
Goal-Oriented Modularity in Agent Programming

M. Birna van Riemsdijk1 Mehdi Dastani1 John-Jules Ch. Meyer1 Frank S. de Boer1,2

Utrecht University1

CWI, Amsterdam2

The Netherlands

[birna | mehdi | jj | frankb]@cs.uu.nl

ABSTRACT
Modularization is widely recognized as a central issue in
software engineering. In this paper we address the issue of
modularization in cognitive agent programming languages.
We discuss existing approaches to modularity in cognitive
agent programming. Then, we propose a new kind of mod-
ularity, i.e., goal-oriented modularity, which takes the goals
of an agent as the basis for modularization. Further, we
present a formal semantics of goal-oriented modularity in
the context of the 3APL agent programming language.

Categories and Subject Descriptors
I.2.5 [Artificial Intelligence]: Programming Languages
and Software; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Intelligent agents, languages and struc-
tures; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages; D.3.1 [Programming
Languages]: Formal Definitions and Theory; D.2 [Software
Engineering]

General Terms
Theory, Languages

Keywords
Agent programming languages, modularity, semantics,
declarative goals

1. INTRODUCTION
Modularization is widely recognized as a central issue in

software engineering [11, 9, 2]. A system which is composed
of modules, i.e., relatively independent units of functionality,
is called modular. A programming language which adheres
to this principle of modularization supports the decompo-
sition of a system into modules. The principle lies, e.g.,
at the basis of procedural programming and object-oriented
programming, in which respectively (libraries of) procedures
and classes form the modules.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

An important advantage of modularity in a programming
language is that it can increase the understandability of the
programs written in the language. The reason is that mod-
ules can be separately understood, i.e., the programmer does
not have to oversee the entire workings of the system when
considering a certain module. Further, modularization en-
ables reuse of software, since modules can potentially be
used in different programs or parts of a single program. Fi-
nally, we mention an important principle which any kind of
modularity should stick to, namely the principle of informa-
tion hiding. This means that information about a module
should be private to the module, i.e., not accessible from out-
side, unless it is specifically declared as public. The amount
of information declared public should typically be relatively
small. The idea behind information hiding is that a module
can be changed (or at least the non-public part of a module),
without affecting other modules.

In this paper we address the issue of modularization in cog-
nitive agent programming languages. Cognitive agents are
agents endowed with high-level mental attitudes such as be-
liefs, goals, plans, etc. Several programming languages and
platforms have been introduced to program these agents,
such as 3APL [10, 6], AgentSpeak(L) [14, 3], JACK� [20],
Jadex [13], etc. Some of these languages incorporate sup-
port for modularization, which we discuss in some detail in
section 2.1.

Our contribution is the proposal of a new kind of modular-
ity, i.e., goal-oriented modularity, which is, as we will argue,
particularly suited for agent programming languages (sec-
tion 2). Further, we present a formalization of goal-oriented
modularity in the context of the 3APL programming lan-
guage (section 3). We conclude the paper with directions
for future research in section 4.

2. GOAL-ORIENTED MODULARITY
In this section, we explain the general idea of goal-oriented

modularity. First, we discuss which kinds of modularity are
present in today’s cognitive agent programming languages
and platforms (section 2.1). Then, we explain the general
idea of goal-oriented modularity (section 2.2).

As for programming in general, modularization is also an
important issue for agent programming. One could argue
that the agent paradigm provides inherent support for mod-
ularity, since a complex problem can be broken down and
solved by a team of autonomous agents. Constructing a
team of agents to solve a problem rather than creating a
single more complex agent, might however not always be the
appropriate approach. The team approach will likely gener-

ate significant communication overhead, and having several
independent agents can make it difficult to handle problems
that require global reasoning [5, 4]. Following [5, 4], we thus
argue that modularization is important also at the level of
individual agents.

2.1 Related Work
With regard to cognitive agent programming languages

such as 3APL and AgentSpeak(L), one could argue that
these languages support modularization: an agent is typ-
ically composed of a number of components such as a belief
base, a plan or intention base, a plan library, a goal or event
base, etc. These components however do not provide the
appropriate modularization, since their workings are closely
intertwined and therefore they cannot be considered as rel-
atively independent units of functionality. Cognitive agent
programming languages thus need more support for struc-
turing the internals of an agent, in order for them to deserve
the predicate “modular”.

One possible approach to addressing this issue of modu-
larity of cognitive agent programming languages has been
proposed by Busetta et al. in [5]. In that paper, the no-
tion of capability was introduced and its implementation in
the JACK cognitive agent programming language was de-
scribed.

JACK extends the Java� programming language in sev-
eral ways, such as by introducing constructs for declaring
cognitive agent notions like beliefs, events, plans, etc. Events
are used to model messages being received, new goals being
adopted, and information being received from the environ-
ment. Plans are used to handle events, i.e., if an event is
posted, the reasoning engine tries to find an appropriate plan
which has this event as its so-called triggering condition.

A capability in JACK is a cluster of components of a
cognitive agent, i.e., it encapsulates beliefs, events (either
posted or handled by the capability), and plans. Examples
of capabilities given in [5] are a buyer and seller capability,
clustering functionality for buyer and seller agents, respec-
tively. A capability can import another capability, in which
case the latter becomes a sub-capability of the former. Us-
ing the importation mechanism for capabilities, the beliefs
of a capability can also be used by its super-capability, that
is, if they are explicitly imported by the latter. Also, the
beliefs of a capability can be used by its sub-capabilities
if they are explicitly declared as exported (and if they are
also imported by the sub-capabilities). For events, a similar
mechanism exists, by means of which events posted from
one capability can also be handled by plans of its sub- and
possibly super-capabilities.

