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Abstract. This paper presents three types of declarative goals:
perform goals, achieve goals, and maintain goals. The integration
of these goal types in a simple but extendable logic-based agent-
oriented programming language is discussed and motivated. The
computational semantics for each goal type is presented by means
of a transition system. It is shown that the presented semantics of the
goal types ensure some desirable and expected properties.

1 Introduction

An essential characteristic of autonomous intelligent agents is their
pro-active behaviour [7]. These agents are assumed to have goals for
which they (pro-actively) decide actions to perform. Different logics
have been proposed to characterize goals, to represent and reason
about them, and to specify their relations to other agent concepts such
as beliefs and actions [2, 3, 5]. These logics allow the specification
of various agent types, i.e., agents that have a certain attitude towards
their goals.

Motivated by these logics, various agent-oriented programming
languages have been proposed [1]. In order to allow the implementa-
tion of various goal related agent types (i.e., agents that can have dif-
ferent attitudes towards their goals) existing programming languages
provide constructs to implement various types of goals. For exam-
ple, JACK provides programming constructs to implement, among
others, test, achieve, insist, and maintain goals, Jason has achieve
and test goals, and Jadex has achieve, query, perform and maintain
goals [1]. The way in which goals are treated by these programming
languages differs. In Jadex, goals are represented in XML in terms of
a label/name and a number of other parameters. In Jason and JACK,
goals are particular types of events. Further, neither JACK nor Jadex
provides the formal semantics of their goal types. A detailed compar-
ison between the goal types of the various languages is beyond the
scope of this paper.

In this paper, we focus on three types of goals: perform goals,
achieve goals, and maintain goals. These goals are represented as
logical formulas having formal semantics. Perform goals can be used
to generate plans without demanding that the plans must reach the
states denoted by the goals. The attitude of an agent toward a perform
goal is thus to generate relevant plans after which the goal will be
dropped. For example, consider “FC and CC” as a perform goal of
an agent where FC stands for having-fuel-in-car and CC for having-
clean-car. The goal “FC and CC” can be used to generate, e.g., a
plan to refuel at the gas station gs1 and a plan to clean the car in the
car wash cw1. After generating the plans, the agent drops the goal
entirely regardless of the plans’ effects. However, if the agent has
only means to generate the plan to refuel, then it will only generate
the refuel plan after which the entire goal is dropped. Dropping goals
after generating relevant plans is a practical idea that has been im-
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plemented in most agent-oriented programming languages, although
sometimes under different names. In JACK and Jason this type of
goal is known as achieve goal. As in Jadex, we associate a redo flag
with a perform goal. If this flag is false, then the agent will behave as
described above. Otherwise, if the flag is true, the agent will not drop
its perform goal but apply relevant planning rules repeatedly and in-
definitely. For example, a vacuum cleaner that has to clean a number
of rooms repeatedly without the ability to check if a room is clean
can be modelled as having a perform goal with a true redo flag.

The idea of an achieve goal is to reach the state denoted by it.
Similar to perform goals, an agent with an achieve goal will apply
relevant planning rules to generate and execute plans. If the achieve
goal is not reached after the execution of these plans, it applies the
planning rules again, hopefully generating different plans, since the
circumstances might have changed. Once the achieve goal is reached,
it will stop generating and executing plans for this goal. For ex-
ample, consider an agent that has FC as an achieve goal and that
can generate two plans, i.e., to refuel at gas stations gs1 and gs2.
The agent can generate and execute the plan to refuel at gs1. If the
plan is successful, the achieve goal will be dropped. Otherwise, it
will generate and execute the second plan to refuel at gs2. If both
plans do not achieve the goal, then it will apply the rules again.
As suggested in [6] and implemented in Jadex, we assign a failure
condition to each achieve goal to indicate when the agent should
stop trying to achieve the goal and thus drop the goal. For exam-
ple, no-fuel-at-gs1-and-gs2 can be the failure condition of
the achieve goal FC. A similar type of goal is introduced in Jadex
and in JACK, though in JACK under the name insist goal.

