic by the formpla— [S]¢2.

398 Dynamic Logic for Plan Revision in Agent Programming

The rule states that if we can proye, } S {¢2} from the assumption theip, } p {¢2}, we can
infer {¢1} p {¢2}. Using this rule for reasoning about procedure calls, a complete proof system can
be obtained [1}/

In a proof of a property of a procedural program, the rule above is (often) used in combination
with the following rule for sequential composition.

DEFINITION 7.2 (rule for sequential composition)

{1} S {2} {92} 5" {03}
{¢1} 858" {43}

Consider for example a procedure¢ <« p and suppose we want to prove
{#1} p; S {¢3} (pis non-terminating, so we should be able to prove this for@ngndes). We then
have to prove ¢, } p {¢2} and{¢2} S {3} for someg,. If we takep, = 0, i.e. falsum, the second
conjunct follows immediately. In provingé: } p {0}, which we will refer to asH, we use Scott's
induction rule and we thus have to prokefrom the assumptio/. This is immediate, concluding
the proof.

The point of this example is the following. Using Scott’s induction rule, we can prove properties of
a procedure caph. If we want to prove a property of a statement involving the sequential composition
of this procedure call and some other statenf&nte can use properties proven about the procedure
call (obtained using Scott’s induction rule) and compose it with properties proven Sibyuneans
of the rule for sequential composition. In particular, this technique can be applied to, for example, a
procedurep < p; .S, where an assumption abgutan be used to prove propertiesofS. Scott’'s
induction rule for proving properties of procedure calls is thus most useful if used in combination
with the rule for sequential composition.

7.1.1 Scott’s induction rule for PR rules

A gquestion one might ask, is whether a variant of Scott’s induction rule can be used to reason about
PR rules. Assuming one PR rutg ~~ 3, the following rule could be formulated.

{o1} mn {2} F {d1} mp {2}
{¢1} mn {02}

Assume for the moment that it is possible to use this rule to pfeMg m;, {¢2} for some PR
rule 7;, ~ m, and propertieg); and¢,. The question now is, whether the fact that we can prove
{1} 7 {02}, will do us any good if we want to prove properties of more complex plans such as
Th; .
Proving properties of;,; based on properties provenmof, would have to be done using the rule
for sequential composition. This rule is however not sound in the context of PR rules. In general, it
is notthe case tha®(71;m2)(0) C O(m2)(O(m1) (o)) (see also the introduction to Section 4). Let
Y1 = O(m)(0) andXs = O(m2)(X1). If @2 holds in all states ix; (if ¢1 holds ing), thengs will
hold in all states irE, by assumption. LeEs = O(m;m2)(0) and leto’ € 33, bute’ € . Then
we may not conclude that; will hold in ¢’ and therefore the rule is not sound.
The fact that we can provigs; } w1, {¢2}, will thus not help if we want to prove properties of a plan
like 7,; , because we do not have a rule for sequential composition. In particular, the assumption

2"Note that this is a proof rule for deriving partial correctness specifications, a Hoareffiplep {¢2} meaning that
if p terminatesg. will hold after execution of (provided thaip is executed in a state in whiehy holds). Ifp does not
terminate, anything is derivable fpr The rule cannot be used to prove terminatiomp.of

Dynamic Logic for Plan Revision in Agent Programmin8§99

{1} 7 {2} will not help to prove{¢,} m, {¢2}, even ifr, = mp,; . Itis thus not clear whether

it should be possible in the general case to proye} 7, {¢2} from the assumptiofo; } 7, {d2}.
Moreover, the rule above is not sound for agents with more than one PR rule. It is then in general
not the case tha®(m;)(c) = O(nwp) (o), ratherO(m) (o) € O(mp) (o). Therefore, we may not
conclude{¢, } m {¢2} from a proof of{¢, } 7, {p2}.

7.2 Induction

In Section 7.1 we argued that, although the operational semantics of PR rules and procedure calls
are very similar, we cannot use Scott’s induction rule, which is used for reasoning about procedure
calls, to reason about PR rules. Our solution to the issue of reasoning about PR rules as presented in
this paper, is to do induction on the number of PR rule applications. In this section, we will elaborate
on why Scott’s induction rule is called amductionrule and by doing this, we will see that induction
on the number of PR rule applications and induction as used in Scott’s induction rule, have strong
similarities.