The notion of capability as used in JACK has been ex-
tended in the context of the Jadex platform [4]. Jadex is a
cognitive reasoning engine which is built on top of the Jade
[1] agent platform. A Jadex agent has beliefs, goals, plans,
and events. Like capabilities in JACK, a Jadex capability
clusters a set of beliefs, goals, plans, and events. Its most
important difference with the notion of capability as used in
JACK, is the fact that a general import/export mechanism
is introduced for all kinds of elements of a capability, i.e.,
the mechanism is the same for beliefs, events, etc.

Another approach which could be viewed as addressing
the issue of modularity in cognitive agent programming lan-
guages, has been proposed in the context of 3APL in [7]. In
that paper, a formalization of the notion of a role is given.

Similar to capabilities, a role clusters beliefs, goals, plans,
and reasoning rules. The usage of roles at run-time however
differs from that of capabilities. In the cited paper, a role
can be enacted and deacted at run-time, which is specified at
the level of the 3APL reasoning engine or deliberation cycle.
If a role is enacted, the agent pursues the goals of the role,
using the plans and reasoning rules of the role.1 Further, the
agent has a single belief base, and if a role is enacted, the be-
liefs associated with the role are added to the agent’s beliefs.
This is in contrast with JACK and Jadex where beliefs are
distributed over capabilities, and can only be used in other
capabilities if explicitly imported and exported. Also, only
one role at the time can be active. This is in contrast with
the way capabilities are used, since a JACK or Jadex agent
can in principle use any of its capabilities at all times.

2.2 Our Proposal
While the approaches to modularization as described in

section 2.1 are interesting in their own right, we propose an
alternative which we argue to be particularly suited for cog-
nitive agent programming languages. As the name suggests,
goal-oriented modularity takes the goals of an agent as the
basis for modularization. The idea is, that modules encap-
sulate the information on how to achieve a goal, or a set of
(related) goals. That is, modules contain information about
the plans that can be used to achieve a (set of) goal(s). At
run-time, the agent can then dispatch a goal to a module,
which, broadly speaking, tries to achieve the dispatched goal
using the information about plans contained in the module.

This mechanism of dispatching a goal to a module can be
used for an agent’s top-level goals2, but also for the subgoals
as occurring in the plans of an agent. Plans are often built
from actions which can be executed directly, and subgoals
which represent a state that is to be achieved before the
agent can continue the execution of the rest of the plan.
An agent can for example have the plan to take the bus
into town, to achieve the goal of having bought a birthday
cake, and then to eat the cake.3 This goal of buying a
birthday cake will have to be fulfilled by executing in turn
an appropriate plan of for example which shops to go to,
paying for the cake, etc., before the agent can execute the
action of eating the cake.

Before continuing, we remark that goals and subgoals in
this paper are declarative goals, which means that they de-
scribe a state that is to be reached. This is in contrast
with procedural goals, which are directly linked to courses
of action. We refer to [21] for a discussion on declarative
and procedural goals in general, and to [19, 16] for more
background on declarative goals. Further, [17] explores se-
mantics of subgoals, and relates declarative and procedural
interpretations of subgoals.

Returning to our treatment of goal-oriented modularity,
the idea is thus that agents try to achieve subgoals of a plan
by dispatching the subgoal to an appropriate module, i.e., by
calling a module. The module should then define the plans
that can be used for achieving the (sub)goal. If a module is

1We simplify somewhat, since the details are not relevant
for the purpose of this paper.
2Top-level goals are goals that the agent, e.g., has from start-
up, or that it for example has adopted because of requests
from other agents, etc.
3Assuming that both taking the bus into town and eating
cake are actions that can be executed directly.

called for a goal, these plans are tried one by one until either
the goal is achieved, or all plans have been tried. Control
then returns to the plan from which the module was called.
Depending on whether the subgoal is achieved or not upon
returning from the module, the plan respectively continues
execution, or fails. If the plan fails, another plan is selected
(if it exists), for achieving the goal for which the failed plan
was selected, etc.

2.3 Discussion
An advantage of our proposal is the flexible agent behavior

with respect to handling plan failure, which comes with the
usage of declarative goals. As argued in [21, 16], the usage
of declarative goals facilitates a decoupling of plan execution
and goal achievement. If a plan fails, the goal that was to
be achieved by the plan remains a goal of the agent, and
the agent can select a different plan to try to achieve the
goal. While these ideas regarding declarative goals are not
new, we contribute by proposing to use modules to encap-
sulate this mechanism for achieving goals by trying different
plans. We thus exploit the advantages of declarative goals
for obtaining modularization. Since in our view goals, proac-
tiveness and flexible behavior are at the heart of (cognitive)
agenthood, we argue that goal-oriented modularity, which
builds on these notions, is a kind of modularity fitting for
cognitive agents.

Comparing goal-oriented modularity with capabilities, we
point out two major differences. Firstly, in the case of ca-
pabilities, there is no notion of calling a capability for a
subgoal, thereby passing control to another capability. An
event (or subgoal) posted from the plan of one capability,
will be handled by the plans of this capability itself. That
is, unless the capability imports other capabilities, in which
case the plans of these other capabilities are added to the
set of plans considered for handling the posted event (given
appropriate import and export declarations of events). This
is thus in contrast with goal-oriented modularity, where, in
case of calling a module, only the plans of the called module
are considered. These plans are not added to, e.g., some
other set of plans, thereby preventing possibly unforeseen
interactions between these plans. One could thus consider
the idea of goal-oriented modularity to provide a higher de-
gree of modularity or encapsulation of behavior at run-time,
compared with the way in which capabilities are used. As
we will explain in section 3, this is especially advantageous
in the case of 3APL.