Finally, the idea of maintain goal is to ensure that a state holds
and continues to hold. Plans should be generated and executed if the
state denoted by the maintain goal is threatened not to hold, rather
than waiting and taking action once the state does not hold. The con-
dition under which the maintain goal is threatened not to hold will
be called the maintain condition. The agent starts to generate and
execute plans when the maintain condition becomes true. For exam-
ple, consider an agent with FC as a maintain goal. This means that
the agent wants to maintain having a fueled car. The maintain condi-
tion is the illuminated lamp warning of a shortage of fuel. The agent
should generate and execute a refuel plan if the lamp is illuminated.
If the maintain condition continues to hold after the execution of the
plan, because for example the tank station had no fuel, the agent may
try to generate and execute another plan, e.g., to go to another tank
station to refuel. If all plans are generated and the maintain condi-
tion still holds, then there are two options. The agent can either stop
generating and executing plans since it has tried all plans, or it can
continue to apply the planning rules once again, hopefully generat-
ing new plans this time. In order to allow both options, we add a
retry flag, like in Jadex [1], to the maintain goals. If the flag is true,
the agent will try to re-apply planning rules, otherwise it does not.



2 Syntax
In order to implement different types of goals, we propose a simple
but extendable logic-based agent-oriented programming language.
We assume a propositional language L and the propositional entail-
ment relation |=. A perform goal consists of a propositional formula
and a redo flag that indicates whether the goal should be performed
repeatedly. An achieve goal consists of two propositional formulas.
The first formula denotes the state to be achieved and the second for-
mula represents a failure condition. Finally, a maintain goal consists
of two propositional formulas and a retry flag. The first formula de-
notes the state to be maintained and the second formula represents the
maintain (trigger) condition. The retry flag indicates whether to re-
peat performing plans as long as the maintain trigger condition holds.

Definition 1 (belief and goal languages) The belief language Lσ ,
the perform goal language Lγp , the achieve goal language Lγa , and
the maintain goal language Lγm are defined as follows:
- Lσ = L
- Lγp = {(φ, f) | φ ∈ L & f ∈ {>,⊥}}
- Lγa = {(φ, fc) | φ, fc ∈ L}
- Lγm = {(φ, mc, f) | φ, mc ∈ L & f ∈ {>,⊥}}
A plan is considered as a sequence of basic actions which update
the beliefs of an agent when executed. The plan language can be
extended with other actions such as test and communication, which
can be composed by if-then-else and while constructs [4, 1].

Definition 2 (plan) Let BasicAction with typical element a be the
set of basic actions. The set of plans Plan with typical element π is
defined as: π ::= a | π1; π2. We use ε to denote the empty plan.

Planning rules are used for selecting an appropriate plan for a goal
under a certain belief condition. A planning rule is of the form
β, κ ⇒ π and indicates to select plan π for the goal κ, if the agent
believes β. In order to be able to check whether an agent has a cer-
tain belief or goal, we use propositional formulas from L to represent
belief and goal query expressions.

Definition 3 (plan selection rule) The set of plan selection rules
RPG is defined as: RPG = {β, κ ⇒ π | β, κ ∈ L, π ∈ Plan}.
In the following, we use G(r) and B(r) to indicate the goal condi-
tion κ and the belief condition β, respectively, that occur in the head
of the planning rule r = (β, κ ⇒ π).

Given these languages, an agent can be implemented by program-
ming four sets of propositional formulas (representing the agent’s
beliefs, perform goals, achieve goals, and maintain goals), one set of
planning rules, and an ordering on the set of planning rules to indi-
cate the order in which the planning rules should be applied.

Definition 4 (agent program) An agent program is a tuple
(σ, γp, γa, γm, PG, <) where σ ⊆ Lσ, γp ⊆ Lγp , γa ⊆ Lγa , γm ⊆
Lγm , PG ⊆ RPG, and < is a strict order on PG.

3 Semantics
The semantics of the programming language is defined by means
of a transition system. A transition system for a programming lan-
guage consists of a set of axioms and derivation rules for deriving
transitions for this language. A transition is a transformation of one
configuration into another and it corresponds to a single computation
step. A configuration represents the state of an agent at each point
during computation.

