
A Compositional Semantics of Plan Revision in
Intelligent Agents

M. Birna van Riemsdijk John-Jules Ch. Meyer

Utrecht University, Department of Information and Computing Sciences
P.O. Box 80.089, 3508 TB Utrecht

The Netherlands
{birna, jj}@cs.uu.nl

Abstract. This paper revolves around the so-called plan revision rules
of the agent programming language 3APL. These rules can be viewed
as a generalization of procedures. This generalization however results
in the semantics of programs of the 3APL language no longer being
compositional. This gives rise to problems when trying to define a proof
system for the language. In this paper we define a restricted version of
plan revision rules which extends procedures, but which does have a
compositional semantics, as we will formally show.

1 Introduction

An agent is commonly seen as an encapsulated computer system that is situated
in some environment and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives [1]. Autonomy means that
an agent encapsulates its state and makes decisions about what to do based on
this state, without the direct intervention of humans or others. Agents are situ-
ated in some environment which can change during the execution of the agent.
This requires flexible problem solving behavior, i.e., the agent should be able to
respond adequately to changes in its environment. Programming flexible com-
puting entities is not a trivial task. Consider for example a standard procedural
language. The assumption in these languages is that the environment does not
change while some procedure is executing. If problems do occur during the exe-
cution of a procedure, the program might throw an exception and terminate (see
also [2]). This works well for many applications, but we need something more if
change is the norm and not the exception.

A philosophical view that is well recognized in the AI literature is that ratio-
nal behavior can be explained in terms of the concepts of beliefs, goals and plans.
[3,4,5]. This view has been taken up within the AI community in the sense that it
might be possible to program flexible, autonomous agents using these concepts.
The idea is that an agent tries to fulfill its goals by selecting appropriate plans,
depending on its beliefs about the world. Beliefs should thus represent the world
or environment of the agent; the goals represent the state of the world the agent
wants to realize and plans are the means to achieve these goals. When program-
ming in terms of these concepts, beliefs can be compared to the program state,



plans can be compared to statements, i.e., plans constitute the procedural part
of the agent, and goals can be viewed as the (desired) postconditions of execut-
ing the statement or plan. Through executing a plan, the world and therefore
the beliefs reflecting the world will change and this execution should have the
desired result, i.e., achievement of goals.

This view has been adopted by the designers of the agent programming lan-
guage 3APL1 [6,7], which is a well-known language in the agent programming
community. The dynamic parts of a 3APL agent thus consist of a set of beliefs,
a plan2 and a set of goals. A plan can consist of sequences of so-called basic
actions, which change the beliefs3 if executed. To provide for the possibility of
programming flexible behavior, so-called plan revision rules were added to the
language. These rules can be compared to procedures in the sense that they have
a head, which is comparable with the procedure name, and a body, which is a
plan in the case of 3APL and a statement in the case of procedural languages.

The operational meaning of plan revision rules is similar to that of proce-
dures: if the procedure name or head is encountered in a statement or plan, this
name or head is replaced by the body of the procedure or rule, respectively (see
[8] for the operational semantics of procedure calls). The difference however is
that the head in a plan revision rule can be any plan (or statement) and not
just a procedure name. In procedural languages it is furthermore usually as-
sumed that procedure names are distinct. In 3APL however, it is possible that
multiple rules are applicable at the same time. This provides for very general
and flexible plan revision capabilities, which is a distinguishing feature of 3APL
compared to other agent programming languages [9,10,11].

As argued, we consider these general plan revision capabilities to be an es-
sential part of agenthood. The introduction of these capabilities now gives rise
to interesting issues concerning the semantics of plan execution, which we will
be concerned with in this paper.

The main issue which arises with the introduction of plan revision rules,
is the issue of compositionality of semantics of plans. For standard procedural
languages [8, Chapter 5], the semantics of statements is compositional, i.e., the
semantics of a composed statement can be defined in terms of the semantics of
the parts of which it is composed. The semantics of plans however, which can
be viewed as the statements of 3APL, is not compositional. The reason for this
lies in the presence of plan revision rules, which we will elaborate on in section
3.2.

The fact that the semantics of plans is not compositional, gives rise to prob-
lems when trying to reason about 3APL programs. A proof system for a pro-
gramming language will typically contain rules by means of which properties of
the entire program can be proven by proving properties of the parts of which the
program is composed. Since the semantics of 3APL plans is not compositional,

1 3APL is to be pronounced as “triple-a-p-l”.
2 In the original version this was a set of plans.
3 A change in the environment is a possible “side effect” of the execution of a basic

action.



this is problematic in the case of 3APL. One way of trying to approach this
problem is by defining a specialized logic for 3APL which tries to circumvent
the issue, as was done in [12,13]. The resulting logic is however non-standard
and can be difficult to use, which will be explained in more detail in section 3.3.