Secondly, modules in goal-oriented modularity contain only
information about the plans which can be used to achieve
certain goals. This is in contrast with capabilities, which can
also contain beliefs. The idea for goal-oriented modularity is
that the agent has one global belief base, rather than defin-
ing beliefs inside modules. When using capabilities, beliefs
can by contrast be distributed over these capabilities, and
only the beliefs of a certain capability can be accessed from
this capability.

While from a software engineering perspective it might be
convenient to be able to define beliefs inside capabilities (or
modules), it can be considered less intuitive from a concep-
tual point of view. When testing, e.g., from within a plan
whether the agent believes something, one could argue that
the agent would have to consider all of its beliefs, rather
than just the ones available in the capability. Also, if logi-
cal reasoning is involved as in the case of 3APL, it is more

intuitive to let an agent have just one belief base. Consider
for example that the formula p is in the belief base of one
module, and that p → q is in the belief base of another.
When testing whether q holds from the latter module, one
would probably want the test to succeed.

Nevertheless, in JACK and Jadex, beliefs can be used
in other capabilities if they are imported and exported in
appropriate ways. Also, beliefs (or beliefsets) in those lan-
guages are effectively databases which store elements rep-
resenting the beliefs of the agent. The definition of beliefs
inside a capability could thus be viewed as the specification
of a part of the larger database (or set of databases) com-
prising the total set of beliefs of the agent. From within a
capability, an agent can then only refer to the part of its
beliefs defined in this capability. It is then up to the pro-
grammer to make sure that the beliefs of a capability are
the only ones relevant for the plans of this capability. The
possibility of storing beliefs inside modules in a way which
is somewhere inbetween the current proposal and the way it
is done for capabilities, is discussed in section 4.

Comparing goal-oriented modularity with the notion of
roles as used in [7], we remark the following. As in the case
of capabilities, roles can, in contrast with modules, not call
each other. Also, beliefs can be part of the definition of a
role. However, a role does not have its own beliefs once it
is enacted at run-time. If a role is enacted, its beliefs are
added to the global belief base of the agent. This is more in
line with goal-oriented modularity, but it is in contrast with
the way capabilities are used. Further, contrary to roles,
modules do not have goals. That is, a goal can be dispatched
to a module, but goals are not part of the definition of a
module.

3. GOAL-ORIENTED MODULARITY IN
3APL

In this section, we make the idea of goal-oriented mod-
ularity as presented in section 2 precise. In particular, we
present a formalization in the context of 3APL. Neverthe-
less, we stress that we consider the general idea of goal-
oriented modularity to be suited for cognitive agent pro-
gramming languages in general, rather than for 3APL only.

3.1 Syntax
We build on a single agent and propositional version of

3APL, which comes closest to the one presented in [19]. We
refer to [6, 8] for first order, multi-agent, and otherwise ex-
tended versions. This simplified version of 3APL is sufficient
to present the ideas of the formalization of goal-oriented
modularity. We conjecture that extending the formalization
to a richer version of 3APL will not give rise to fundamental
difficulties.

A 3APL agent in [19] has beliefs, a plan, and goals. Beliefs
represent the current state of the world and information in-
ternal to the agent. Goals represent the desired state of the
world, and plans are the means to achieve the goals. Fur-
ther, a 3APL agent has rules for selecting a plan to achieve
a certain goal given a certain belief, and it has rules for re-
vising its plan during execution. We use these ingredients
for our formalization of goal-oriented modularity.

Throughout this paper, we assume a language of proposi-
tional logic L with negation and conjunction. The symbol |=
will be used to denote the standard entailment relation for

L. Further, we assume a belief query language LB with typ-
ical element β. A belief query can be used to test whether
the agent has a certain belief. We assume an entailment
relation on belief bases and belief query formulas, denoted
by |=LB .4

Below, we define the language of plans Plan. A plan is
a sequence of basic actions and module calls. Informally,
basic actions can change the beliefs of an agent if executed.
A module call is of the form m(φ), where m is the name of
a module (to be defined in definition 4), and φ is a proposi-
tional formula representing the goal which is dispatched to
module m.

Further, we define an auxiliary set of plans Plan′ with the
additional construct m(φ) ↓. This construct is used in the
semantic definitions for recording whether module m has
already been called for goal φ (see section 3.2 for further ex-
planation). It should not be used by the agent programmer
for programming plans, which is why we define two different
plan languages.

Definition 1. (plan) Let BasicAction with typical ele-
ment a be the set of basic actions, let ModName with typical
element m be a set of module names, and let φ ∈ L. The
set of plans Plan with typical element π is then defined as
follows.

π ::= a | m(φ) | π1; π2

We use ε to denote the empty plan and identify ε; π and π; ε
with π. The set Plan′ is defined as follows.

π ::= a | m(φ) | m(φ) ↓ | π1; π2

This simple language of plans could be extended with, e.g.,
if-then-else and while constructs as was done in [19], but the
language as given here suffices for the purpose of this paper.