For the purpose of this paper, a configuration consists of a belief
base σ representing the agent’s beliefs, a goal base γ representing
the agent’s goals, a plan base Π containing the generated plans, a set
of planning rules PG, and a set T to administrate the set of planning
rules that have already been tried for application. These rules will not
be applied anymore because either they have been applied already or
the goals that occur in their heads are achieved. In the rest of this
paper, we will call these rules tried rules.

Definition 5 (agent configuration) Let Σ = {σ | σ ⊆ Lσ, σ 6|=
⊥}, γp ⊆ {(φ, f) ∈ Lγp | φ 6|= ⊥}, γa ⊆ {(φ, fc) ∈ Lγa |
φ 6|= ⊥}, and γm ⊆ {(φ, mc, f) ∈ Lγm | φ 6|= ⊥}. An agent
configuration is a tuple 〈σ, γ, Π, PG, <, T 〉where σ ∈ Σ is the belief
base, γ = (γp, γa, γm) is the goal base, Π ⊆ (L×L× Plan) is the
plan base, PG ⊆ RPG is a set of planning rules, < is a strict order on
PG, and T ⊆ {〈φ, R〉 | φ ∈ L, R ⊆ {r | r ∈ PG & φ |= G(r)}}
administrates the sets of tried planning rules.

The goal base γ in this definition is a 3-tuple consisting of three
goal bases γp, γa, γm. These goal bases represent the agent’s per-
form goals, achieve goals, and maintain goals, respectively. More-
over, the elements of the plan base are defined as 3-tuples consisting
of a plan and two goal formulas that indicate the reasons for generat-
ing the plan. More specifically, a plan can be generated by applying
a planning rule β, κ ⇒ π, if κ is a subgoal of an agent’s goal φ,
i.e., if φ |= κ. The two formulas associated with a plan in a 3-tuple
are the agent’s goal φ and its subgoal κ based on which a planning
rule is applied and the plan is generated. This means that we have
∀(φ, κ, π) ∈ Π : φ |= κ. Finally, the set T is added to the agent
configuration in order to administrate the planning rules R that have
been tried to be applied for each goal φ of the agent. This information
will be used to avoid applying the same planning rules repeatedly.

The initial configuration of an agent can be built based on the agent
program (definition 4) that specifies the initial beliefs, goals, plan-
ning rules, and the ordering on the rules. As noted, an agent does not
have initial plans for simplicity reasons. This implies that the plan
base is empty in the initial configuration. Also, because none of the
planning rules have been tried to be applied before an agent starts to
execute, the set of applied planning rules for each goal in the initial
configuration is empty.

Definition 6 (initial configuration) Let (σ, γp, γa, γm, PG, <) be
an agent program. The initial configuration of the agent is
〈σ, (γp, γa, γm), Π, PG, <, T 〉, where Π = ∅, and T = {〈φ, ∅〉 |
(φ, f) ∈ γp or (φ, fc) ∈ γa or (φ, mc, f) ∈ γm}.

In the sequel, we omit the set of planning rules PG and the or-
dering < in the agent configuration for reasons of presentation.
Moreover, in the following we use |=b which is defined as follows:
(〈σ, γ, Π, T 〉 |=b φ) ⇔ (σ |= φ).

When executing an agent, planning rules will be selected and ap-
plied based on its goals, beliefs, and the ordering on the planning
rules. The application of planning rules generates plans which can
be selected and performed. Before introducing the transition rules
to specify possible agent execution steps, we need to define what
it means to perform a plan. For simplicity reasons, we assume here
that the performance of a plan affects only the belief base. The ef-
fect of plans on the belief base is captured through an update oper-
ator τ , which takes the belief base and a basic action and generates
the updated belief base. This update operator can be as simple as
adding/deleting atoms to/from the belief base.

Definition 7 (plan performance) Let BasicAction be the set of basic
actions, τ : BasicAction×Σ → Σ be a partial function implement-



ing a belief update operator, and a; π be a plan consisting of action
a followed by the plan π. The performance of a plan with respect to
a belief base is defined by the function Perform : Σ × Plan → Σ
that updates the belief base consecutively by the sequence of ac-
tions involved in the plan, i.e., Perform(σ, a) = τ(σ, a) and
Perform(σ, a; π) = Perform(Perform(σ, a), π).