The approach we take in this paper, is to try to restrict the allowed plan
revision rules, such that the semantics of plans becomes compositional in some
sense. It is not immediately obvious what kind of restriction would yield the
desired result. In this paper, we propose such a restriction and prove that the
semantics of plans in that case is compositional.

The outline of the paper is as follows. In section 2, we present the syntax and
semantics of a simplified version of 3APL. It is important to note that we use a
simplified version, in order to be able to focus on the issue of compositionality
of plans. In particular, we do not include a model of the environment in the se-
mantics, since this is not necessary for investigating the compositionality issue.
In section 3 we elaborate on the issue of compositionality and explain why the
semantics of full 3APL is not compositional. In section 4 we present our proposal
for a restricted version of plan revision rules, and prove that the semantics of
plans is compositional, given this restriction on plan revision rules. This paper
aims to be a first step towards a compositional proof system for 3APL. Inves-
tigating automated theorem proving and providing accompanying tool support
for this is left for future research.

2 3APL

2.1 Syntax

Below, we define belief bases and plans. A belief base is a set of propositional
formulas. A plan is a sequence of basic actions. Basic actions can be executed,
resulting in a change to the beliefs of the agent.

In the sequel, a language defined by inclusion shall be the smallest language
containing the specified elements.

Definition 11 (belief bases) Assume a propositional language L with typical
formula p and the connectives ∧ and ¬ with the usual meaning. Then the set of
belief bases Σ with typical element σ is defined to be ℘(L).4

Definition 12 (plans) Assume that a set BasicAction with typical element a
is given. The set of plans Plan with typical element π is then defined as follows.

π ::= a | π1;π2

We use ε to denote the empty plan and identify ε;π and π; ε with π.

Plan revision rules consist of a head πh and a body πb. Informally, an agent that
has a plan πh, can replace this plan by πb when applying a plan revision rule of
this form.
4 ℘(L) denotes the powerset of L.



Definition 13 (plan revision rules) The set of plan revision rules R is defined
as follows: R = {πh  πb | πh, πb ∈ Plan, πh 6= ε}.5

Take for example a plan a; b where a and b are basic actions, and a plan revision
rule a; b  c. The agent can then either execute the actions a and b one after
the other, or it can apply the plan revision rule yielding a new plan c, which can
in turn be executed.

Below, we provide the definition of a 3APL agent. The function T , taking a
basic action and a belief base and yielding a new belief base, is used to define
how belief bases are updated when a basic action is executed.

Definition 14 (3APL agent) A 3APL agent A is a tuple 〈σ0, π0,PR, T 〉 where
σ0 ∈ Σ, π0 ∈ Plan, PR ⊆ R is a finite set of plan revision rules and T :
(BasicAction × Σ) → Σ is a partial function, expressing how belief bases are
updated through basic action execution.

A plan and a belief base can together constitute a so-called configuration. Dur-
ing computation or execution of the agent, the elements in a configuration can
change.

Definition 15 (configuration) Let Σ be the set of belief bases and let Plan be
the set of plans. Then Plan×Σ is the set of configurations of a 3APL agent. If
〈σ0, π0,PR, T 〉 is an agent, then 〈π0, σ0〉 is the initial configuration of the agent.

2.2 Semantics

The semantics of a programming language can be defined as a function taking a
statement and a state, and yielding the set of states resulting from executing the
initial statement in the initial state. In this way, a statement can be viewed as
a transformation function on states. In 3APL, plans can be seen as statements
and belief bases as states on which these plans operate. There are various ways
of defining a semantic function and in this paper we are concerned with the
so-called operational semantics (see for example De Bakker [8] for details on this
subject).

The operational semantics of a language is usually defined using transition
systems [14]. A transition system for a programming language consists of a set
of axioms and derivation rules for deriving transitions for this language. A tran-
sition is a transformation of one configuration into another and it corresponds
to a single computation step. Let A be a 3APL agent with a set of plan revision
rules PR, belief update function T , and let BasicAction be its set of basic actions.
Below, we give the transition system TransA for our simplified 3APL language,

5 In [6], plan revision rules were defined to have a guard, i.e., rules were of the form
πh | φ  πb, where φ is a condition on the belief base. For a rule to be applicable,
the guard should then hold. For technical convenience and because we want to focus
on the plan revision aspect of these rules, we however leave out the guard in this
paper.



which is based on the system given in [6]. This transition system is specific to
agent A.

There are two kinds of transitions, i.e., transitions describing the execution
of basic actions and those describing the application of a plan revision rule. The
transitions are labelled to denote the kind of transition. A basic action at the
head of a plan can be executed in a configuration if the function T is defined for
this action and the belief base in the configuration. The execution results in a
change of belief base as specified through T and the action is removed from the
plan.

Definition 16 (action execution) Let a ∈ BasicAction.

