
Goal Types in Agent Programming

[Extended Abstract]
∗

Mehdi Dastani
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

mehdi@cs.uu.nl

M. Birna van Riemsdijk
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

birna@cs.uu.nl

John-Jules Ch. Meyer
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

jj@cs.uu.nl

ABSTRACT
This paper discusses three types of declarative goals and mo-
tivates their integration in logic-based agent-oriented pro-
gramming languages. These goal types are perform goals,
achieve goals, and maintain goals. A goal type is considered
as a specific agent attitude towards goals. The semantics for
each goal type is explained from an operational perspective.
It is argued that the suggested semantics of the goal types
ensure some desirable and expected properties.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligenceIntelligent agents, Languages and structures; I.2.5
[Artificial Intelligence]: Programming Languages and Soft-
ware

General Terms
Theory, Languages

Keywords
Declarative goals, Agent programming languages, Agent types

1. INTRODUCTION
An essential characteristic of autonomous agents is their

pro-active behaviour [9]. Such agents are assumed to have
goals (or objectives) based on which they decide and per-
form actions. According to this view, an agent’s goal de-
notes a state that the agent desires to realize by means of
actions available to it. Different logics have been proposed
to characterize goals, to represent and reason about them,
and to specify their relations to other agent concepts such

∗A full version of this paper is available at
http://www.cs.uu.nl/∼mehdi/publications.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

as beliefs and actions [2, 3, 6, 5]. These logics, which are
mainly used to specify the behavior of autonomous agents,
allow the specification of agents that have a certain attitude
towards their goals. These attitudes, which are specified as
logical axioms, are also known as agent types [3, 6, 4]. For
example, an agent can be specified either to hold its goal
until it has achieved it (blindly-committed agent type), or
to drop the goal if it believes that it can never achieve it
(single-minded agent type). It is important to note that the
specification of many interesting agent types involves tem-
poral aspects, such as in the case of the single-minded agent
type, which involves the belief of an agent that it can never
achieve some goal.

Motivated by these logics, many agent-oriented program-
ming languages have been proposed to implement agents
that can represent and reason about goals and are capable
of generating plans for their goals [1]. One problem related
to the implementation of agent types in agent programming
languages is the implementation of the agent types that
involve temporal aspects. Some agent types, such as the
single-minded agent type, require that the agent is able to
reason about its future execution steps to conclude that it
believes the goals can never be achieved. Defining a pro-
gramming construct that enables agents to perform such a
reasoning task is, however, not an easy task, if not impossi-
ble. Moreover, the idea of implementing an agent with one
specific attitude towards its goals is not attractive, especially
when agents can have more than one goal. A more general
agent-oriented programming language should therefore al-
low the implementation of agents that can have different
attitudes towards different goals.

In order to implement goal-related agent types and to al-
low agents to have different attitudes towards different goals,
existing programming languages have introduced the notion
of goal types. For example, JACK [1] provides programming
constructs to implement, among others, test, achieve, insist,
and maintain goals, Jason [1] allows the implementation of
achieve and test goals, and Jadex [1] provides programming
constructs for achieve, query, perform and maintain goals. It
is important to note that goal types with the same name cap-
tured by these agent-oriented programming languages may
have a different meaning across these languages. Moreover,
goals in Jadex are represented in XML using a label as the
name of the goal, and a number of other parameters. In
Jason and JACK, goals are created by generating a partic-
ular type of event. Such a notion of goal does not support

(logical) reasoning and therefore does not allow the deriva-
tion of subgoals. As we will explain, the derivation of goals
is important in the context of agent-oriented programming.
Finally, neither JACK nor Jadex provides the formal se-
mantics of their goal types. This is in contrast with our
proposal, as we aim at providing a formal semantics for the
goal types. Below, we will explain our idea of these goal
types and we will briefly address differences and similarities
with comparable goal types from other agent-oriented pro-
gramming languages. A detailed comparison between the
goal types of the various languages is beyond the scope of
this paper.

In this paper, we discuss three types of goals: perform
goals, achieve goals, and maintain goals. In contrast to
some other approaches, goals are here assumed to be repre-
sented as logical formulas with declarative semantics. This
supports reasoning about goals which facilitates the gener-
ation of plans for subgoals. Moreover, we explain the type
of a goal as an agent’s attitude towards the goal. We do
this with the aim of integrating them in logic-based agent-
oriented programming languages. Therefore, the semantics
of a goal type will be explained from an operational per-
spective. Note that the operational semantics perspective
can directly be used to design a programming language that
allows the implementation of the goal types. Unfortunately,
the space limitation does not allow us to present the formal
operational semantics of the goal types. Finally, we will dis-
cuss some properties of the goal types and show that they
have certain desirable and expected properties.