Note that Perform is a partial function since the belief update
operator is a partial function: we assume that the function Perform
evaluates to undefined if it is applied to an undefined input
element. Given the function Perform, the following two transition
rules (called EP1 and EP2) define plan execution.

(φ, κ, π) ∈ Π & π 6= ε & Perform(σ, π) = σ′

〈σ, γ, Π, T 〉 → 〈σ′, γ, (Π \ {(φ, κ, π)}) ∪ {(φ, κ, ε)}, T 〉
(φ, κ, π) ∈ Π & π 6= ε & Perform(σ, π) = undefined

〈σ, γ, Π, T 〉 → 〈σ, γ, Π \ {(φ, κ, π)}, T 〉
The first transition rule (EP1) captures the case where the plan π

is successfully performed. The resulting configuration contains the
empty plan and the belief base is updated appropriately. The second
transition rule (EP2) captures the case that the performance of the
plan has failed. Note that in this case, the failed plan (φ, ψ, π) will
be removed from the plan base.

In order to define the transitions for different types of goals, we
first define the notion of relevant and applicable planning rules w.r.t.
an agent’s goal, and an auxiliary function called next. Intuitively, a
planning rule is relevant for an agent’s goal if it can contribute to the
agent’s goal, i.e., if the goal that occurs in the head of the planning
rule is a subgoal of the agent’s goal. A planning rule is applicable
to an agent’s goal if it is not applied yet, if it is relevant for that
goal, and if the belief condition of the rule is entailed by the agent’s
configuration. Finally, the next function selects the first applicable
planning rule for an agent’s goal if there exists one, evaluates to nil if
all relevant planning rules have been tried to be applied, and evaluates
to undefined otherwise.

Definition 8 (relevant, applicable, next planning rules) Let C =
〈σ, γ, Π, PG, <, T 〉 be an agent configuration and 〈φ, R〉 ∈ T . For
the given configuration C and goal φ, the set of relevant and applica-
ble planning rules, and the next function are defined as follows:
• rel(φ, C) = {r ∈ PG | φ |= G(r)}
• app(φ, C) = {r ∈ rel(φ, C) |r 6∈ R, σ |= B(r)}
• next(φ, C)
= r if r ∈ app(φ, C) & ∀r′ ∈ app(φ, C) : r 6= r′ → r > r′

= nil if rel(φ, C) = R
= undefined otherwise

In the following transition rules, we omit the reference to configu-
ration C and assume that rel(π), app(φ), and next(φ) are used in
the context of the left-hand side configuration of the transition.

Proposition 1 Let 〈σ, γ, Π, PG, <, T 〉 be an agent configuration
where 〈φ, R〉 ∈ T . Then, next(φ) = undefined iff rel(φ) 6=
∅ ∧ ∀r ∈ rel(φ) : (σ 6|= B(r) ∧ r 6∈ R).

In order to compare the behaviours of an agent for different goal
types, we need to define an agent’s execution. An execution of an
agent is the sequence of configurations that can be generated by ap-
plying transition rules. Agent executions can be generated by a cyclic
procedure where in each cycle each transition rule gets the opportu-
nity to be applied, i.e., in each cycle each transition rule is selected
once and, if possible, applied. Such a cyclic procedure is in fact a

round robin scheduling technique for selecting and applying transi-
tion rules. We call such a procedure for selecting and applying tran-
sition rules a round robin procedure.

Definition 9 (agent execution) An execution of an agent is a finite
or infinite sequence 〈C1, C2, . . .〉, where Ci → Ci+1 is a transition
derived from the transition system for i ∈ N . A fair agent execution
is an execution that is generated by a round robin procedure.

3.1 Perform Goals
The idea of perform goals is to allow the generation of plans by ap-
plying planning rules. A planning rule can be applied if the goal in
its head is logically entailed by one of the agent’s goals. We use thus
logical formulas to allow reasoning about the goals to decide which
planning rule to apply. The following transition rule (called P1) se-
lects and applies the first (w.r.t. the ordering < on the rules) applica-
ble planning rule. This transition rule can be applied if there are no
plans generated for the subgoal that occurs in the head of the plan-
ning rule and if the subgoal is not achieved yet. The latter condition
is for efficiency.