T (a, σ) = σ′

〈a;π, σ〉 →exec 〈π, σ′〉

A plan revision rule can be applied in a configuration if the head of the rule is
equal to a prefix of the plan in the configuration. The application of the rule
results in the revision of the plan, such that the prefix equal to the head of the
rule is replaced by the plan in the body of the rule. A rule a; b  c can for
example be applied to the plan a; b; c, yielding the plan c; c. The belief base is
not changed through plan revision.

Definition 17 (rule application) Let ρ : πh  πb ∈ PR.

〈πh • π, σ〉 →apply 〈πb • π, σ〉

Using the transition system, individual transitions can be derived for a 3APL
agent. These transitions can be put in sequel, yielding transition sequences,
which are typically denoted by θ. From a transition sequence, one can obtain
a computation sequence by removing the plan component of all configurations
occurring in the transition sequence. In the following definitions, we formally de-
fine computation sequences and we specify the function yielding these sequences,
given an initial configuration.

Definition 18 (computation sequences) The set Σ+ of finite computation se-
quences is defined as {σ1, . . . , σi, . . . , σn | σi ∈ Σ, 1 ≤ i ≤ n, n ∈ N}.

Definition 19 (function for calculating computation sequences) Let
xi ∈ {exec, apply} for 1 ≤ i ≤ m. The function CA : (Plan × Σ) → ℘(Σ+)
is then as defined below.

CA(π, σ) = {σ, . . . , σm ∈ Σ+ | 〈π, σ〉 →x1 . . . →xm
〈ε, σm〉

is a finite sequence of transitions in TransA}.

Note that we only take into account successfully terminating transition se-
quences, i.e., those sequences ending in a configuration with an empty plan.
Using the function defined above, we can now define the operational semantics
of 3APL.



Definition 110 (operational semantics) Let κ : Σ+ → Σ be a function yield-
ing the last element of a finite computation sequence, extended to handle sets of
computation sequences as follows, where I is some set of indices: κ({δi | i ∈ I}) =
{κ(δi) | i ∈ I}. The operational semantic function OA : Plan → (Σ → ℘(Σ)) is
defined as follows:

OA(π)(σ) = κ(CA(π, σ)).

We will in the sequel omit the superscript A to functions as defined above, for
reasons of presentation.

3 3APL and Non-Compositionality

Before we go into discussing why the semantics of 3APL plans is not composi-
tional, we consider compositionality of standard procedural languages.

3.1 Compositionality of Procedural Languages

The semantics of standard procedural languages such as described in
[8, Chapter 5] are compositional. Informally, a semantics for a programming
language is compositional if the semantics of a composed program can be de-
fined in terms of the semantics of the parts of which it is composed. To be more
specific, the meaning of a composed program S1;S2 should be definable in terms
of the meaning of S1 and S2, for the semantics to be compositional.

A semantics can be defined directly in a compositional way, in which case
the semantics is often termed a denotational semantics [8]. Alternatively, a se-
mantics can be defined in a non-compositional way, such as an operational
semantics defined using computation sequences, while it still satisfies a com-
positionality property. In this paper, we focus on the latter case. It turns out
that the operational semantics for a procedural language such as discussed in
[8, Chapter 5] satisfies such a compositionality property, while the operational
semantics of 3APL of definition 110 does not. All results and definitions with
respect to procedural languages which we refer to in section 3, can be found in
[8, Chapter 5].

An operational semantics of a procedural language can be defined analo-
gously to the operational semantics of 3APL of definition 110, where plans are
statements and belief bases are states. Both operational semantics are defined
in a non-compositional way, since they do not use the structure of the plan or
statement to define its semantics. Nevertheless, the operational semantics of a
procedural language does satisfy a compositionality property, i.e., the following
holds: O(S1;S2)(σ) = O(S2)(O(S1)(σ)), where S1 and S2 are statements. This
property specifies that the set of states possibly resulting from the execution of
a composed statement S1;S2 in σ is equal to the set of states resulting from the
execution of S2 in all states resulting from the execution of S1 in σ.



3.2 Non-Compositionality of 3APL

While the presented compositionality property is termed “natural” in
[8, Chapter 5], it is not satisfied by the operational semantics of 3APL, i.e.,
it is not the case that O(π1;π2)(σ) = O(π2)(O(π1)(σ)) always holds. The reason
for this lies in the presence of plan revision rules. Take for example an agent
with one plan revision rule a; b c. Let σab and σc be the belief bases resulting
from the execution of actions a followed by b, and c in σ, respectively. We then
have that O(a; b)(σ) = {σab, σc}, i.e., the agent can either execute the actions a
and b one after the other, or it can apply the plan revision rule and then execute
c.

If the semantics of 3APL plans would have been compositional, we would
also have that O(b)(O(a)(σ)) = {σab, σc}. This is however not the case, since
O(b)(O(a)(σ)) = {σab}.6 This stems from the fact that if one “breaks” the
composed plan a; b in two, one can no longer apply the plan revision rule a; b c,
because this rule can only be applied if the composed plan a; b is considered. The
set of belief bases O(a)(σ) only contains those resulting from the execution of
a. The action b is then executed on those belief bases, yielding O(b)(O(a)(σ)).
The result thus does not contain σc.

