
Subgoal Semantics in Agent Programming

M. Birna van Riemsdijk Mehdi Dastani John-Jules Ch. Meyer

ICS, Utrecht University, The Netherlands
{birna, mehdi, jj}@cs.uu.nl

Abstract. This paper investigates the notion of subgoals as used in
plans in cognitive agent programming languages. These subgoals form
an abstract representation of more concrete courses of action or plans.
Subgoals can have a procedural interpretation (directly linked to a con-
crete plan) or a declarative one (the state to be reached as represented
by the subgoal is taken into account). We propose a formal semantics
for subgoals that interprets these declaratively, and study the relation
between this semantics and the procedural subgoal semantics of the cog-
nitive agent programming language 3APL. We prove that subgoals of
3APL can be programmed to behave declaratively, although the seman-
tics is defined procedurally.

1 Introduction

This paper presents an observation about the cognitive agent programming lan-
guage 3APL [8]. The observation is related to the notion of a goal. This is
an important concept in cognitive agent programming languages. Goals are in-
troduced to specify an agent’s proactive behavior. Many languages and plat-
forms have been proposed to implement (represent and process) an agent’s goals
[11,8,15,4,16,3,14,2]. The way in which goals are dealt with varies from language
to language. In some programming languages goals are interpreted in a proce-
dural way as processes that need to be executed. In others goals are interpreted
in a declarative way as states to be reached. Yet other languages combine both
aspects. Procedural goals are also often called plans, which is a terminology we
will also use in this paper.

While the procedural interpretation might arguably be considered more stan-
dard, the declarative interpretation of goals also has several advantages. Most
importantly in this context, is the fact that declarative goals provide for the pos-
sibility to decouple plan execution (i.e., the execution of a procedural goal) and
goal achievement (i.e., the achievement of a declarative goal) [16]. If a plan fails,
the goal that was to be achieved by the plan remains a goal of the agent. The
agent can then for example select a different plan or wait for the circumstances
to change for the better.1

A common usage of goals, and the one we are concerned with in this paper,
is that of subgoals as occurring in the plans of the agent.2 These plans are often
1 See e.g. [13] for a more elaborate discussion on the advantages of declarative goals.
2 A usage of the term subgoal that we do not consider in this paper is usage in the

logical sense, where for example p is considered to be a subgoal of the goal p∧ q [13].

built from basic actions which can be executed directly, and subgoals which can
be viewed as representing a course of action in a more abstract way. An agent
can for example have the plan to go to the bus stop, to take the bus into town,3

and then to achieve the goal of buying a birthday cake. This goal of buying a
birthday cake will have to be fulfilled by selecting a more concrete plan of for
example which shop to go to, etc.

Just as goals in general, subgoals of plans can also be categorized as either
procedural or declarative. In the procedural interpretation, subgoals are linked
directly to plans. Their only role is the abstract representation of a more concrete
plan. In the declarative interpretation, the fact of whether the state that is
represented by the subgoal is achieved (for example through the execution of a
corresponding concrete plan), is somehow taken into account. In the birthday
cake example, this means that it is important whether the execution of the
concrete plan of which shop to go to etc., has resulted in a state in which the
birthday cake is actually bought. If it turns out that the goal of buying the cake is
not reached after having gone to the specific shop, the agent could select another
plan to try a different shop. A declarative interpretation of subgoals could yield
more flexible agent behavior, because of the decoupling between plan execution
and goal achievement.

We thus argue that it is important to be able to express a declarative notion
of subgoals in a cognitive agent programming language. This paper aims to
investigate whether these declarative subgoals can be expressed in the language
3APL. In order to do this, we first make precise what we mean exactly by
declarative subgoals, by defining a simple formal semantics for subgoals that
interprets these in a declarative way (sections 2 and 3). We then compare this
semantics with the semantics of 3APL (section 4). We show that 3APL has a
notion of subgoal, but it is a procedural kind of subgoal. It turns out, however,
that although subgoals of 3APL are defined to have a procedural semantics,
a 3APL agent can nevertheless be programmed to have these subgoals behave
declaratively. This observation (and a formal proof that it is correct) is the main
contribution of this paper.