(φp, f) ∈ γp & next(φp) = (β, κ ⇒ π) &
6 ∃π′ ∈ Plan : (φp, κ, π′) ∈ Π & σ 6|= κ

〈σ, γ, Π, T 〉 → 〈σ, γ, Π ∪ {(φp, κ, π)}, T ′〉

where T ′ = (T \ {〈φp, R〉}) ∪ {〈φp, R ∪ {β, κ ⇒ π}〉}.
Below is the second transition rule for a perform goal (called P2)

to administrate planning rules as being tried if the subgoal that oc-
curs in their heads has already been achieved. As noted this is for
efficiency reasons.

(φp, f) ∈ γp & r ∈ PG & σ |= G(r)

〈σ, γ, Π, T 〉 → 〈σ, γ, Π, T ′〉

where T ′ = (T \ {〈φp, R〉}) ∪ {〈φp, R ∪ {r}〉}.
The third transition rule for a perform goal (called P3) removes all

empty plans from the plan base. This transition rule makes it possible
to apply transition rule P1 once again to generate an alternative plan
for the perform goal.

(φp, f) ∈ γp & (φp, ψ, ε) ∈ Π

〈σ, γ, Π, T 〉 → 〈σ, γ, Π \ {(φp, ψ, ε)}, T 〉
The perform goal is enriched with a redo flag which can be true

or false. If all relevant planning rules for a perform goal have been
applied (i.e., if the next function evaluates to nil) and the redo flag is
false, then the perform goal will be removed from the goal base and
the set of tried planning rules for this perform goal is emptied (re-
set). However, when the redo flag is true, the perform goal remains
in the goal base while the set of planning rules will be emptied. This
ensures that the plans associated with the perform goal will be gener-
ated and performed again. These two cases are captured by the below
two transition rules (called P4 and P5).

(φp,⊥) ∈ γp & next(φp) = nil &
6 ∃φ ∈ L 6 ∃π ∈ Plan : (φp, φ, π) ∈ Π

〈σ, (γp, γa, γm), Π, T 〉 → 〈σ, (γ′p, γa, γm), Π, T \ {〈φp, R〉}〉

where γ′p = γp \ {(φp,⊥)}.

(φp,>) ∈ γp & next(φp) = nil &
6 ∃φ ∈ L 6 ∃π ∈ Plan : (φp, φ, π) ∈ Π

〈σ, γ, Π, T 〉 → 〈σ, γ, Π, (T \ {〈φp, R〉}) ∪ {〈φp, ∅〉}〉
The above transition rules determine how an agent processes its

perform goals. The following proposition shows that an agent with



a perform goal to which a false redo flag is assigned, can drop the
goal if the relevant planning rules have tautologies as belief condi-
tions. It shows that such an agent will drop the goal if its behaviour
is generated by a fair execution procedure.

Proposition 2 Let C = 〈σ, (γp, γa, γm), Π, T 〉 be an initial agent
configuration, where (φp,⊥) ∈ γp and ∀r ∈ PG : B(r) = >. There
exists a finite execution that removes (φp,⊥) from the goal base. All
fair executions eventually remove (φp,⊥) from the goal base.

3.2 Achieve Goals
For an achieve goal plans should be generated to reach the state de-
noted by it. If the generated and performed plans do not achieve the
desired state, then the achieve goal remains in the goal base. The first
transition rule below (called A1) is designed to apply planning rules
in order to achieve the subgoals of the achieve goals. A planning rule
can be applied if the goal in the head of the rule is not achieved yet, if
there is no plan for the same subgoal in the plan base, and if the fail-
ure condition does not hold. The application of a planning rule will
add the plan of the planning rule to the plan base and administrate it
as a tried rule.

(φa, fc) ∈ γa & next(φa) = (β, κ ⇒ π) &
6 ∃π′ ∈ Plan : (φa, κ, π′) 6∈ Π & σ 6|= κ & σ 6|= fc

〈σ, γ, Π, T 〉 → 〈σ, γ, Π ∪ {(φp, κ, π)}, T ′〉
where T ′ = (T \ {〈φa, R〉}) ∪ {〈φa, R ∪ {(β, κ ⇒ π)}〉}.