3.3 Reasoning about 3APL

This non-compositionality property of 3APL plans gives rise to problems when
trying to define a proof system for reasoning about 3APL plans. In standard
procedural languages, the following proof rule is part of any Hoare logic for such
a language [8], where p, p′ and q are assertions.

{p} S1 {p′} {p′} S2 {q}
{p} S1;S2 {q}

(3.1)

This rule specifies that one can reason about a composed program by proving
properties of the parts of which it is composed. The soundness of this rule de-
pends on the fact that O(S1;S2)(σ) = O(S2)(O(S1)(σ)). Because this property
does not hold for 3APL plans, a similar rule for 3APL would not be sound (see
also the discussion in [13]). Nevertheless, one would still want to reason about
composed 3APL plans.

In [13],7 we have presented a specialized dynamic logic for this purpose. In
that paper, we define a logic for reasoning about 3APL plans in which we can
restrict the number of plan revision rule applications allowed to occur during the
execution of the plan. Based on this logic, we define a logic for reasoning about
3APL plans in general. The resulting complete proof system however contains
an infinitary proof rule, i.e., a rule with an infinite number of premises. In some
cases, induction can be used to prove the premises of this rule. These induction

6 Note that O(b)(O(a)(σ)) ⊆ O(a; b)(σ).
7 Parts of [13] were published in [12].



proofs are however quite involved, and it is not yet clear whether these can
somehow be automated, etc.

Another possible approach for reasoning about 3APL plans has been sug-
gested in [15,16]. In that paper, we define a denotational (i.e., compositional)
semantics for a 3APL meta-language. This meta-language is relatively standard,
as it is essentially a non-deterministic language with a while construct. It was
suggested that it might by possible to reason about this meta-language, rather
than about 3APL plans directly.

While the two discussed papers aim at reasoning about full 3APL, we take a
different approach in this paper. Here, we investigate whether we can somehow
restrict plan revision rules, such that the semantics of plans becomes composi-
tional (in some sense). The idea is that given such a compositional semantics, it
will be possible to come up with a more standard and easy to use proof system
for 3APL.

4 Compositional 3APL

One obvious candidate for a restricted version of plan revision rules is the restric-
tion to rules with an atomic head, i.e., to rules of the form a  π. These rules
are very similar to procedures, apart from the fact that an action a could either
be transformed using a plan revision rule, or executed directly. In contrast with
actions, procedure variables cannot be executed, i.e., they can only be replaced
by the body of a procedure. It is easy to see that a semantics for 3APL with
only these plan revision rules would be compositional.

However, this kind of plan revision rules would capture very little of the
general plan revision capabilities of the non-restricted rules. The challenge is
thus to find a less restrictive kind of plan revision rules, which would still satisfy
the desired compositionality property. Finding such a restricted kind of plan
revision rules is non-trivial. We discuss the line of reasoning by which it can be
obtained in section 4.1. In section 4.2, we present and explain the theorem that
expresses that the proposed restriction on plan revision rules indeed establishes
(some form of) compositionality. Finally, in section 5, we briefly address the
issue of reasoning about 3APL with restricted plan revision rules, and point to
directions for future research regarding this issue.

4.1 Restricted Plan Revision Rules

The restriction to plan revision rules that we propose is given in definition 111
below, and can be understood by trying to get to the essence of the composi-
tionality problem arising from non-restricted plan revision rules.

First, we have to observe that the general kind of compositionality as spec-
ified in section 3.1 for procedural languages is in general not obtainable for
3APL, if the set of plan revision rules contains a rule with a non-atomic head.
The property specifies that the semantics of a composed plan (or program)



should be definable in terms of the parts of which it is composed. The prop-
erty however does not specify how a composed plan should be broken down
into parts. That is, for a plan to be compositional in the general sense, com-
positionality should hold, no matter how the plan is decomposed. Consider
for example the plan a; b; c. It should then be the case that O(a; b; c)(σ) =
O(c)(O(a; b)(σ)) = O(b; c)(O(a)(σ)), i.e., the compositionality property should
hold, no matter whether the plan is decomposed into a; b and c, or a and b; c.

If a set of plan revision rules however contains a rule with a non-atomic head,
it is always possible to come up with a plan (and belief base and belief update
function) for which this property does not hold. This plan should contain the
head of the plan revision rule. If the decomposition of the plan is then chosen
such that it “breaks” this occurrence of the head of the rule in the plan, the
compositionality property in general does not hold for this decomposition. This
is because the plan revision rule can in that case not be applied when calculating
the result of the operational semantic function. Consider for example the plan
revision rule a; b  c and the plan a; b; c. If the plan is decomposed into a and
b; c, the rule cannot be applied and thus O(a; b; c)(σ) = O(b; c)(O(a)(σ)) does
not always hold.