At first sight, it does not look like using Scott’s induction rule involves doing induction, because
we do not see formulas parameterized with natural numbergin+ 1. To see why the rule actually
isan induction rule, we first rephrase the rule of Definition 7.1 and adopt notation used by De Bakker
[7]. Q is used to denote a non-terminating statement (similar té4h& statement mentioned in the

proof of Theorem 5.7). The first element of a tugle. | ...) is used to indicate the procedures, in
the presence of which the formula of the second element should hold.
{91} Q {42} ([{o1} p{d2} F {1} S {¢2}) (7.1)

(p=5{o1}p{02})

The rule above is an instantiation of a more general version of this rule for multiple procedures [7].
The first antecedent is derived from this general rule, but could be omitted in this fbisra non-
terminating statement and therefore the trigle } Q2 {¢-} is valid for any¢,, ¢o. We will however

not eliminate it for the purpose of comparing this rule with reasoning about PR rules.

Now, consider a procedure < S and letS™ be defined as follows:S° = Q and S"*! =
S[S™/p], whereS[S™ /p| means that every occurrencezoin S is replaced bys™. If for example
S =p; 5, thenSt = §9; 8" =; 8, 5% =S4, 9" = (Q;9); 9, etc.

Using this substitution construction, we can define the meanihgf a procedure < S in the
following way (see Apt [1]):M(p) = J;—, M(S™). From this, we can conclude thgi < S |
{1} p {¢P2}) istrueiffvn : (p < S™ | {¢1} p {¢2}) is true [1]. Therefore, the induction rule
above is equivalent to the following rule.

{91} Q2 {¢2} (I{o1} p{@2} F {01} S {¢2})
(7.2)
Vn:(p < S [{¢1} p {d2})

The meaning of a procedure calbf a procedure < S is equivalent with the meaning &f. More
generally, the meaning of a stateméhin which a call to procedurg < S occurs, is equivalent to
the meaning of the statemes$t.S/p|, i.e. the statemerft’ in which all occurrences q¢f are replaced
with S (see [7]). Therefore, we may replaga&vith S™ in rule (7.2) and we may replace occurrences
of pin S with S™. We have, by definition, thaf[S™ /p] = S™*!, yielding the following equivalent

rule?8
{1} Q {2} Vn: ({¢1} 5" {¢2} F {1} Sntt {02}) (7.3)
Vi {¢1} S™ {#2} '

28\e omit the procedure declaratipne= S, because there are no occurrences iof eitherS™ or S™*1 by definition.

400 Dynamic Logic for Plan Revision in Agent Programming

This rule, which is equivalent to Scott’s induction rule, demonstrates clearly why Scott’s induction
rule is called arinductionrule. The idea of proving properties of a 3APL agent of the fafim:

Frule [7[1]@ by induction onn, is that we provdn [o]¢ andVn : ([[,]® FRrule [T [ns1]@). The
similarity between the two approaches is thus that induction on respectively the number of procedure
calls and PR rule applications is done (implicitly or explicitly).

The important difference however is that the statenteimt rule (7.3) corresponds with the body
of a procedurg in the equivalent rule (7.1). The planon the other hand does not correspond with
the body of a PR rule, but rather refers to the initial plan of the agent. Related to this is the fact
that rule (7.3) or the equivalent rule (7.1) can be used in combination with the rule for sequential
composition, as explained in Section 7.1. In the case of using induction to reason about 3APL plans,
this is impossible.

Concluding, the general idea of doing induction on the number of PR rule applications is less
obscure than one might have thought at first sight, because of the similarity with the standard Scott’s
induction rule. The way in which induction can be used to prove properties of plans or programs,
however differs between the two approaches due to the non-compositional semantics of the sequen-
tial composition operator in plans, as a result of the presence of PR rules.

8 Conclusion

In this paper, we presented a dynamic logic for reasoning about 3APL agents, tailored to handle the
plan revision aspect of the language. As we argued, 3APL plans cannot be analysed by structural
induction, which means that standard propositional dynamic logic cannot be used to reason about
3APL plans. Instead, we proposed a logic of restricted plans with sound and complete axiomati-
zation. We also showed that this logic can be extended to a logic for non-restricted plans. This
however results in an infinitary axiom system. We suggested that a possible way of dealing with
the infinitary nature of the axiom system, is reasoning by induction on the restriction parameter. We
showed some examples of how this could be done. Finally, we discussed the relation between PR
rules and procedures. In particular, we argued that there is a similarity between the use of Scott's
induction rule for reasoning about procedures, and the use of induction on the number of PR rules
applications for reasoning about PR rules.