If the head of a planning rule is already achieved, then the rule will
be considered as tried and will be administrated accordingly. This is
realized by the next transition rule (called A2).

(φa, fc) ∈ γa & r ∈ PG & σ |= G(r)

〈σ, γ, Π, T 〉 → 〈σ, γ, Π, T ′〉
where T ′ = (T \ {〈φa, R〉}) ∪ {〈φa, R ∪ {(β, κ ⇒ π)}〉}.

The next transition rule (A3) removes all empty plans, which are
generated for the achieve goals, from the plan base. Note that this
transition rule is similar to P3. We did not generalize this rule to be
applicable to all goal types since the empty plans for the maintain
goals should be removed differently (see next section).

(φa, fc) ∈ γa & (φa, ψ, ε) ∈ Π

〈σ, γ, Π, T 〉 → 〈σ, γ, Π \ {(φa, ψ, ε)}, T 〉
An achieve goal can be dropped under two circumstances: either

when the failure condition, which is assigned to it, becomes true, or
when the state it denotes is reached. The transition rule A4 below
captures these two cases of dropping the achieve goal. In both cases,
besides the removal of the achieve goal, the plans associated with
it will be removed and the set of tried planning rules will be set to
empty.

(φa, fc) ∈ γa & (σ |= φa or σ |= fc)

〈σ, (γp, γa, γm), Π, T 〉 → 〈σ, (γp, γ′a, γm), Π′, T \ {〈φa, R〉}〉
where γ′a = γa \ {(φa, fc)} and Π′ = Π \ {(φa, κ, π) | κ ∈
L, π ∈ Plan}.

When all planning rules that could achieve a subgoal of an achieve
goal have been applied, all generated plans have been performed, but
the state denoted by the achieve goal is not reached, then the set of
tried rules will be set to empty in order to enable a new round of rule
applications and plan performance. This is realized by the following
transition rule A5.

(φa, fc) ∈ γa & next(φa) = nil &
σ 6|= φa & σ 6|= fc & 6 ∃κ ∈ L 6 ∃π ∈ Plan : (φa, κ, π) ∈ Π

〈σ, γ, Π, T 〉 → 〈σ, γ, Π, (T \ {〈φa, R〉}) ∪ {〈φa, ∅〉}〉

Given the transition rules A1, . . . , A5 for the achieve goals, we
can now show that an achieve goal will not be removed from the
goal base unless the state denoted by it is reached.

Proposition 3 Let 〈C1, C2, . . .〉 be an agent execution, where Ci =
〈σi, (γi

p, γi
a, γi

m), Πi, T i〉 and (φ,⊥) ∈ γ1
a. Then,

∀k ∈ N : (σ1 6|= φ ∧ . . . ∧ σk 6|= φ) → (φ,⊥) ∈ γk
a

The achievement of an achieve goal depends on many factors
among which whether the planning rules are designed correctly and
whether the plans of different rules interfere with each other. In or-
der to define whether a planning rule is designed correctly, we need
to specify the consequence of performing a plan in an agent config-
uration. The following function XP maps an agent configuration C
to another agent configuration C′ such that C′ can be reached from
configuration C by performing successfully the plan π (from the plan
base of C), i.e., C → C′ is a transition derived by applying the tran-
sition rule EP1.

Definition 10 (XP function) Let C be the set of agent configurations.
The eXecute Plan function XP : C × (L × L × Plan) → C is
defined as follows: XP (C, (φ, κ, π)) = C′ iff C → C′ is derivable
by applying transition rule EP1 through which (φ, κ, π) from the
plan base of C is executed, i.e., where C = 〈σ, γ, Π, T 〉, C′ =
〈σ′, γ, Π′, T 〉, (φ, κ, π) ∈ Π, Π′ = (Π \ {(φ, κ, π)}) ∪ {(φ, κ, ε)},
and Perform(σ, π) = σ′.

A correct planning rule is a rule for which the performance of its
plan in an agent configuration achieves the goal occuring in its head.