The 3APL language family [8,15,4] is an example of a set of languages in
which subgoals are interpreted procedurally. Languages and platforms from the
AgentSpeak family [9,5,11,1,6] also have a procedural view on subgoals, although
the mechanism differs from that of 3APL. We conjecture that a similar result
for an implementation of declarative subgoals can be obtained for AgentSpeak,
although this is left for future research. An example of a declarative view on
subgoals is the high-level language of Winikoff et al. [16]. The declarative se-
mantics we propose in section 3 is comparable with that of [16], although [16]
has a much more elaborate plan language. An elaborate plan language is how-
ever not needed for the purpose of comparison with the procedural subgoals of
3APL. Establishing a formal relation with the work of Winikoff et al. is left for

3 Assuming that both going to the bus stop and taking the bus into town are actions
that can be executed directly.

future research. The Jadex platform [2] incorporates declarative and procedural
interpretations, although the platform does not have a formal semantics.

2 Syntax

In this section and the next, we present the syntax and semantics of a simple
programming language with plans containing subgoals that have a declarative
interpretation. Throughout this paper, we assume a language of propositional
logic L with negation and conjunction and based on a set of atoms Atom. The
symbol |= will be used to denote the standard entailment relation for L. Be-
low, we define the language of plans. A plan is a sequence of basic actions and
statements of the form achieve(p) (subgoals), where p ∈ Atom. Informally, basic
actions can change the beliefs of an agent if executed, and a statement of the
form achieve(p) means that p should be achieved, before the agent can continue
the execution of the rest of the plan.

Definition 1 (plans) Let BasicAction with typical element a be the set of basic
actions and let p ∈ Atom. The set of plans Plan with typical element π is then
defined as follows.

π ::= a | achieve(p) | π1;π2

We use ε to denote the empty plan and identify ε;π and π; ε with π.

We use a simple plan language, focused on subgoals. The language could however
be extended to include, e.g., test and non-deterministic choice. Also, the subgoals
could be extended to arbitrary formulas, rather than just atoms. For atomic
subgoals however, a correspondence with the procedural goals of 3APL can be
established. For arbitrary subgoals this cannot be done in the general case, as
we conjecture.

In order to define the plans that can be used for achieving the subgoals, we
use so-called plan generation rules. Informally, a plan generation rule p ⇒ π
specifies that the plan π can be selected to try to achieve the subgoal p. One
could add a condition on the beliefs of the agent to the rule, specifying that the
rule can only be applied if the agent has a certain belief. We however leave this
out for reasons of simplicity.

Definition 2 (plan generation rule) The set of plan generation rules RPG is
defined as follows: RPG = {p ⇒ π | p ∈ Atom, π ∈ Plan}.

An agent in this paper is a tuple, consisting of an initial belief base (a consistent
set of formulas from L representing what the agent believes about the world), an
initial plan, a set of plan generation rules and a belief update function T . This
function T , taking a basic action and a belief base and yielding a new belief base,
is used to define how belief bases are updated if a basic action is executed. The
function is undefined for a basic action and belief base, if the basic action cannot
be executed on this belief base. This function is used for technical convenience
and is not further specified, as it is not needed for the purpose of this paper.

Definition 3 (subgoal achievement agent) Let Σ = {σ | σ ⊆ L, σ 6|= ⊥} be
the set of belief bases. A subgoal achievement agent, typically denoted by A, is
a tuple 〈σ, π,PG, T 〉 where σ ∈ Σ is the belief base, π ∈ Plan is the initial plan,
and PG ⊆ RPG is a set of plan generation rules. T is a partial function of type
(BasicAction×Σ) → Σ.

When defining the semantics of plan execution, we use the notion of a configura-
tion. A configuration consists of a belief base and a plan, which are the elements
of an agent that can change during its execution.