The question is now which kind of compositionality can be obtained for
3APL. We have established that being allowed to decompose a composed plan
into arbitrary parts for a definition of compositionality gives rise to problems in
the case of 3APL. That is, the standard definition of compositionality will always
be problematic if we want to consider plan revision rules with a non-atomic
head. Since we want our restriction on plan revision rules to allow at least some
form of non-atomicity (because otherwise we would essentially be considering
procedures), we have to come up with another definition of compositionality if
we want to make any progress.

The idea that we propose is essentially to take the operational meaning of
a plan as the basis for a compositionality property. When executing a plan π,
either the first action of π is executed, or an applicable plan revision rule is
applied. In the first case, π has to be of the form a;πr

8, and in the latter case
of the form πh;π′r, given an applicable plan revision rule of the form πh  πb.
Taking this into account, we are, broadly speaking, looking for a restriction to
plan revision rules which allows us to decompose π into a and πr, or πh and
π′r. To be more specific, it should be possible to execute a and then consider
πr separately, or to apply the specified plan revision rule and then consider the
body of the rule πb and the rest of the plan, i.e., π′r, separately. That is, we are
after something like the following compositionality property:9

O(π)(σ) = O(πr)(O(a)(σ)) ∪ O(π′r)(O(πb)(σ)). (4.1)

In order to come up with a restriction on plan revision rules that gives us such
a property, we have to understand why this property does not always hold in
8 The subscript r here indicates that πr is the rest of the plan π.
9 The property that will be proven in section 4.2 differs slightly, as it takes into account

the existence of multiple applicable plan revision rules.



the presence of non-restricted plan revision rules. Essentially, what this property
specifies is that we can separate the semantics of certain prefixes of the plan π
(i.e., a and πh), from the semantics of the rest of π.

A case in which this is not possible, is the following. Consider a plan of the
form πh;π′h;π, and plan revision rules of the form πh  πb and πb;π′h  π′b. We
can apply the first rule to this plan, yielding πb;π′h;π. If the semantics of the
plan would be compositional in the sense of (4.1), it should now be possible to
consider the semantics of π′h;π, i.e., the “rest” of the plan, separately. Given the
second plan revision rule however, this is not possible: if we separate πb;π′h;π into
πb and π′h;π, we can no longer apply the second plan revision rule, whereas we
can apply the rule if the plan is considered in its composed form. The semantics
of the plan πh;π′h;π is thus not compositional, given the two plan revision rules.

This argument is similar to the explanation of why the general notion of
compositionality does not hold for 3APL. Contrary to the general case however,
we can in the case of compositionality as defined in (4.1), specify a restriction
to plan revision rules that prevents this problem from occurring. The restriction
will thus allow us to consider the semantics of π′r (see (4.1)) separately from the
semantics of πb, thereby establishing compositionality property (4.1).

As explained, if there is a plan revision rule of the form πh  πb, a plan
revision rule with a head of the form πb;π′h is problematic. A restriction one
could thus consider, is the restriction that if there is a rule of the form πh  πb,
there should not also be a rule of the form πb;π′h  π′b, i.e., the body of a
rule cannot be equal to the prefix of the head of another rule. This restriction
however does not do the trick completely. The reason has to do with the fact
that actions from a plan of the form πb;π′h can be executed.

Consider for example a plan a1; a2; b1; b2 and plan revision rules
a1; a2  c1; c2 and c2; b1  c3. The head of the second rule does not have
the form c1; c2;π, i.e., the body of the first rule is not equal to the prefix of
the head of another rule. Therefore, according to the suggested restriction, this
rule is allowed. We can apply the first rule to the plan, yielding c1; c2; b1; b2.
If the compositionality property holds, we should now be able to consider the
semantics of b1; b2 separately. Suppose the action c1 is executed, resulting in the
plan c2; b1; b2. Considering the second plan revision rule, we observe that this
rule is applicable to this plan. This is however only the case if we consider this
plan in its composed form. If we separate the semantics of b1; b2 as specified by
the compositionality property (4.1), we cannot apply the rule. Given the plan
a1; a2; b1; b2 and the two plan revision rules, the compositionality property thus
does not hold.

The solution to this problem is to adapt the suggested restriction which
considers the body of a rule in relation with the prefix of the head of another
rule, to a restriction which consider the suffix of the body of a rule in relation
with the prefix of the head of another rule. The restriction should thus specify
that the suffix of the body of a rule cannot be equal to the prefix of the head
of another rule. Under that restriction, the second rule of the example discussed
above would not be allowed, and the compositionality property (4.1) would hold.



This restriction on plan revision rules is specified formally below. The fact that
under this restriction, the property (4.1) (or a slight variation thereof) holds, is
formally shown in section 4.2.