The basic idea in this paper is that agents can have a set
of goals based on which planning rules can be selected and
applied to generate plans for the goals. In our framework,
a planning rule indicates that a specific plan can achieve a
certain goal. The application of a planning rule will add the
plan of the planning rule to the plan base. Although it is
possible to use a specific kind of planning rule for each goal
type, we take a different approach and assume one kind of
planning rule for every goal type. The advantage of such
an approach is that it can reduce the number of rules which
a programmer has to specify; a planning rule for a certain
goal might be used in case this goal is an achieve goal or
a maintain goal. As noted, the goals we consider in this
paper are declarative goals, i.e., a goal can be represented
as a logical formula denoting a desired state. An important
advantage of declarative goals is that they allow reasoning,
facilitating the generation of subgoals. This is especially
advantageous in the context of the planning rules.

Consider, for example, “FC and CC” as the goal of an
agent, where FC stands for having-fuel-in-car and CC for
having-clean-car. We consider logical consequences of this
goal as its subgoals, i.e., “FC” and “CC” are in this case the
subgoals. The idea is, that for this complex goal “FC and

CC”, an agent programmer can implement either one single
planning rule or two planning rules, i.e., one for each sub-
goal. The latter is however more generic, as the two rules
can also be applied if the agent has, e.g., the goal CC, rather
than the complex goal. The mechanism of deriving subgoals
of a complex goal can be realized through logical inference
mechanisms [7].

2. PERFORM GOALS
The idea of the perform goal is to allow the generation

of a set of plans without demanding that the plans must

reach the states denoted by the goals. The attitude of an
agent toward a perform goal is thus to generate plans after
which the goal will be dropped. For example, consider “FC
and CC” as a perform goal of an agent that can generate the
plan to refuel at the gas station gs1 and the plan to clean
the car in the car wash cw1. In this case, the agent will
generate both plans after which it drops the goal entirely,
regardless of the effect of those plans. However, if the agent
does not have a planning rule to clean the car and can only
generate the plan to refuel, then it will only generate the
refuel plan after which the entire goal is dropped. This idea
to drop a goal when plans are generated is practical, and
similar ideas have been implemented in most agent-oriented
programming languages, although sometimes under different
names. For example, in JACK and Jason this type of goal
is known as achieve goal.

As noted, in our approach the perform goals are repre-
sented as logical formulas. If the logical and declarative
nature of the perform goals is not essential, then the ques-
tion arises why we should not use labels instead of logical
formulas to generate a set of plans. The reason to use logi-
cal formulas is to allow reasoning about the goals to decide
which planning rule to apply. In our approach, the planning
rules, which can be applied for all goal types, can be applied
only if they are relevant, i.e., if the goal in their heads is log-
ically entailed by an agent’s goal. Using labels to represent
perform goals requires different types of planning rules and
a different procedure for rule application. Moreover, using
logical formulas to represent a goal, in general, allows us to
design planning rules for atomic or simple goals such that
plans for more complex goals can be generated by means of
plans for subgoals.

The perform goal can be enriched with a redo flag which
may be true or false, as is also proposed in Jadex [1]. If
the flag is false, then the perform goal will be removed after
examining and applying all relevant planning rules. The
removal of the perform goals is therefore independent of
whether they are achieved or not. However, if the flag is
true, then the perform goal remains in the goal base such
that the applicable planning rules can be applied once again.
This ensures that the plans associated with the perform goal
will be generated and performed again. For example, con-
sider a vacuum cleaner that has to clean a number of rooms
repeatedly without the ability to check if a room is clean.
The perform goal with a true flag can be used to model
this type of behaviour. A consequence of this view is that
an agent with a perform goal to which a false redo flag is
assigned, can drop the goal if the relevant planning rules
have tautologies as belief conditions. This is because in our
framework a planning rule has a belief condition. A planning
rule can only be applied if its belief condition holds.

3. ACHIEVE GOALS
The idea of an achieve goal is to reach the state denoted

by it. The emphasis here is that the goal will not be dropped
until the state denoted by it is achieved. This is in contrast
with perform goals, which can be dropped once the plans
generated for it have been executed, regardless of whether
the perform goal was achieved. As for perform goals, an
agent with an achieve goal will apply relevant planning rules
to generate and execute plans. If the achieve goal is not
reached after the execution of these plans however, it ap-
plies the planning rules again, hopefully generating different

plans, since the circumstances might have changed. Once
the achieve goal is reached, it will stop generating and ex-
ecuting plans for this goal. For example, consider an agent
with the achieve goal FC and two planning rules to generate
either the plan to refuel at the gas station gs1 or the plan to
refuel at the gas station gs2. This agent will apply one rule
and execute the plan to refuel at gs1. If the agent succeeds
to refuel, the achieve goal will be dropped. Otherwise, it
will apply the second rule to generate the plan to refuel at
gs2. If both plans do not achieve the goal, then it will apply
the rules again.