3APL uses so-called plan generation rules for selecting an
appropriate plan for a certain goal. A plan generation rule
is of the form φ | β ⇒ π. This rule represents that it is
appropriate to select plan π for goal φ, if the agent believes
β.5

Definition 2. (plan generation rule) The set of plan
generation rules RPG is defined as follows:
RPG = {φ | β ⇒ π : φ ∈ L, β ∈ LB, π ∈ Plan}.6

The other type of rule which comes with 3APL, is the rule
for plan revision. Plan revision rules are used to revise an
agent’s plan during execution. A plan revision rule
πh | β πb represents that in case the agent believes β,
it can replace the plan πh by the plan πb.

Definition 3. (plan revision rule) The set of plan revi-
sion rules RPR is defined as follows:
RPR = {πh | β πb : β ∈ LB, πh, πb ∈ Plan}.
4See, e.g., [19] for an example of a belief query language, in
which one can express queries such as B(p) and ¬B(p ∧ q)
for testing whether the agent believes p or does not believe
p ∧ q, respectively.
5Note that it is up to the programmer to specify appropriate
plans for a certain goal. 3APL agents can thus be viewed as
a kind of reactive planning agents.
6We use the notation {. . . : . . .} instead of {. . . | . . .} to
define sets, to prevent confusing usage of the symbol | in
this definition and definition 3.

Plan generation rules capture the information about which
plan can be selected for which goal, and plan revision rules
can be used during the execution of a plan. These rules thus
specify the information on how to achieve goals, and there-
fore we propose to have these rules make up a module, as
specified below. It is important to remark that non-modular
versions of 3APL have one set of plan generation rules, and
one set of plan revision rules, rather than an encapsulation
of these into modules.

Definition 4. (module) A module is a tuple
〈m, PG, PR〉, consisting of a module name m, a finite set
of plan generation rules PG ⊆ RPG, and a finite set of plan
revision rules PR ⊆ RPR.

The mechanism of calling a module is formalized using the
notion of a stack. This stack can be compared with the stack
resulting from procedure calls in procedural programming,
or method calls in object-oriented programming. During
execution of the agent, a single stack is built (see definition
7). Each element of the stack represents, broadly speaking,
a module call.

To be more specific, each element of the stack is of the
form (φ, π, PG, PR), where φ is the goal for which the mod-
ule was called, π is the plan currently being executed in
order to achieve φ, and PG and PR correspond with the
plan generation and plan revision rules of the module which
was called for achieving φ. Rather than using the name of
the module to refer to the relevant plan generation and plan
revision rules, we copy these rules into the stack element.
The reason is that we want to remove plan generation rules
if they are tried once. This will be explained further in sec-
tion 3.2.

Definition 5. (stack) The set of stacks Stack with typi-
cal element S to denote arbitrary stacks, and s to denote sin-
gle elements of a stack, is defined as follows, where φ ∈ L,
π ∈ Plan′, PG ⊆ RPG, and PR ⊆ RPR.

s ::= (φ, π, PG, PR)
S ::= s | s.S

E is used to denote the empty stack (or the empty stack
element), and E.S is identified with S.

Note that the plan π of a stack element is from the extended
set of plans Plan′, since a stack is a run-time construct which
is not specified by the programmer when programming an
agent (see definition 6). The plan π might thus, in con-
trast with the plans of plan generation and plan revision
rules, contain a construct of the form m(φ) ↓. The empty
stack E is introduced for technical convenience when defin-
ing the semantics in section 3.2. Stacks as used here dif-
fer from intention stacks of AgentSpeak(L), as the elements
comprising the stacks are essentially different: stack ele-
ments in this paper correspond with module calls, whereas in
AgentSpeak(L) they represent (parts of) plans or intentions.
Like non-modular 3APL, AgentSpeak(L) has one large set
of plans (corresponding with the rules of 3APL).

An agent, as defined below, consists of a belief base, a
goal base, a set of modules, and a function which speci-
fies how beliefs are updated if actions are executed. As in
non-modular 3APL, the belief base σ is a consistent set of
propositional formulas. The goal base γ is essentially also a
set of propositional formulas, and forms the top-level goals

of the agent. In contrast with non-modular 3APL how-
ever, each goal is associated with a module which should
be called for achieving the goal, i.e., goals are of the form
m(φ). The set of modules Mod form the modules which can
be called to achieve (sub)goals. Defining how beliefs are up-
dated through action execution by assuming a function T ,
is standard for the way 3APL’s semantics is usually defined.
This function is used for technical convenience. We assume
that T maintains consistency of the belief base.

Definition 6. (agent) Let Σ = {σ | σ ⊆ L, σ 6|= ⊥}
be the set of belief bases. An agent is a tuple 〈σ, γ, Mod, T 〉
where σ ∈ Σ is the belief base, γ ⊆ {m(φ) | m ∈ ModName,
φ ∈ L} is the initial goal base, and Mod is a set of modules
such that each module in this set has a distinct name. T is a
partial function of type (BasicAction×Σ) → Σ and specifies
the belief update resulting from the execution of basic actions.

The notion of a configuration, as defined below, is used to
represent the state of an agent at each point during compu-
tation. It consists of the elements which may change during
execution of the agent, i.e., it consists of a belief base, a goal
base, and a stack. Note that an agent initially has an empty
stack.

Definition 7. (configuration) A configuration is a tuple
〈σ, γ, S〉 where σ ∈ Σ, γ ⊆ {m(φ) | m ∈ ModName, φ ∈ L},
and S ∈ Stack. If 〈σ, γ, Mod, T 〉 is an agent, then 〈σ, γ, E〉
is the initial configuration of the agent.