Definition 111 (restricted plan revision rules) Let PR be a set of plan revision
rules. Let suff be a function taking a plan and yielding all its suffixes, and let
pref be a function taking a plan and yielding all its strict prefixes.10 We say that
PR is restricted iff the following holds:

∀ρ ∈ PR : (ρ : πh  πb) : ¬∃ρ′ ∈ PR : (ρ′ : π′h  π′b) :
(
suff(πb)∩pref(π′h)

)
6= ∅.

The fact that we define pref as yielding strict prefixes allows the suffix of the
body of a plan revision rule to be exactly equal to the head of another rule. This
does not violate the compositionality property, and it results in restricted plan
revision rules being a superset of rules with an atomic head. Otherwise, a rule
b c, for example, would not be allowed if there is also a rule a a; b, since b,
i.e., the suffix of the latter rule, would then by definition be equal to the prefix
of the head of the first rule.

4.2 Compositionality Theorem

The theorem expressing the compositionality property that holds for plans under
a restricted set of plan revision rules, is given below. It is similar to property
(4.1) specified in section 4.1, except that we take into account the existence of
multiple applicable plan revision rules. A plan π can thus be decomposed into a
and πr (where π is of the form a;π), or into πρ

h and πρ
r (where π is of the form

πρ
h;πρ

r ) for any applicable plan revision rule ρ of the form πρ
h  πρ

b .

Theorem 11 (compositionality of semantics of plans) Let A be an agent with
a restricted set of plan revision rules PR. Let ρ range over the set of rules from
PR that are applicable to the plan π, and let π be of the form πρ

h;πρ
r for an

applicable rule ρ of the form πρ
h  πρ

b . Further, let a be the first action of π, i.e.,
let π be of the form a;πr. We then have for all π 6= ε and σ:

O(π)(σ) = O(πr)(O(a)(σ)) ∪
⋃
ρ

O(πρ
r )(O(πρ

b )(σ)).

In order to prove this theorem, we use lemma 11 below. This lemma, broadly
speaking, specifies that for a plan of the form πh;π, the following is the case:
after application of a plan revision rule of the form πh  πb, yielding the plan
πb;π, it will always be the case that πb is executed entirely, before π is executed.
Because of this, the semantics of πb and of π can be considered separately, which
is the core of our compositionality theorem.

10 The plan a is for example a strict prefix of a; b, but the plan a; b is not.



Lemma 11 Let A be an agent with a restricted set of plan revision rules PR,
and let πh  πb ∈ PR. We then have that any transition sequence
〈πb;π, σ〉 → . . . → 〈ε, σ′〉 has the form11

〈πb;π, σ〉 → . . . → 〈π, σ′′〉 → . . . → 〈ε, σ′〉

such that each configuration in the first part of the sequence, i.e., in
〈πb;π, σ〉 → . . . → 〈π, σ′′〉 = θ, has the form 〈πi;π, σi〉. That is, π is always
the suffix of the plan of the agent in each configuration of θ.

In the proof of this lemma, we use the notion of a plan π′ being suffix in π with
respect to some set of plan revision rules. A plan π′ is suffix in π, if π is the suffix
of π′, i.e., if π′ is of the form πpre;π. Further, πpre should be a concatenation of
suffixes of the bodies of the relevant set of plan revision rules.

Definition 112 (suffix in π) Let PR be a set of plan revision rules. Let sufi

with 1 ≤ i ≤ n denote plans that are equal to the suffix of the body of a rule in
PR, i.e., for each sufi there is a rule in PR of the form πh  πr; sufi. We say that
a plan π′ is suffix in π with respect to PR, iff π′ is of the form suf1; . . . ; sufn;π,
and the length of suf1; . . . ; sufn is greater than 0.

The idea is that, given a plan of the form πb;π which is suffix in π by definition12,
this property is preserved until the plan is of the form π. If this is the case, we
have that π is always the (strict) suffix of the plan of each configuration, until
the plan equals π. We thus use the preservation of this property to prove lemma
11 (see below).

We need the fact that the part of the plan occurring before π is a sequence
of suffixes, in order to prove that π is preserved as the suffix of the plan.13 The
reason is, that if this is the case, we know by the fact that our plan revision
rules are restricted, that there cannot occur a rule application which transforms
π, thereby violating our requirement that π remains the suffix of the plan of the
agent, until the plan becomes equal to π. If a plan is of the form suf1; . . . ; sufn;π,
where each sufi denotes a plan that is equal to the suffix of the body of a plan
revision rule, we know that any plan revision rule will only modify a prefix
of suf1, because the plan revision rules are restricted. There cannot be a rule
with a head of the form suf1;πh, because this would violate the requirement of
restricted plan revision rules.