Concluding, being able to do structural induction is usually considered an essential property of
programs in order to reason about them. As 3APL plans lack this property, it is not at all obvious that
it should be possible to reason about them, especially using a clean logic with sound and complete
axiomatization. The fact that we succeeded in providing such a logic, thus at least demonstrates this
possibility. The resulting infinitary axiom system is nevertheless more of theoretical than practical
importance. Future research will have to show whether reasoning by doing induction on the number
of PR rule applications is amenable to some kind of automation, working towards an extension of
these results to a more practical setting. Another important line for future research is the investigation
of the relation between term rewriting systems and PR rules, and between PR rules and formal
language theory. We hope that those investigations will lead to the definition of interesting subclasses
of PR rules thatanbe analysed by structural induction.

References

[1] K. R. Apt. Ten years of Hoare’s logic: A survey - partACM Transactions of Programming Languages and Systems
3,431-483, 1981.

[2] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking AgentSpedkioceedings of the Second

Dynamic Logic for Plan Revision in Agent Programming01

International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS.@®)9-416, Melbourne,
2003.

[3] M. E. Bratman.Intention, Plans, and Practical ReasoHarvard University Press, MA, 1987.

[4] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal representation for BDI agent systefsghamming
Multiagent Systems, Second International Workshop (ProMASI@)me 3346 ofLecture Notes in Atrtificial Intelli-
gence pp. 44-65. Springer, Berlin, 2005.

[5] P. R. Cohen and H. J. Levesque. Intention is choice with commitrAetificial Intelligence 42, 213-261, 1990.

[6] M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. Ch. Meyer. A programming language for cognitive agents:
goal directed 3APL. IfProgramming Multiagent Systems, First International Workshop (ProMASW@3yme 3067 of
Lecture Notes in Atrtificial Intelligencgp. 111-130. Springer, Berlin, 2004.

[7] J. de Bakker.Mathematical Theory of Program CorrectnesSeries in Computer Science. Prentice-Hall International,
London, 1980.

[8] B. Drabble, J. Dalton, and A. Tate. Repairing plans on the flyProceedings of the NASA Workshop on Planning and
Scheduling for Spa¢d.997.

[9] E.M.Clarke, O. Grumberg, and D. Peledodel CheckingMIT Press, Cambridge, MA, 2000.

[10] R. Evertsz, M. Fletcher, R. Jones, J. Jarvis, J. Brusey, and S. Dance. Implementing industrial multi-agent systems
using JACK™. InProceedings of the First International Workshop on Programming Multiagent Systems (ProMAS’03)
volume 3067 oLecture Notes in Atrtificial Intelligencgp. 18—49. Springer, Berlin, 2004.

[11] M. Georgeff and A. Lansky. Reactive reasoning and planningPrbteedings of the Sixth National Conference on
Artificial Intelligence (AAAI-87)pp. 677—-682, 1987.

[12] G. d. Giacomo, Y. Lesgrance, and H. LevesqueConGolog a Concurrent Programming Language Based on the
Situation CalculusArtificial Intelligence 121, 109-169, 2000.

[13] K. J. Hammond. Explaining and repairing plans that faittificial Intelligence 45, 173-228, 1990.

[14] D. Harel. First-Order Dynamic Logic Volume 68 ofLecture Notes in Computer Scien&pringer, Berlin, 1979.

[15] D. Harel, D. Kozen, and J. TiuryDynamic Logic The MIT Press, Cambridge, MA, 2000.

[16] M. Hinchey, J. Rash, W. Truszkowski, C. Rouff, and D. Gordon-SpearsFedsal Approaches to Agent-Based Systems
(Proceedings of FAABS’'02Yolume 2699 of_ecture Notes in Atrtificial Intelligen¢derlin, 2003. Springer.

[17] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent programming in 3APL. of Autonomous
Agents and Multi-Agent Systen2s357-401, 1999.

[18] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. A programming logic for part of the agent language
3APL. In Proceedings of the First Goddard Workshop on Formal Approaches to Agent-Based Systems (FAABS'00)
2000.

[19] B. Nebel and J. Koehler. Plan reuse versus plan generation: a theoretical and empirical ahifisial Intelligence
76, 427-454, 1995.

[20] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI FN-19, University of Aarhus,
1981.

[21] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: a BDI reasoning engiRkiltirRAgent Programming: Languages,
Platforms and ApplicationsR. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, eds, Springer, Berlin,
2005.

[22] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable languagegeiits Breaking Away (LNAI
1038) W. van der Velde and J. Perram, eds, pp. 42-55. Springer-Verlag, 1996.