Definition 4 (configuration) A configuration is a pair 〈σ, π〉 where σ ∈ Σ and
π ∈ Plan.

3 Semantics

In this section, we provide a semantics for the execution of plans containing
subgoals, that interprets these declaratively. We define the semantics using a
transition system [10]. A transition system for a programming language con-
sists of a set of axioms and derivation rules for deriving transitions for this
language. A transition is a transformation of one configuration into another and
it corresponds to a single computation step. Let A = 〈σ, π,PG, T 〉 be a subgoal
achievement agent. The transition system TransA for this agent is then given by
the definitions below.

A basic action at the head of a plan can be executed in a configuration if
the function T is defined for this action and the belief base in the configuration.
The execution results in a change of belief base as specified through T , and the
action is removed from the plan.

Definition 5 (action execution) Let a ∈ BasicAction.

T (a, σ) = σ′

〈σ, a;π〉 → 〈σ′, π〉

The following two definitions specify the possible transitions in case a statement
of the form achieve(p) is the first “action” of the plan. Both transitions rely
upon a declarative interpretation of p, as it is checked whether p is believed to
be reached. Definition 6 gives the transition in case p is achieved. The statement
achieve(p) is then removed from the plan.

Definition 6 (subgoal achievement)

σ |= p

〈σ, achieve(p);π〉 → 〈σ, π〉

The next transition rule specifies the transition for an achieve(p) statement in
case p is not achieved. In this case, a plan should be generated in order to achieve
p. This can be done if there is a plan generation rule of the form p ⇒ π′ in the
rule base of the agent. The transition that can then be derived, specifies that
the plan π′ is placed at the head of the plan.

Definition 7 (plan generation) Let p ⇒ π′ ∈ PG.

σ 6|= p

〈σ, achieve(p);π〉 → 〈σ, π′; achieve(p);π〉

It is important to note that the statement achieve(p) is not removed from the
plan if a plan generation rule is applied. If π′ is executed and p is still not
derivable from the agent’s beliefs (p is not reached), a different rule with p as
the head could be applied (if it exists), to achieve p by other means. In any case,
a statement achieve(p) will not be removed from the plan if p is not reached.

Given the transition system TransA for subgoal achievement agent A as spec-
ified above, one can construct computation runs for A. A computation run is a
sequence of configurations, such that each consecutive configuration can be ob-
tained from the previous through the application of a transition rule. The initial
configuration of the computation run is formed by the initial belief base and
plan of A. A successful computation run is a run of which the final configuration
has an empty plan. The semantics of A is then defined as the set of successful
computation runs of A.

Definition 8 (semantics of a subgoal achievement agent) Let
A = 〈σ0, π0,PG, T 〉 be a subgoal achievement agent. Let a computation run
be a sequence of configurations. A successful computation run of agent A is a
computation run 〈σ0, π0〉, . . . , 〈σn, ε〉, such that ∀1≤i≤n : 〈σi−1, πi−1〉 → 〈σi, πi〉
is a transition that can be derived in TransA. The semantics of A is the set
{θ | θ is a successful computation run of A}.

A property of the semantics that reflects that subgoals are interpreted declara-
tively, is the following: if a plan of the form achieve(p) is the initial plan of the
agent, then it holds for any successful computation run of this agent ending in
some belief base σn, that p follows from σn.

Proposition 1 Let A = 〈σ0, π0,PG, T 〉 be a subgoal achievement agent, and
let θ = 〈σ0, π0〉, . . . , 〈σn, ε〉 be a successful computation run of A. If π0 is of the
form achieve(p), we have that σn |= p.

At this point we remark that the semantics of our achieve statement is closely
related to the “bringing it about” operator as introduced by Segerberg [12] in
the area of philosophical logic. His operator δ satisfies the property [δp]p (ex-
pressed in a kind of dynamic logic), which would in our notation be the property
[achieve(p)]p, stating that p always holds after the “execution” of achieve(p).
This is a reformulation of the above proposition in dynamic logic. A formal study
of the relation of our work with that of Segerberg is left for future research.