Proof of lemma 11: Let A be an agent with a restricted set of plan revision
rules PR. Let 〈π1, σ〉 → 〈π2, σ

′〉 be a transition of A. First, we show that if π1

is suffix in π (with respect to PR), it has to be the case that π2 is suffix in π, or
that π2 = π.

11 In this lemma we omit the labels of transitions, for reasons of presentation.
12 That is, if πb is the body of a plan revision rule.
13 Note that we use the term suffix to refer to suffixes of the plans of the bodies of plan

revision rules, and to refer to the suffix of the plan in a configuration.



Assume that π1 is suffix in π, i.e., let π1 = suf1; . . . ; sufn;π. If π = ε, the
result is immediate. Otherwise, the proof is as follows. A transition from 〈π1, σ〉
results either from the execution of an action, or from the application of an
applicable rule.

Let suf1 = a; suf ′1. If action a is executed, π2 is of the form suf ′1; . . . ; sufn;π.
If suf ′1, . . . , sufn are ε, we have that π2 = π. Otherwise, we have that π2 is suffix
in π.

Let ρ : πh  πb be a rule from PR that is applicable to π1. Then it must
be the case that π1 is of the form πh;πr. By the fact that PR is restricted, we
have that there is not a rule ρ′ of the form suf1;π′  π′b, i.e., such that suf1,
which is the suffix of the body of a rule, is the prefix of the head of ρ′. Given
that ρ is applicable to π1, it must thus be the case that πh is a prefix of suf1,
i.e., that suf1 is of the form πh;π′′. Applying ρ to π1 thus yields a plan of the
form πb;π′′; suf2; . . . ; sufn;π. Since both πb and π′′ are suffixes of the bodies of
rules in PR, we have that π2 is suffix in π.

We have to show that any transition sequence θ of the form
〈πb;π, σ〉 → . . . → 〈ε, σ′〉 has a prefix θ′ such that π is always a suffix of the plan
in each configuration of θ′. Let π2 be the plan of the second configuration of θ.
We have that πb;π is suffix in π. Therefore, it must be the case that π2 is also
suffix in π, or that π2 = π. In the latter case, we have the desired result. In the
former case, we have that π is a suffix of π2, in which case the first two configu-
ration may form a prefix of θ′. Let π3 be the plan of the third configuration of
θ. If π2 is suffix in π, it has to be the case that π3 is suffix in π, or that π3 = π.
In the latter case, we are done. In the former case, the first three configurations
may form a prefix of θ′. This line of reasoning can be continued. Since θ is a
finite sequence, it has to be the case that at some point a configuration of the
form 〈π, σ′′〉 is reached. This yields the desired result. 2

Proof of theorem 11: We have to show the following:

σ′ ∈ O(π)(σ) ⇔ σ′ ∈ O(πr)(O(a)(σ)) ∪
⋃
ρ

O(πρ
r )(O(πρ

b )(σ)).

(⇐) Follows in a straightforward way from the definitions.
(⇒) Let n be the number of plan revision rules applicable to π, where πρi

h and
πρi

b respectively denote the head and body of rule ρi. We then have to show:

σ′ ∈ O(π)(σ) ⇒ σ′ ∈ O(πρ1
r )(O(πρ1

b )(σ)) or
...

σ′ ∈ O(πρn
r )(O(πρn

b )(σ)) or
σ′ ∈ O(πr)(O(a)(σ)).

If σ′ ∈ O(π)(σ), then there is a transition sequence of the form

〈π, σ〉 →x . . . →x 〈ε, σ′〉



i.e., if πρ
h  πρ

b is an arbitrary rule ρ that is applicable to π, where π = πρ
h;πρ

r ,
there are transition sequences of the form

〈πρ
h;πρ

r , σ〉 →apply 〈πρ
b ;πρ

r , σ〉 →x . . . →x 〈ε, σ′〉 (4.2)

or, if π = a;πr, of the form

〈a;πr, σ〉 →exec 〈πr, σ
′′〉 →x . . . →x 〈ε, σ′〉. (4.3)

In case σ′ has resulted from a transition sequence of form (4.2), we prove

σ′ ∈ O(πρ
r )(O(πρ

b )(σ)). (4.4)

In case σ′ has resulted from a transition sequence of form (4.3), we prove

σ′ ∈ O(πr)(O(a)(σ)). (4.5)

Assume σ′ has resulted from a transition sequence of form (4.2). We then
have to prove (4.4), i.e., we have to prove that there is a belief base σ′′ ∈
O(πρ

b )(σ), such that σ′ ∈ O(πρ
r )(σ′′). That is, we have to prove that there

are transition sequences of the form 〈πρ
b , σ〉 → . . . → 〈ε, σ′′〉, and of the form

〈πρ
r , σ′′〉 → . . . → 〈ε, σ′〉.
By definitions 16 and 17, we have that if 〈π1;π2, σ〉 → 〈π′1;π2, σ