Definition 11 (correct planning rules) Let XP be the eXecute Plan
function. A planning rule β, κ ⇒ π is correct iff for all configura-
tions C and φ, ψ ∈ L it holds that: XP (C, (φ, ψ, π)) |=b κ

The applications of planning rules generate a set of plans that can be
performed in an arbitrary order. If plans are not designed carefully,
then their order of performance can have undesirable effects. In order
to guarantee that a set of plans reach certain states independent of
their order of performance, we employ a notion of non-interfering
plans.

Definition 12 (non-interfering plans) Let C = 〈σ, γ, Π, T 〉 be an
agent configuration, p1 = (φ1, ψ1, π1), p2 = (φ2, ψ2, π2), and
p1, p2 ∈ Π. The plans π1 and π2 are non-interfering iff

XP (XP (C, p1), p2) = XP (XP (C, p2), p1)

If all planning rules are correct and they can always be applied
(the belief condition of the rules are tautologies), then all fair exe-
cutions reach eventually the state denoted by an achieve goal that is
equivalent with the goals occurring in the head of the planning rules.

Proposition 4 Let C1 = 〈σ, (γp, γa, γm), Π, T 〉 be an initial con-
figuration, (φ, fc) ∈ γa, all planning rules in PG be correct, the
plans in these rules be non-interfering, and there exists {(>, κ1 ⇒
π1) , . . . , (>, κn ⇒ πn)} ⊆ PG such that {κ1, . . . , κn} |= φ and
φ |= κi for 1 ≤ i ≤ n. Then, there exists a configuration Cn in
every fair agent execution 〈C1, C2, . . .〉 such that Cn |=b φ.

The transition rules for the perform and achieve goals show close
similarities. In order to examine and compare an agent’s behaviours
with respect to different goal types, we define goal-equivalent agent
executions. The idea is that the consecutive agent configurations in
these agent executions are identical in all components except their
goal bases.



Definition 13 (goal-equivalent executions) Let e1 = 〈C1, C2, . . .〉
and e2 = 〈C′1, C′2, . . .〉 be agent executions, where for i ∈ N, Ci =
〈σi, γi, Πi, Ti〉 and C′i = 〈σ′i, γ′i, Π′i, T ′i 〉 are agent configurations.
The executions e1 and e2 are goal-equivalent iff σi = σ′i, Πi = Π′i,
and Ti = T ′i for i ∈ N .

Note that the goal-equivalent relation is an equivalence relation. We
can now show that under certain conditions the achieve goal of an
agent can be replaced with a perform goal. In particular, an agent
with an achieve goal such that the state denoted by it cannot be
reached and its failure condition never becomes true (e.g., the goal to
have fuel in the car FC while there is no fuel anywhere, with the fail-
ure condition no-fuel-in-world assuming that the agent cannot
come to conclude this belief), can be replaced by a perform goal with
a true redo flag (e.g., the goal FC with a flag > while there is no fuel
anywhere).

Proposition 5 Let C1 = 〈σ, (γp, γa, γm), Π, T 〉 be an agent con-
figuration. If there exists no execution 〈C1, C2, . . .〉 with Ci |=b φ
for some i ∈ N , then for every execution starting from 〈σ, (γp, γa ∪
{(φ,⊥)}, γm), Π, T 〉 there exists a goal-equivalent execution start-
ing at 〈σ, (γp ∪ {(φ,>)}, γa, γm), Π, T 〉.

3.3 Maintain Goals
The state denoted by a maintain goal should hold at any moment
during the agent execution. In order to maintain the denoted state,
plans should be generated and performed. The question is when ex-
actly plans should be generated and performed. A maintain goal is
enriched with a triggering condition which, if it becomes true, indi-
cates that plans should be generated and performed. This triggering
condition can be considered as an alarm to act in order to ensure the
maintenance of the state denoted by the maintain goal. It should be
noted that there might be no logical relation between the maintain
goals and their triggering conditions. This relation depends usually
on the application domain. However, we assume that in all agent con-
figurations, if the triggering condition does not hold, then the main-
tain goal holds: ∀σ ∈ Σ,∀φm, mc ∈ L : (σ 6|= mc) → (σ |= φm).
We associate a retry flag to maintain goals. If this flag is set to false,
all planning rules have been applied, the generated plans have been
performed, and the maintain triggering condition still holds, then no
new rounds of actions should be taken. This flag can thus be used to
avoid new attempts to maintain a goal.