4 Comparison with 3APL

4.1 Syntax and Semantics

In this section, we present a propositional and otherwise slightly simplified ver-
sion of 3APL [8]. We introduce these simplification for reasons of clarity and

simplicity, but they are not fundamental. 3APL is similar to the language as
presented in section 2. A 3APL agent has a belief base (set of formulas from
L), a plan, a set of so-called plan revision rules for manipulating its plan, and a
belief update function T .

The language of plans of 3APL agents is similar to the plan language of
definition 1. A 3APL plan however does not contain achieve statements. The
3APL counterpart of these subgoals is called an achievement goal [8], and was
dubbed abstract plan in later papers [15,4]. An abstract plan is basically a string,
just as a basic action is a string (but as we will see, abstract plans have a different
semantics). For the comparison with subgoal achievement agents however, we
take the set of abstract plans as consisting not of an arbitrary set of strings, but
of exactly the atoms of L. Further, we add the possibility to test whether an
atom follows from the belief base or not, and we add non-deterministic choice.

Definition 9 (3APL plans) Let BasicAction with typical element a be the set
of basic actions and let AbstractPlan with typical element p be the set of abstract
plans, such that AbstractPlan = Atom and AbstractPlan ∩ BasicAction = ∅. The
set of 3APL plans Plan′ with typical element π is then defined as follows.

π ::= a | p | p? | ¬p? | π1;π2 | π1 + π2

We use ε to denote the empty plan and identify ε;π and π; ε with π.

Abstract plans obtain their meaning through the plan revision rules of the 3APL
agent. These rules have a plan as the head and as the body. During execution of
a plan, a plan revision rule can be used to replace a prefix of the plan, which is
identical to the head of the rule, by the plan in the body. If the agent for example
executes a plan a; b; c and has a plan revision rule a; b ⇒ d, it can apply this
rule, yielding the plan d; c. Here we do not use the general plan revision rules
that can have a composed plan as the head. We only use rules with an abstract
plan as the head and a plan as the body.

Definition 10 (plan revision rule) The set of plan revision rules RPR is defined
as follows: RPR = {p ⇒ π | p ∈ AbstractPlan, π ∈ Plan′}.

Plan revision rules thus very much resemble the plan generation rules of defi-
nition 2 (syntactically, that is), but the body is a 3APL plan, i.e., a plan from
Plan′. As we will explain shortly, the semantics of plan revision rules however
differs from that of plan generation rules in important ways.

The semantics of 3APL agents is defined by means of a transition system, as
given below. The first transition rule is used to derive a transition for action ex-
ecution, and is similar to the transition rule of this kind for subgoal achievement
agents (definition 5). The second transition specifies the application of a plan
revision rule of the form p ⇒ π′ to a plan of the form p;π. If the rule is applied,
the abstract plan p is replaced by the body of the rule, yielding the plan π′;π.
It is important to note that it is not tested whether p holds, and further that p
is replaced by π′, rather than yielding the plan π′; p;π.

The transition rules for test and non-deterministic choice are fairly standard.
Note however that a test for ¬p succeeds if it is not the case that p follows from
the belief base, rather than having this test succeed if ¬p does follow. The reason
for this choice should become clear in the sequel. Further, some transitions are
labelled with i, which we will also need in the sequel.

Definition 11 (3APL transition system) A 3APL agent A′ is a tuple
〈σ, π,PR, T 〉, where σ ∈ Σ, π ∈ Plan′, PR ⊆ RPR and T as in definition 3.
The transition system TransA′ for this 3APL agent is then defined as follows,
where a ∈ BasicAction and p ⇒ π′ ∈ PR.