[23] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecturePrdneedings of the Second
International Conference on Principles of Knowledge Representation and Reasoning (KR'8llgn, R. Fikes, and
E. Sandewall, eds, pp. 473-484. Morgan Kaufmann, 1991.

[24] J. Rash, C. Rouff, W. Truszkowski, D. Gordon, and M. Hinchey, editBosmal Approaches to Agent-Based Systems
(Proceedings of FAABS'01yolume 1871 of_ecture Notes in Artificial Intelligencderlin, 2001. Springer.

[25] R.E.Fikes and N.J.Nilsson. STRIPS: A new approach to the application of theorem proving to problem sotifinigl
Intelligence 2, 189-208, 1971.

[26] Y. Shoham. Agent-oriented programmingytificial Intelligence 60, 51-92, 1993.

[27] W. van der Hoek, B. van Linder, and J.-J. Ch. Meyer. An integrated modal approach to rational agEatsidations
of Rational AgencyApplied Logic Series 14, M. Wooldridge and A. S. Rao, editors, pp. 133—-168. Kluwer, Dordrecht,
1998.

[28] R. P. van der Krogt and M. M. de Weerdt. Plan repair as an extension of planniRgodeedings of the International
Conference on Planning and Scheduling (ICAPS'@$) 161-170, 2005.

402 Dynamic Logic for Plan Revision in Agent Programming

[29] R. P. van der Krogt and M. M. de Weerdt. Plan repair using a plan libraryPréceedings of the Belgium-Dutch
Conference on Artificial Intelligence (BNAIC'QF)p. 254-259. BNVKI, 2005.

[30] P. van Emde Boas. The connection between modal logic and algorithmic logicslatlrematical foundations of
computer science 1978olume 64 ofLecture Notes in Computer Scienp@. 1-15. Springer, Berlin, 1978.

[31] M. B. van Riemsdijk, M. Dastani, F. Dignum, and J.-J. Ch. Meyer. Dynamics of declarative goals in agent programming.
In J. A. Leite, A. Omicini, P. Torroni, and P. Yolum, editoBeclarative agent languages and technologies II: second
international workshop (DALT’'04)olume 3476 ot ecture Notes in Artificial Intelligen¢g@p. 1-18, 2005.

[32] M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Semantics of declarative goals in agent programming. In
Proceedings of the fourth international joint conference on autonomous agents and multiagent systems (AAMAS’05)
pp. 133-140, Utrecht, 2005.

[33] M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Subgoal semantics in agent programmiRgogtess in
Artificial Intelligence: 12th Portuguese Conference on Artificial Intelligence (EPIAD5Bento, A. Cardoso and G.

Dias, eds, pp. 548-559. Volume 3808La&fcture Notes in Artificial Intelligenc&pringer-Verlag, 2005.

[34] M. B. van Riemsdijk, F. S. de Boer, and J.-J. Ch. Meyer. Dynamic logic for plan revision in intelligent agents. In J. A.
Leite and P. Torroni, editorsomputational logic in multi-agent systems: fifth international workshop (CLIMA'04)
Volume 3487 ofLecture Notes in Artificial Intelligen¢@p. 16—32, 2005.

[35] M. B. van Riemsdijk, J.-J. Ch. Meyer, and F. S. de Boer. Semantics of plan revision in intelligent agémtsdedings
of the 10th International Conference on Algebraic Methodology And Software Technology (AMAST®ttray,

S. Maharaj, and C. Shankland, editors, Volume 311&exfture Notes in Computer Sciengg. 426—-442. Springer-
Verlag, 2004.

[36] M. B. van Riemsdijk, J.-J. Ch. Meyer and F. S. de Boer. Semantics of Plan Revision in Intelligent Agents. C. Rat-
tray, S. Maharaj and C.Shankland, efiieoretical Computer Sciencgsl, 240-257, 2006. Speical issueAlfyebraic
Methodology and Software Technology (AMAST.04)

[37] M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer. Agent programming in Dribble: from beliefs to goals
using plans. IfProceedings of the second international joint conference on Autonomous Agents and Multiagent Systesm
(AAMAS'03) pp.393-400. Melbourne, 2003.

[38] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and procedural goals in intelligent agent sys-
tems. InProceedings of the eighth international conference on principles of knowledge respresentation and reasoning
(KR2002) Toulouse, 2002.

[39] M. Wooldridge. Agent-based software engineerileEE Proceedings Software Engineeriig4, 26-37, 1997.

Received 26 April 2005