The first transition rule M1 is designed to allow the application of
planning rules when the maintain triggering condition becomes true.
The applied rule should be such that there is no plan already in the
plan base for the subgoal that occurs in the head of the selected rule.

(φm, mc, f) ∈ γm & next(φm) = (β, κ ⇒ π) &
6 ∃π′ ∈ Plan : (φm, κ, π′) ∈ Π & σ |= mc

〈σ, γ, Π, T 〉 → 〈σ, γ, Π ∪ {(φm, κ, π)}, T ′〉
where T ′ = (T \ {〈φm, R〉}) ∪ {〈φm, R ∪ {(β, κ ⇒ π)}〉}.

In order to maintain a goal, applicable planning rules should be
applied independently of whether the goal in their heads, which are
subgoals of the maintain goals, are achieved. But this means that all
planning rules that have the same subgoal in their heads will be ap-
plied if they are applicable. This can, however, make the executions
inefficient. For example, suppose that the maintain goal of an agent
is to have fuel in the car FC and that the agent has several planning
rules that indicate several plans to refuel. It is undesirable to allow
the agent to apply all planning rules to generates all possible ways to
refuel. Therefore, we administrate all planning rules with the same

goal in their heads as tried rules when one plan for this subgoal is
successfully performed. This idea is captured by the transition rule
M2.

(φm, mc, f) ∈ γm & {(φm, κ, ε)} ∈ Π

〈σ, γ, Π, T 〉 → 〈σ, γ, Π \ {(φm, κ, ε)}, T ′〉
where T ′ = (T \{〈φm, R〉})∪{〈φm, R∪{r ∈ PG | G(r) = κ}〉}.

If there are no plans to perform, no rules to apply, and either the
goal is maintained (maintain condition does not hold) or the retry flag
is true, the administration of applied rules is reset. The reset makes it
possible to re-apply rules and re-perform plans if needed. Note that
if the maintain condition holds (actions should be taken to maintain
the goal) and the retry flag is false, then the goal is not maintainable
and the agent cannot do anything to maintain the goal.

(φm, mc, f) ∈ γm & next(φm) = nil &
(f = > or σ 6|= mc) & 6 ∃κ ∈ L 6 ∃π ∈ Plan : (φa, κ, π) ∈ Π

〈σ, γ, Π, T 〉→ 〈σ, γ, Π, (T \ {〈φm, R〉}) ∪ {〈φm, ∅〉}〉
Given these transition rules for the maintain goal, the perform goal

(φ,⊥) and the maintain goal (φ,>,⊥) are identical.

Proposition 6 Let σ be a belief base, for all r ∈ PG : σ 6|=
G(r), all planning rules are correct, and plans are non-interfering.
Then, for every execution starting from C1 = 〈σ, (γp, γa, γm ∪
{(φ,>,⊥)}), Π, T 〉 there exists a goal-equivalent execution start-
ing from C′1 = 〈σ, (γp ∪ {(φ,⊥)}, γa, γm), Π, T 〉.
4 Conclusion
In this paper, we have introduced three types of declarative goals for
which we argued that they should be integrated in logic-based agent-
oriented programming languages. We presented a simple agent-
oriented programming language that allows the implementation of
these goal types. The formal semantics of the programming lan-
guage, and thus of the goal types, is given and it is shown that this se-
mantics has desirable properties (because of the space limit we could
not present the proofs). The presented programming language is sim-
plified for the purpose of this paper. The language can be extended
by using a (computational) subset of a first-order predicate language
instead of using a propositional language. In this way, declarative
goals become more expressive. Also, the plan language can be ex-
tended to allow more complex plans. We have started implementing
an interpreter for an extended version of the presented programming
language which we hope will be available soon. For this implemen-
tation, we have decided to generate a specific fair execution of agents
by means of a deliberation cycle. In future work, we will investigate
possible deliberation cycles and use temporal logics to prove proper-
ties of different deliberation cycles and to compare them.
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