1)
T (a, σ) = σ′

〈σ, a;π〉 → 〈σ′, π〉
2)

〈σ, p;π〉 →i 〈σ, π′;π〉

3)
σ |= p

〈σ, p?; π〉 →i 〈σ, π〉
4)

σ 6|= p

〈σ,¬p?; π〉 →i 〈σ, π〉

5)
〈σ, π1〉 → 〈σ′, π′1〉

〈σ, (π1 + π2);π〉 → 〈σ′, π′1;π〉
6)

〈σ, π2〉 → 〈σ′, π′2〉
〈σ, (π1 + π2);π〉 → 〈σ′, π′2;π〉

Before we move on to formally investigating the relation between 3APL and
subgoal achievement agents, we elaborate on the notion of an abstract plan or
achievement goal as used in 3APL. Hindriks et al. [8] remark the following with
respect to achievement goals:

Achievement goals are atomic propositions from the logical language L.
The use of atoms as achievement goals, however, is very different from
the use of atoms as beliefs. Whereas in the latter case atoms are used to
represent and therefore are of a declarative nature, in the former case
they serve as an abstraction mechanism like procedures in imperative
programming and have a procedural meaning.

Hindriks et al. thus take the set of achievement goals/abstract plans to be the
atoms from L (a first order language in their case). Then they remark that
although achievement goals are atoms, they do not have a declarative interpre-
tation. The fact that an achievement goal is an atom and could thus in principle
be tested for example against the belief base, is not used in defining its seman-
tics. The language of achievement goals could thus have been any language of
strings (which is in fact the approach of later papers [15,4]). Hindriks et al. [8]
however do remark the following with respect to a possible assertional reading
of achievement goals:4

4 As a first order language is used in [8], the original text states p(
→
t) instead of p.

This is a predicate name parameterized with a sequence of terms.

Apart from the procedural reading of these goals, however, an assertional
reading is also possible. An achievement goal p would then be interpreted
as specifying a goal to achieve a state of affairs such that p. We think
such a reading is valid in case the plans for achieving an achievement
goal p actually do establish p.

The “plans for achieving an achievement goal p” are the plans as specified
through the plan revision rules, i.e., a plan revision rule p ⇒ π specifies that π is
a plan for achieving p. According to Hindriks et al., this assertional or declara-
tive reading of achievement goals is thus only valid under the strong requirement
that π actually reaches p. This is thus in contrast with the semantics for sub-
goals as we have introduced, as these subgoals are by definition interpreted in a
declarative manner.

4.2 3APL and Subgoals

We will show in this section that, although the semantics of plan generation
rules and plan revision rules differ in important ways, it is possible to define a
mapping from an arbitrary subgoal achievement agent to a 3APL agent, such
that the 3APL agent “simulates” the behavior of the subgoal achievement agent.
In the sequel, the plan πs denotes π in which all occurrences of statement of the
form achieve(p) are replaced with p.

We first remark that the naive translation, in which a plan generation rule
p ⇒ π is translated to a plan revision rule p ⇒ πs, does not do the trick. The
reason that this translation does not work, is precisely the difference of interpre-
tation between achieve statements and abstract plans, i.e., declarative versus
procedural. If an abstract plan p occurs at the head of a plan p;π, the plan revi-
sion rule p ⇒ π′ can be applied, yielding π′;π. After the execution of π′, the plan
π will be executed, regardless of whether p is actually achieved at that point. In
the case of a plan achieve(p);π of a subgoal achievement agent, the plan genera-
tion rule can be applied (if p is not believed), yielding the plan π′; achieve(p);π.
After the execution of π′, the agent will test whether p is achieved. If it is
achieved, it will continue with the execution of π. If however p is not achieved,
it will apply a rule once more to generate a plan to achieve p. It is nevertheless
important to mention that if it is the case that π′ actually establishes p (and
this holds for all plan generation rules), it can be proven that the 3APL agent
as obtained through this naive translation, simulates the subgoal achievement
agent. For reasons of space, we however omit this proof.