3.2 Semantics
The semantics of modular 3APL agents is defined by means

of a transition system [12]. A transition system for a pro-
gramming language consists of a set of axioms and transition
rules for deriving transitions for this language. A transition
is a transformation of one configuration into another and it
corresponds to a single computation step. In the transition
rules below, we assume an agent with a set of modules Mod,
and a belief update function T .

The first transition rule specifies how a transition for a
composed stack can be derived, given a transition for a single
stack element. It specifies that only the top element of a
stack can be transformed or executed.7

Definition 8. (stack execution) Let s 6= E.

〈σ, γ, s〉 → 〈σ′, γ′, S′〉
〈σ, γ, s.S〉 → 〈σ′, γ′, S′.S〉

In the transition rule for stack execution, we specify that
s cannot be the empty stack. The reason is related to the
transition rule for stack initialization of definition 9 below.
In that rule, we want to specify that a stack initialization
transition can only be derived if the current stack is empty.
We however do not want to use that rule in combination
with the rule for stack execution, since that would result in
the possibility of deriving an “initialization” transition, even
if the current stack is not empty.

An initialization transition can thus only be derived if the
current stack is empty. The idea of initialization is that

7For technical convenience, we overload the “.” operator in
definition 8. We use it to “push” a stack onto a stack, rather
than to push a single stack element onto a stack, as it was,
strictly speaking, defined in definition 5.

a (top-level) goal m(φ) from the goal base is (randomly)
selected, and then the module m is called with the goal φ.
The resulting stack is then of the form (φ, ε, PG, PR), where
PG and PR are the plan generation and plan revision rules
of m. Note that the plan of the resulting stack element
is empty. The idea is that the plan generation rules of the
module should now be used to generate an appropriate plan.

Definition 9. (initialization of stack)

m(φ) ∈ γ 〈m, PG, PR〉 ∈ Mod

〈σ, γ, E〉 → 〈σ, γ, (φ, ε, PG, PR)〉

Note that a consequence of this way of defining the goal
base is that multiple goals from the goal base cannot be dis-
patched to the same module in one initialization. Thinking
about alternative ways to define the goal base which might
allow this, is left for future research.

The following transition rule is the rule for plan genera-
tion, defining when a plan generation rule can be applied.
A prerequisite for applying a plan generation rule is that
the plan of the relevant stack element is empty. A rule
φ′ | β ⇒ π from PG can then be applied if β is true, φ′ fol-
lows from φ (i.e., the goal for which the module was called),
and φ′ is not believed to be achieved. Further, for a plan
generation rule to be applicable, the goal φ′ should not al-
ready be achieved, since there is no need to generate a plan
for such a goal. Note that since φ′ follows from φ, it is the
case that φ is also not reached, if φ′ is not reached. With
respect to the second condition for plan generation rule ap-
plication, we remark that a plan generation rule with goal
antecedent p (i.e., φ′ = p) can thus be applied if the agent
has, e.g., a goal p ∧ q (i.e., φ = p ∧ q). This interpretation
of plan generation rules is standard for 3APL. It is conve-
nient when programming, since plan generation rules can be
specified for parts of a composed goal.

If a plan generation rule is applied, the plan π in its con-
sequent becomes the plan of the resulting stack element.
Further, the applied plan generation rule is removed from
the set of plan generation rules of the stack element.

Definition 10. (plan generation)

φ′ | β ⇒ π ∈ PG σ |=LB β φ |= φ′ σ 6|= φ′

〈σ, γ, (φ, ε, PG, PR)〉 → 〈σ, γ, (φ, π, PG′, PR)〉

where PG′ = PG \ {φ′ | β ⇒ π}

The reason for removing plan generation rules is that we
do not want the agent to try the same plan generation rule
twice, to achieve a certain goal. Otherwise, the agent could
get stuck “inside” a module trying to achieve a subgoal, if
all its plans keep failing to reach the goal. The idea is that
modules contain various plans for achieving a certain goal.
If the agent cannot reach a certain subgoal of a plan with
the designated module, the agent should thus at a certain
point give up trying to reach the subgoal. It should just
try another plan with possibly different subgoals. Wanting
to remove plan generation rules of a stack element is the
reason that we copy the rules into stack elements, rather
than just referring to the rules of a module using the name
of the module. If we would extend this semantics to a first
order version, we would have to record which instances of
a plan generation rule are tried, rather than just removing
the rule. This mechanism is comparable to the mechanism

for selecting plans for subgoals in JACK. In JACK it is also
the case that the same plan is not tried for the same subgoal
twice.

The following two transition rules are standard for 3APL,
and define how a plan is executed. The only difference is
that the plan is now inside a stack element. A basic action
a at the head of a plan can be executed if the function T
is defined for a and the belief base σ in the configuration.
The execution results in a change of belief base as speci-
fied through T , and the action is removed from the plan.
Further, goals from the goal base which are reached, are re-
moved. Note that actions, which are executed from within
a module, operate on the global belief base of the agent.

Definition 11. (action execution)

T (a, σ) = σ′

〈σ, γ, (φ, a; π, PG, PR)〉 → 〈σ′, γ′, (φ, π, PG, PR)〉

where γ′ = γ \ {m(φ) | σ |= φ}.

The transition below specifies the application of a plan revi-
sion rule of the form πh | β ⇒ πb to a plan of the form πh; π.
The rule can be applied if β holds. If the rule is applied,
the plan πh is replaced by the body of the rule, yielding the
plan πb; π.