′〉 is a
transition for arbitrary plans π1 and π2, then 〈π1, σ〉 → 〈π′1, σ′〉 is also a
transition. By lemma 11, we have that there is a prefix of (4.2) of the form
〈πρ

h;πρ
r , σ〉 → 〈πρ

b ;πρ
r , σ〉 → . . . → 〈πρ

r , σ′′〉, such that the plan of each configura-
tion in this sequence is of the form πi;π. From this we can conclude the desired re-
sult, i.e., that there are transition sequences of the form 〈πρ

b , σ〉 → . . . → 〈ε, σ′′〉,
and of the form 〈πρ

r , σ′′〉 → . . . → 〈ε, σ′〉.
Assume σ′ has resulted from a transition sequence of form (4.3). Then proving

(4.5) is analogous to proving (4.4), except that we do not need lemma 11. 2

5 Conclusion and Future Work

As argued, an important reason for defining a variant of 3APL with a composi-
tional semantics, is that it is more likely that it will be possible to come up with
a more standard and easy to use proof system for such a language. A natural
starting point for such an effort is the definition of a proof rule for sequential
composition, analogous to rule (3.1), as specified below (we use the notation of
theorem 11).

{p} a {p′} {p′} πr {q}
∧

ρ

(
{p} πρ

b {p′} and {p′} πρ
r {q}

)
{p} π {q}

(5.1)

The soundness proof of this rule is analogous to the soundness proof of rule (3.1)
[8, Chapter 2], but using theorem 11 instead ofO(S1;S2)(σ) = O(S2)(O(S1)(σ)).
A complete proof system for compositional 3APL would however also need an
induction rule. We conjecture that it will be possible to define an analogue of
Scott’s induction rule [8, Chapter 5] which is used for proving properties of
recursive procedures, for reasoning about plans in the context of plan revision
rules. Investigating this is however left for future research.



References

1. Wooldridge, M.: Agent-based software engineering. IEEE Proceedings Software
Engineering 144(1) (1997) 26–37

2. Wooldridge, M., Ciancarini, P.: Agent-Oriented Software Engineering: The State
of the Art. In Ciancarini, P., Wooldridge, M., eds.: First Int. Workshop on Agent-
Oriented Software Engineering. Volume 1957. Springer-Verlag, Berlin (2001) 1–28

3. Bratman, M.E.: Intention, plans, and practical reason. Harvard University Press,
Massachusetts (1987)

4. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In
Allen, J., Fikes, R., Sandewall, E., eds.: Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reasoning (KR’91),
Morgan Kaufmann (1991) 473–484

5. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial
Intelligence 42 (1990) 213–261

6. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.Ch.: Agent program-
ming in 3APL. Int. J. of Autonomous Agents and Multi-Agent Systems 2(4) (1999)
357–401

7. Dastani, M., van Riemsdijk, M.B., Dignum, F., Meyer, J.J.Ch.: A programming
language for cognitive agents: goal directed 3APL. In: Programming multia-
gent systems, first international workshop (ProMAS’03). Volume 3067 of LNAI.
Springer, Berlin (2004) 111–130

8. de Bakker, J.: Mathematical Theory of Program Correctness. Series in Computer
Science. Prentice-Hall International, London (1980)

9. Giacomo, G.d., Lespérance, Y., Levesque, H.: ConGolog, a Concurrent Program-
ming Language Based on the Situation Calculus. Artificial Intelligence 121(1-2)
(2000) 109–169

10. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In van der Velde, W., Perram, J., eds.: Agents Breaking Away (LNAI
1038), Springer-Verlag (1996) 42–55

11. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60 (1993) 51–92
12. van Riemsdijk, M.B., de Boer, F.S., Meyer, J.J.Ch.: Dynamic logic for plan revision

in intelligent agents. In Leite, J.A., Torroni, P., eds.: Computational logic in multi-
agent systems: fifth international workshop (CLIMA’04). Volume 3487 of LNAI.
(2005) 16–32

13. van Riemsdijk, M.B., de Boer, F.S., Meyer, J.J.Ch.: Dynamic logic for plan revi-
sion in intelligent agents. Technical Report UU-CS-2005-013, Utrecht University,
Institute of Information and Computing Sciences (2005) To appear in Journal of
Logic and Computation.

14. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

15. van Riemsdijk, M.B., Meyer, J.J.Ch., de Boer, F.S.: Semantics of plan revision
in intelligent agents. In Rattray, C., Maharaj, S., Shankland, C., eds.: Proceed-
ings of the 10th International Conference on Algebraic Methodology And Software
Technology (AMAST04). Volume 3116 of LNCS., Springer-Verlag (2004) 426–442

16. van Riemsdijk, M.B., Meyer, J.J.Ch., de Boer, F.S.: Semantics of plan revision in
intelligent agents. Theoretical Computer Science 351(2) (2006) 240–257 Special
issue of Algebraic Methodology and Software Technology (AMAST’04).