Translation We now turn to the translation of a subgoal achievement agent into
a 3APL agent, for which it holds that the 3APL agent as obtained in this way,
simulates the subgoal achievement agent. As would be expected, the important
part of the translation is the mapping of plan generation rules onto plan revision
rules.

Definition 12 (transformation of subgoal achievement agent into 3APL agent)
Let s : Plan → Plan′ be a function that takes a plan π of a subgoal achievement

agent (definition 1), and yields this plan in which all statements of the form
achieve(p) are replaced by p, thus yielding a plan in Plan′ (definition 9). We will
in the sequel use the notation πs for s(π).

The function t : RPG → RPR, taking a plan generation rule and yielding a
corresponding plan revision rule, is then defined as follows.

t(p ⇒ π) = p ⇒ ((¬p?; πs; p) + p?)

The function t is lifted to sets of plan generation rules in the obvious way.
Let A = 〈σ, π,PG, T 〉 be a subgoal achievement agent. The 3APL agent

corresponding with A is then 〈σ, πs, t(PG), T 〉. Finally, we define a function τ
that takes a configuration from the transition system of A of the form 〈σ, π〉,
and yields the configuration 〈σ, πs〉.

Informally, this mapping can be used to obtain a 3APL agent that simulates
a subgoal achievement agent, because of the following. Consider a 3APL agent
with the plan p;π, and the plan revision rule p ⇒ ((¬p?; π′s; p)+ p?) as obtained
from the plan generation rule p ⇒ π′. This plan revision rule can then be ap-
plied to this plan (regardless of whether p is believed or not), yielding the plan
((¬p?; π′s; p) + p?); π.

Now assume that p is believed. In that case, the test p? succeeds and ¬p?
fails, which means that the plan in the next configuration will have to be π. This
thus implements that p is skipped if believed to be achieved, which corresponds
with the semantics of the statement achieve(p).

Now assume that p is not believed. In that case, the plan in the next configu-
ration will have to be π′s; p;π. This corresponds with the semantics of achieve(p)
in case p is not believed: the plan π′ is placed at the head of the plan, not re-
placing the achieve(p) statement. After the execution of π′s, we are left with the
plan p;π. The plan revision rule p ⇒ ((¬p?; π′s; p) + p?) (or a different rule with
p as the head) will then be applied again. If p is achieved, the agent will continue
with the execution of π as explained. If p is not achieved, the mechanism as just
described will be set in motion. All this thus corresponds with the behavior of
achieve statements in the subgoal achievement agent.

Bisimulation Theorem We now move on to formally establishing this cor-
respondence. For this, we introduce the notion of a translation bisimulation as
used in [7, Chapter 8] (slightly adapted). Informally, a translation bisimulation
translates an agent from a so-called source language to an agent from the tar-
get language that “can do the same things”. In our case, we translate subgoal
achievement agents to 3APL agents.

We have to show that for each transition in the transition system for a subgoal
achievement agent A, there is a corresponding transition in the transition system
for the corresponding 3APL agent A′. This “transition” in TransA′ , actually does
not have to be a single transition, but may consist of a number of so-called idle
transitions, and one non-idle transition. The idle transitions in TransA′ are those
labelled with i. Intuitively, these idle transitions form implementation details of

A′, and do not have to be matched by a transition of A.5 In the sequel, the
transition relations of A and A′ will respectively be denoted by →A and →A′

,
and →A′

i denotes the restriction of A′ to idle transitions.
The new transition relation that abstracts from idle steps is denoted by

→A′

∗ . It only exists for TransA′ , as TransA does not contain idle steps. It is
defined as follows, where dj with 1 ≤ j ≤ n are configurations derivable in
TransA′ : d1 →A′

∗ dn iff there is a (possibly empty) series of idle transitions
d1 →A′

i d2 →A′

i . . . →A′

i dn−1 and a single non-idle transition dn−1 →A′
dn.