Definition 12. (plan revision)

πh | β πb ∈ PR σ |=LB β

〈σ, γ, (φ, πh; π, PG, PR)〉 → 〈σ, γ, (φ, πb; π, PG, PR)〉

We now revisit the point made in section 2.3, that the en-
capsulation provided by modules at run-time is especially
advantageous in the case of 3APL. The reason is that mod-
ules encapsulate not only plan generation rules, but also
plan revision rules. These plan revision rules provide very
flexible ways for revising a plan during execution, but a
large number of rules can interact in possibly unforeseen
ways. This has to do with the semantics of plans not being
compositional in case of plan revision, as explained in [18].
Being able to cluster plan revision rules into modules thus
reduces the chances of unforeseen interactions with other
rules: the number of plan revision rules in a module will be
small compared with the global set of plan revision rules of
a non-modular 3APL agent.

The next two transition rules specify the cases in which a
stack element can be popped from the stack. Both transition
rules specify that an element can be popped if its plan has
finished execution, i.e., if the plan is empty. The idea is, that
an agent should always finish the execution of an adopted
plan, even though, e.g., the goal for which it was selected
might already be reached. This is standard for 3APL, and
the reason is that the programmer might have specified some
necessary “clean-up” actions. Consider as an example the
case where an agent still has to pay after refueling, even
though the goal of having gas is already reached.

The first transition rule for popping a stack element spec-
ifies that the element can be popped if the goal φ of the
stack element is reached.

Definition 13. (goal of stack element reached)

σ |= φ

〈σ, γ, (φ, ε, PG, PR)〉 → 〈σ, γ, E〉

The second transition rule for popping a stack element spec-
ifies that the element can be popped if there are no more
applicable plan generation rules (regardless of whether the
goal is reached).

Definition 14. (no applicable plan generation rules)

¬∃(φ′ | β ⇒ π) ∈ PG : (σ |=LB β and φ |= φ′ and σ 6|= φ′)

〈σ, γ, (φ, ε, PG, PR)〉 → 〈σ, γ, E〉

The next three definitions specify the semantics of the con-
struct m(φ′) for calling a module. If this construct is encoun-
tered in a plan, and it is not annotated with the
symbol ↓, the module m should be called for the goal φ′.
That is, only if φ′ is not yet reached. If a module with the
name m exists,8 a new element with goal φ′, an empty plan,
and the rules of m, is pushed onto the stack. Further, the
construct m(φ′) is annotated with ↓ to indicate that a mod-
ule has been called for this subgoal. This is important, since
we do not want to call module m again upon returning from
m.

Definition 15. (calling a module)

〈m, PG′, PR′〉 ∈ Mod σ 6|= φ′

〈σ, γ, (φ, m(φ′); π, PG, PR)〉 →
〈σ, γ, (φ′, ε, PG′, PR′).(φ, m(φ′)↓; π, PG, PR)〉

The transition rules of the next definition specify that the
agent can continue the execution of the rest of its plan, if the
subgoal φ′ occurring at the head of the plan is reached. The
agent should continue if it has already called the module m
for the subgoal, i.e., if the construct is of the form m(φ′)↓,
or if the module has not yet been called, i.e., if the construct
is of the form m(φ′). The latter case is however probably
less likely to occur.

Definition 16. (subgoal reached)

σ |= φ′

〈σ, γ, (φ, m(φ′)↓; π, PG, PR)〉 → 〈σ, γ, (φ, π, PG, PR)〉

σ |= φ′

〈σ, γ, (φ, m(φ′); π, PG, PR)〉 → 〈σ, γ, (φ, π, PG, PR)〉

The next transition rule specifies that if a module has been
called for a subgoal, i.e., if a construct of the form m(φ′)↓ is
at the head of the plan of a stack element, and the subgoal
φ′ has not been reached, the plan fails. That is, the plan is
replaced by an empty plan. If there are any applicable plan
generation rules left, another plan can then be selected to
try to achieve the goal φ of the stack element.

Definition 17. (subgoal dispatched and not reached)

σ 6|= φ′

〈σ, γ, (φ, m(φ′)↓; π, PG, PR)〉 → 〈σ, γ, (φ, ε, PG, PR)〉

In this version of modular 3APL, a plan can fail to reach a
goal only in case the programmer has specified the “wrong”
actions in the plans. Since all actions (as is usually the case
for 3APL’s formal semantics) operate on the belief base and
there is no notion of an external environment, there is no
notion of the environment preventing an action from being

8And it should if the programmer has done a good job.

executed, thereby possibly causing a plan to fail. One could
thus argue that it is not necessary to have a mechanism for
selecting a different plan upon plan failure, since it is the
job of the programmer to make sure that the plans do not
fail and reach the goals. Any practical implementation of
these ideas however would involve actions being executed in
the environment, and it is thus important to incorporate a
mechanism for handling plan failure..

The final transition rule below is very similar to the pre-
vious, in the sense that it specifies another reason for plan
failure. In particular, it specifies that a plan fails if the ac-
tion at its head cannot be executed, i.e., if the function T
is undefined for the action and the belief base of the stack
element.