As suggested in [8] and implemented in Jadex, we assign
a failure condition to each achieve goal to indicate when the
agent should stop trying to achieve the goal and thus drop
the goal. For example, no-fuel-at-gs1-and-gs2 can be
the failure condition of the achieve goal FC. A similar kind
of goal type is introduced in Jadex and in JACK, though
in JACK under the name insist goal. An achieve goal can
thus be dropped under two circumstances: either if its fail-
ure condition becomes true, or if the state denoted by it is
reached. In both cases, besides the removal of the achieve
goal, the plans associated with it will be removed. A plan-
ning rule can be applied if the goal in the head of the rule
is not achieved yet, if there is no plan for the same subgoal
in the plan base, and if the failure condition does not hold.

Following this view, a goal with an achieve type and an
impossible failure condition will not be removed from the
goal base unless the state denoted by the goal is reached.
Moreover, a goal with an achieve type such that the state
denoted by the goal cannot be reached and its failure con-
dition never becomes true can be replaced by the same goal
with the perform type and a true redo flag. In both cases,
relevant planning rules will be applied repeatedly.

4. MAINTAIN GOALS
The idea of a maintain goal is to ensure that a state holds

and continues to hold. Plans should be generated and exe-
cuted if the state denoted by the maintain goal is threatened
not to hold, rather than waiting and taking action once the
state does not hold. The condition under which the main-
tain goal is threatened not to hold will be called the maintain
condition. The agent starts to generate and execute plans
when the maintain condition becomes true. This triggering
condition can be considered as an alarm to act in order to
ensure the maintenance of the state denoted by the main-
tain goal. It should be noted that there might be no logical
relation between the maintain goals and their triggering con-
ditions. This relation depends usually on the application do-
main. However, we assume that in all agent configurations,
if the triggering condition does not hold, then the maintain
goal holds. Note that a maintain goal cannot be removed
from the goal base.

For example, consider an agent with FC as a maintain
goal. This means that the agent wants to maintain having
a fueled car. In such a case, the maintain condition is the
illuminated lamp warning of a shortage of fuel. The agent
should in this case generate and execute a refuel plan. If the
maintain condition continues to hold after the execution of
the plan, because for example the tank station had no fuel,
the agent may try to generate and execute another plan,
e.g., to go to another tank station to refuel. If all plans are
generated and the maintain condition still holds, then there
are two options. The agent can either stop generating and

executing plans since it has tried all plans, or it can continue
to apply the planning rules once again, hopefully generating
new plans this time. In order to allow both options, we add
a retry flag, like in Jadex [1], to the maintain goals. If the
flag is true, the agent will try to re-apply planning rules,
otherwise it does not. Note that if the maintain condition
holds, the state denoted by the maintain goal can either hold
or not. A similar idea of maintain goals is implemented in
Jadex and JACK, although in JACK the idea is that the
maintain condition should hold during the execution of its
related task. As a consequence, a goal with the maintain
type for which the maintain condition is a tautology and the
retry flag is set to false can be replaced by the same goal
with the perform type having a false flag. In both cases, the
relevant planning rules will be applied once.

5. CONCLUSION
In this paper, we have discussed three types of declarative

goals for which we argued that they should be integrated
in logic-based agent-oriented programming languages. We
have already designed a simple agent-oriented programming
language that allows the implementation of these goal types.
This language uses a propositional language to represent the
agent’s goals and beliefs. The formal semantics of the pro-
gramming language, and thus of the goal types, are defined
and it is shown that this semantics has the properties as
we have discussed in this paper. Unfortunately, because of
the space limitation we could not present the details in this
paper.

We plan to extend the logic-based agent-oriented pro-
gramming language using a (computational) subset of the
first-order predicate language instead of using a proposi-
tional language. In this way, declarative goals become more
expressive. We also have a plan to start implementing an
interpreter for an extended version of the programming lan-
guage which we hope to be available soon.

6. REFERENCES
[1] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah

Seghrouchni. Multi-Agent Programming: Languages,
Platforms and Applications. Springer, Berlin, 2005.

[2] C. Boutilier. Toward a logic for qualitative decision
theory. In Proceedings of the KR’94, pages 75–86, 1994.

[3] P. R. Cohen and H. J. Levesque. Intention is choice
with commitment. Artificial Intelligence, 42, 1990.

[4] M. Dastani and L. van der Torre. Programming
BOID-Plan agents: deliberating about conflicts among
defeasible mental attitudes and plans. In Proc. of
AAMAS’04, pages 706–713, New York, USA, 2004.

[5] J.-J. Ch. Meyer, W. van der Hoek, and B. van Linder.
A logical approach to the dynamics of commitments.
Arificial Intelligence, 113:1–40, 1999.

[6] A. S. Rao and M. P. Georgeff. Modeling rational agents
within a BDI-architecture. In Proc. of KR’91, 1991.

[7] M. B. van Riemsdijk, M. Dastani, F. Dignum, and
J.-J. Ch. Meyer. Dynamics of declarative goals in agent
programming. In Proc. of DALT’04, 2004.

[8] M. Winikoff, L. Padgham, J. Harland, and
J. Thangarajah. Declarative and procedural goals in
intelligent agent systems. In Proc. of KR’02, 2002.

[9] M. Woolridge. Introduction to Multiagent Systems.
John Wiley & Sons, Inc., 2002.