If we can show that for each transition in the transition system for a subgoal
achievement agent A, there is a corresponding transition in the transition system
for the corresponding 3APL agent A′, we will have established that A′ generates
at least the behavior of A. In order to establish that A′ does not generate any
(alternative) behavior not having a counterpart in A, we also have to show that
any non-idle transition of A′ corresponds with a transition of A. A transition
c1 →A c2 corresponds with a transition d1 →A′

d2 or d1 →∗ d2 iff d1 = τ(c1)
and d2 = τ(c2).

The result can only be proven if we assume that at least one plan generation
rule of the form p ⇒ π exists for every p ∈ Atom. If this would not be the case,
there would be a mismatch: a statement achieve(p) could be removed from a
plan if p holds (without there being a plan generation rule for p), but an abstract
plan p can only be “removed” if first a plan revision rule is applied.

Theorem 1 (translation bisimulation) Let A = 〈σ, π,PG, T 〉 be a subgoal
achievement agent such that for each p ∈ Atom there is at least one rule of the
form p ⇒ π in PG, and let A′ = 〈σ, πs, t(PG), T 〉 be the corresponding 3APL
agent. We then have that for every configuration c1 of A, d1 = τ(c1) implies the
following:

1. If c1 →A c2, then d1 →A′

∗ d2, such that d2 = τ(c2).
2. If d1 →A′

d2, then for some c2, c1 →A c2, such that d2 = τ(c2).

Proof: 1. We have to show that for every transition c1 →A c2 in TransA, there
is a corresponding (sequence of) transition(s) d1 →A′

∗ d2 in TransA′ such that
d2 = τ(c2).

Let 〈σ, a;π〉 →A 〈σ′, π〉 be a transition as derived through the transition
rule of definition 5. We then have that the transition 〈σ, a;πs〉 →A′ 〈σ′, πs〉 can
be derived in TransA′ , by means of the first transition rule. We also have that
〈σ′, πs〉 = τ(〈σ′, π〉), yielding the desired result for action execution transitions.

Let 〈σ, achieve(p);π〉 →A 〈σ, π〉 be a transition as derived through the tran-
sition rule of definition 6, which means that σ |= p has to hold. Let p ⇒ π′ be a
5 The choice of idle transitions for 3APL might seem strange, as the application of a

plan revision rule is an idle transition, whereas the non-deterministic choice is not,
although the latter might seem an implementation detail, rather than the former.
The reason is, that the application of a plan revision rule cannot be matched directly
with a transition of a goal achievement agent, whereas the particular usage of non-
deterministic choice, as specified through the translation, can.

plan generation rule of A (a rule of this form has to exist by assumption). We
then have, because t(p ⇒ π′) is a plan revision rule of A′, that the transitions

〈σ, p;πs〉 →A′

i 〈σ, ((¬p?; π′s; p) + p?); πs)〉 →A′
〈σ, πs〉

can be derived in TransA′ , by means of the transition rule for plan revision and
those for test and non-deterministic choice. We also have that 〈σ, πs〉 = τ(〈σ, π〉),
yielding the desired result for subgoal achievement transitions.

Let 〈σ, achieve(p);π〉 →A 〈σ, π′; achieve(p);π〉 be a transition as derived
through the transition rule of definition 7, which means that σ 6|= p has to hold,
and p ⇒ π′ has to be a plan generation rule in PG. We then have that the
transitions

〈σ, p;πs〉 →A′

i 〈σ, ((¬p?; π′s; p) + p?);πs)〉 →A′
〈σ, π′s; p;πs〉

can be derived in TransA′ , by means of the transition rule for plan revision and
those for test and non-deterministic choice. We also have that 〈σ, π′s; p;πs〉 =
τ(〈σ, π′; achieve(p);π〉), yielding the desired result for plan generation transi-
tions. We have shown the desired result for every transition c1 →A c2, thereby
proving 1. For reasons of space, we omit the proof of 2. 2

5 Conclusion

In this paper, we have studied the relation between declarative and procedural
interpretations of subgoals as occurring in the plans of cognitive agents. In par-
ticular, we have compared our definition of declaratively interpreted subgoals
with the semantics of the procedurally interpreted achievement goals in the lan-
guage 3APL. As we have shown, it is possible to obtain a 3APL agent that
simulates the behavior of the subgoal achievement agent, by translating plan
generation rules to plan revision rules in a specific way.