Definition 18. (failure of action execution)

T (a, σ) is undefined

〈σ, γ, (φ, a; π, PG, PR)〉 → 〈σ, γ, (φ, ε, PG, PR)〉

3.3 Example
For illustration, we present a simple example of a modular

3APL agent. The agent has to bring a rock from the location
where the rocks are loc(rock)9, to its base location loc(base).
It has three modules, i.e., collectRock for the general goal
of collecting the rock, and goTo and pickUp for going to
a location and picking up a rock, respectively. Initially, the
agent believes that it is at the base location, and that it does
not have a rock, i.e., ¬have(rock). Further, it has the goal
collectRock(have(rock)∧ loc(base)), i.e., it wants to achieve
the goal have(rock) ∧ loc(base) using module collectRock.

Below, we define the initial belief base σ and goal base γ
of the rock collecting agent.

σ = {loc(base),¬have(rock)}
γ = {collectRock(have(rock) ∧ loc(base))}

The plan generation rules PGcr of the module collectRock
are defined as below. The set of plan revision rules is empty.

PGcr = {have(rock) ∧ loc(base) | > ⇒
goTo(loc(rock)); pickUp(have(rock));
goTo(loc(base))}

There is one plan generation rule which can be used for
the goal have(rock) ∧ loc(base), i.e., the initial goal of the
agent. The plan of the rule consists entirely of calls to other
modules. Note that the goTo module is called with two
different goals. The rule does not specify a condition on
beliefs (other than >). In particular, there is no need to
specify that the agent should, e.g., believe that it is at the
base location, rather than at the rock location. If the agent
would already be at the rock location, the first module call
of the plan, i.e., goTo(loc(rock)), would be skipped, since
the subgoal loc(rock) is already reached (see definition 16).

The plan generation rules PGgt and plan revision rules
PRgt of the module goTo are defined as follows.

PGgt = {loc(rock) | B(loc(base)) ⇒ toRock
loc(base) | B(loc(rock)) ⇒ toBase}

PRgt = {toRock | B(loc(rock)) skip
toRock | ¬B(loc(rock)) east; toRock
toBase | B(loc(base)) skip
toBase | ¬B(loc(base)) west; toBase}

9Note that all formulas are propositional, although we use
brackets for presentation purposes.

This module has two plan generation rules: one for selecting
a plan to get from the base location to the rock location, and
one for the other way around. The plans toRock and toBase
in the bodies of the plan generation rules are non-executable
basic actions, which are used as procedure variables.10 As-
suming that the rock is located east from the base location,
we specify plan revision rules for moving east until the rock
location is reached, and moving west until the base location
is reached. The action skip is a special action which does
nothing if executed.

In this simple example, we specify separate plan revision
rules for moving east and west respectively. The plans for
moving to the rock location and to the base location thus use
different plan revision rules. We could therefore have created
two separate modules, i.e., one for going to the rock, and one
for going to the base. In a more realistic setting however,
one could imagine to have one set of plan revision rules for
moving to any given location. In that case, it would be
advantageous to specify these rules only in one module.

The plan generation rules PGpu of the module pickUp are
defined as below, and the set of plan revision rules is empty.

PGpu = {have(rock) | B(loc(rock)) ⇒ pickUp1
have(rock) | B(loc(rock)) ⇒ pickUp2}

The plan generation rules of this module can be applied if
the agent believes it is at the rock location. Note that the
call pickUp(have(rock)) to this module from the collectRock
module, can only be executed if the subgoal of the previ-
ous module call, i.e., goTo(loc(rock)), has been achieved. If
pickUp(have(rock)) is executed, we thus know for sure that
the agent believes to be at the rock location. The module
pickUp illustrates that the agent may have multiple plans,
i.e., pickUp1 and pickUp2 in this case, for achieving the
same goal. If, e.g., pickUp1 fails, the agent can try pickUp2.

4. FUTURE RESEARCH
As directions of future research, we mention the following.

In the current proposal there is no notion of importing a
module into another module. Some notion of importation
could be added in a straightforward way, but it will have to
be investigated what exactly the semantics of importation
should be. Should the rules of the imported module just be
“added” to the other module, or should there be some kind
of prioritization among rules of the module itself and the
imported module?

Further, goal-oriented modularity as presented here pro-
vides a high degree of information hiding. That is, when
calling a module, only the name of the module has to be
known. In principle, any part of a module can be adapted
without having to adapt the call to the module. We thus
have no notion of an interface of a module, i.e., those parts
of the module which are known outside the module. Nev-
ertheless, it might be worthwile to investigate whether the
framework can be extended with some notion of interface,
such as the goals for which a module can be called, etc. This
might be a useful tool to help a programmer.

Also, we envisage that a mechanism similar to the mech-
anism of dispatching a goal to a module, could be used in
a multi-agent team work setting (see, e.g., [22]) to delegate
a goal to an agent. Using a uniform mechanism both for

10Non-executable basic actions are often termed abstract
plans in the 3APL literature.

calling modules and delegating goals to agents could poten-
tially yield more transparent systems. In case of delegation,
a plan would have to contain a request message to an agent,
rather than a call to a module. A way of “returning” from
the request, just as one can return from a module, would
have to be defined. An agent would for example have to
report back to the requesting agent, either with a message
expressing that the goal has been achieved, or that he has
failed and stopped trying. Moreover, it can be interesting to
investigate a construct for calling modules in parallel. This
can also be interesting in the case of multi-agent teamwork
as also discussed in [22], since an agent could then dispatch
several goals to different agents in parallel.

Finally, we remark that it could be useful to be able to
store information during execution within a module, which
would not need to be kept after returning from the module.
This could be realized by adding actions to the specification
of a module, which would then update the module’s internal
information store, rather than the global belief base. This
could be considered as a compromise between the way beliefs
are handled in capabilities, and the way we handle beliefs in
the presented framework.

Concluding, we have presented the idea of goal-oriented
modularity, which takes the goals of an agent as the basis
for modularization. Since we view goals as being an essen-
tial ingredient of cognitive agents, we argue that this ap-
proach to modularity is suited for cognitive agent program-
ming languages. Further, we have shown how goal-oriented
modularity might be incorporated in a cognitive agent pro-
gramming language, by presenting a formalization of goal-
oriented modularity in 3APL.

5. REFERENCES
[1] F. Bellifemine, A. Poggi, G. Rimassa, and P. Turci. An

object oriented framework to realize agent systems. In
Proc. of WOA 2000 Workshop, pages 52–57. 2000.

[2] J. A. Bergstra, J. Heering, and P. Klint. Module
algebra. Journal of the Association for Computing
Machinery, 37(2):335–372, 1990.

[3] R. H. Bordini and A. F. Moreira. Proving the
asymmetry thesis principles for a BDI agent-oriented
programming language. Electronic Notes in
Theoretical Computer Science, 70(5), 2002.

[4] L. Braubach, A. Pokahr, and W. Lamersdorf.
Extending the capability concept for flexible BDI
agent modularization. In Proc. of ProMAS’05, 2005.

[5] P. Busetta, N. Howden, R. Rönnquist, and
A. Hodgson. Structuring BDI agents in functional
clusters. In ATAL ’99: 6th Int. Workshop on
Intelligent Agents VI, Agent Theories, Architectures,
and Languages, pages 277–289, 2000. Springer-Verlag.

[6] M. Dastani, M. B. van Riemsdijk, F. Dignum, and
J.-J. Ch. Meyer. A programming language for
cognitive agents: goal directed 3APL. In Programming
multiagent systems, first int. workshop (ProMAS’03),
LNAI, pages 111–130. Springer, Berlin, 2004.

[7] M. Dastani, M. B. van Riemsdijk, J. Hulstijn,
F. Dignum, and J.-J. Ch. Meyer. Enacting and
deacting roles in agent programming. Agent-Oriented
Software Engineering V, LNCS, pages 189–204.
Springer-Verlag, 2005.

[8] M. Dastani, M. B. van Riemsdijk, and J.-J. Ch.

Meyer. Programming multi-agent systems in 3APL. In
R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni, editors, Multi-Agent Programming:
Languages, Platforms and Applications. Springer,
Berlin, 2005.

[9] C. Ghezzi, M. Jazayeri, and D. Mandrioli.
Fundamentals of software engineering. Prentice-Hall
International, London, 1991.

[10] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and
J.-J. Ch. Meyer. Agent programming in 3APL. Int. J.
of Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

[11] B. Meyer. Object-oriented software construction. Series
in Computer Science. Prentice-Hall International,
London, 1988.

[12] G. D. Plotkin. A Structural Approach to Operational
Semantics. Technical Report DAIMI FN-19,
University of Aarhus, 1981.

[13] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: a
BDI reasoning engine. In R. H. Bordini, M. Dastani,
J. Dix, and A. El Fallah Seghrouchni, editors,
Multi-Agent Programming: Languages, Platforms and
Applications. Springer, Berlin, 2005.

[14] A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logical computable language. In W. van der Velde and
J. Perram, editors, Agents Breaking Away (LNAI
1038), pages 42–55. Springer-Verlag, 1996.

[15] M. B. van Riemsdijk, M. Dastani, F. Dignum, and
J.-J. Ch. Meyer. Dynamics of declarative goals in
agent programming. Proc. of the second int. workshop
on Declarative agent languages and technologies
(DALT’04), LNCS, pages 1–18. Springer-Verlag, 2005.

[16] M. B. van Riemsdijk, M. Dastani, and J.-J. Ch.
Meyer. Semantics of declarative goals in agent
programming. In Proc. of AAMAS’05, 2005.

[17] M. B. van Riemsdijk, M. Dastani, and J.-J. Ch.
Meyer. Subgoal semantics in agent programming.
Progress in Artifical Intelligence: 12th Portuguese
Conference on Artificial Intelligence (EPIA’05),
LNCS, pages 548–559. Springer-Verlag, 2005.

[18] M. B. van Riemsdijk, J.-J. Ch. Meyer, and F. S.
de Boer. Semantics of plan revision in intelligent
agents. In C. Rattray, S. Maharaj, and C. Shankland,
editors, Theoretical Computer Science, pages 240–257.
2006. Special issue of Algebraic Methodology and
Software Technology (AMAST’04).

[19] M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch.
Meyer. Agent programming in Dribble: from beliefs to
goals using plans. In Proc. of AAMAS’03, 2003.

[20] M. Winikoff. JACK� intelligent agents: an industrial
strength platform. In R. H. Bordini, M. Dastani,
J. Dix, and A. El Fallah Seghrouchni, editors,
Multi-Agent Programming: Languages, Platforms and
Applications. Springer, Berlin, 2005.

[21] M. Winikoff, L. Padgham, J. Harland, and
J. Thangarajah. Declarative and procedural goals in
intelligent agent systems. In Proc. of the eighth int.
conf. on principles of knowledge respresentation and
reasoning (KR2002), 2002.

[22] K. Yoshimura, R. Rönnquist, and L. Sonenberg. An
approach to specifying coordinated agent behaviour.
In PRIMA’00, LNAI, pages 115–127. Springer, 2000.