Future research will address the relation between our subgoal achievement
agents and AgentSpeak(L), and with the work of Winikoff et al. [16]. Also, we
will investigate other semantics for subgoals, e.g., semantics making use of a goal
base.

To the best of our knowledge, this is the first time that a correspondence
between declarative and procedural subgoals is investigated and established. We
believe that the investigations as described in this paper shed some light on the
expressiveness of languages with procedural goals, and that this is an important
piece of the puzzle of the incorporation of declarative goals in cognitive agent
programming languages.

References

1. R. H. Bordini and A. F. Moreira. Proving the asymmetry thesis prin-
ciples for a BDI agent-oriented programming language. Electronic Notes
in Theoretical Computer Science, 70(5), 2002. http://www.elsevier.nl/gej-
ng/31/29/23/125/23/29/70.5.008.pdf.

2. L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal representation for
BDI agent systems. In Programming multiagent systems, second international
workshop (ProMAS’04), volume 3346 of LNAI, pages 44–65. Springer, Berlin, 2005.

3. M. Dastani and L. van der Torre. Programming BOID-Plan agents: deliberating
about conflicts among defeasible mental attitudes and plans. In Proceedings of the
Third Conference on Autonomous Agents and Multi-agent Systems (AAMAS’04),
pages 706–713, New York, USA, 2004.

4. M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. Ch. Meyer. A programming
language for cognitive agents: goal directed 3APL. In Programming multiagent
systems, first international workshop (ProMAS’03), volume 3067 of LNAI, pages
111–130. Springer, Berlin, 2004.

5. M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of
dmars. In ATAL ’97: Proceedings of the 4th International Workshop on Intelligent
Agents IV, Agent Theories, Architectures, and Languages, pages 155–176, London,
UK, 1998. Springer-Verlag.

6. R. Evertsz, M. Fletcher, R. Jones, J. Jarvis, J. Brusey, and S. Dance. Implementing
industrial multi-agent systems using JACK�. In Proceedings of the first interna-
tional workshop on programming multiagent systems (ProMAS’03), volume 3067
of LNAI, pages 18–49. Springer, Berlin, 2004.

7. K. V. Hindriks. Agent programming languages - programming with mental models.
PhD thesis, 2001.

8. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming in 3APL. Int. J. of Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

9. F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time reason-
ing and system control. IEEE Expert: Intelligent Systems and Their Applications,
7(6):34–44, 1992.

10. G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

11. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In W. van der Velde and J. Perram, editors, Agents Breaking Away (LNAI 1038),
pages 42–55. Springer-Verlag, 1996.

12. K. Segerberg. Bringing it about. Journal of Philosophical Logic, 18:327–347, 1989.
13. M. B. van Riemsdijk, M. Dastani, F. Dignum, and J.-J. Ch. Meyer. Dynamics of

declarative goals in agent programming. In J. A. Leite, A. Omicini, P. Torroni, and
P. Yolum, editors, Proceedings of the second international workshop on Declarative
agent languages and technologies (DALT’04), pages 17–32, 2004.

14. M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Semantics of declara-
tive goals in agent programming. In Proceedings of the fourth international joint
conference on autonomous agents and multiagent systems (AAMAS’05), Utrecht,
2005. To appear.

15. M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer. Agent program-
ming in Dribble: from beliefs to goals using plans. In Proceedings of the second
international joint conference on autonomous agents and multiagent systems (AA-
MAS’03), pages 393–400, Melbourne, 2003.

16. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and proce-
dural goals in intelligent agent systems. In Proceedings of the eighth international
conference on principles of knowledge respresentation and reasoning (KR2002),
Toulouse, 2002.

