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Abstract. In this paper, we present a dynamic logic for a propositional
version of the agent programming language 3APL. A 3APL agent has
beliefs and a plan. The execution of a plan changes an agent’s beliefs.
Plans can be revised during execution. Due to these plan revision capa-
bilities of 3APL agents, plans cannot be analyzed by structural induction
as in for example standard propositional dynamic logic. We propose a
dynamic logic that is tailored to handle the plan revision aspect of 3APL.
For this logic, we give a sound and complete axiomatization.

1 Introduction

An agent is commonly seen as an encapsulated computer system that is situated
in some environment and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives [24]. Programming these flex-
ible computing entities is not a trivial task. An important line of research in this
area, is research on cognitive agents. These are agents endowed with high-level
mental attitudes such as beliefs, desires, goals, plans, intentions, norms and obli-
gations. Intelligent cognitive agents should be able to reason with these mental
attitudes in order to exhibit the desired flexible problem solving behavior.

The very concept of (cognitive) agents is thus a complex one. It is imper-
ative that programmed agents be amenable to precise and formal specification
and verification, at least for some critical applications. This is recognized by
(potential) appliers of agent technology such as NASA, which organizes special-
ized workshops on the subject of formal specification and verification of agents
[17,11].

In this paper, we are concerned with the verification of agents programmed
in (a simplified version of) the cognitive agent programming language 3APL4

[12,23,4]. This language is based on theoretical research on cognitive notions
[2,3,16,19]. In the latest version [4], a 3APL agent has a set of beliefs, a plan
and a set of goals. The idea is, that an agent tries to fulfill its goals by selecting
appropriate plans, depending on its beliefs about the world. Beliefs should thus
represent the world or environment of the agent; the goals represent the state of

4 3APL is to be pronounced as “triple-a-p-l”.



the world the agent wants to realize and plans are the means to achieve these
goals.

As explained, cognitive agent programming languages are designed to pro-
gram flexible behavior using high-level mental attitudes. In the various lan-
guages, these attitudes are handled in different ways. An important aspect of
3APL is the way in which plans are dealt with. A plan in 3APL can be executed,
resulting in a change of the beliefs of the agent5. Now, in order to increase the
possible flexibility of agents, 3APL [12] was endowed with a mechanism with
which the programmer can program agents that can revise their plans during
execution of the agent. This is a distinguishing feature of 3APL compared to
other agent programming languages and architectures [15,18,7,6]. The idea is,
that an agent should not blindly execute an adopted plan, but it should be able
to revise it under certain conditions. As this paper focusses on the plan revi-
sion aspect of 3APL, we consider a version of the language with only beliefs
and plans, i.e., without goals. We will use a propositional and otherwise slightly
simplified variant of the original 3APL language as defined in [12].

In 3APL, the plan revision capabilities can be programmed through plan
revision rules. These rules consist of a head and a body, both representing a
plan. A plan is basically a sequence of so-called basic actions. These actions can
be executed. The idea is, informally, that an agent can apply a rule if it has a plan
corresponding to the head of this rule, resulting in the replacement of this plan
by the plan in the body of the rule. The introduction of these capabilities now
gives rise to interesting issues concerning the characteristics of plan execution,
as will become clear in the sequel. This has implications for reasoning about the
result of plan execution and therefore for the formal verification of 3APL agents,
which we are concerned with in this paper.

To be more specific, after defining (a simplified version of) 3APL and its
semantics (section 2), we propose a dynamic logic for proving properties of 3APL
plans in the context of plan revision rules (section 3). For this logic, we provide
a sound and complete axiomatization (section 4).

As for related work, verification of agents programmed in an agent program-
ming language has for example been addressed in [1]. This paper addresses model
checking of the agent programming language AgentSpeak. A sketch of a dynamic
logic to reason about 3APL agents has been given in [23]. This logic however is
designed to reason about a 3APL interpreter or deliberation language, whereas
in this paper we take a different viewpoint and reason about plans. In [13], a
programming logic (without axiomatization) was given for a fragment of 3APL
without plan revision rules. Further, the operational semantics of plan revision
rules is similar to that of procedures in procedural programming. In fact, plan
revision rules can be viewed as an extension of procedures. Logics and semantics
for procedural languages are for example studied in De Bakker [5]. Although the
operational semantics of procedures and plan revision rules are similar, tech-
niques for reasoning about procedures cannot be used for plan revision rules.
This is due to the fact that the introduction of these rules results in the seman-

5 A change in the environment is a possible “side effect” of the execution of a plan.



tics of the sequential composition operator no longer being compositional (see
section 3). This issue has also been considered from a semantic perspective in
[22,21]. In [10], a framework for planning in dynamic environments is presented
in a logic programming setting. The approach is based on hierarchical task net-
work planning. The motivation for that work is similar to the motivation for the
introduction of plan revision rules.

To the best of our knowledge, this is the first attempt to design a logic and
deductive system for plan revision rules or similar language constructs. Consid-
ering the semantic difficulties that arise with the introduction of this type of
construct, it is not a priori obvious that it would be possible at all to design a
deductive system to reason about these constructs. The main aim of this work
was thus to investigate whether it is possible to define such a system and in
this way also to get a better theoretical understanding of the construct of plan
revision rules. Whether the system presented in this paper is also practically
useful to verify 3APL agents, remains to be seen and will be subject to further
research.

2 3APL

2.1 Syntax

Below, we define belief bases and plans. A belief base is a set of propositional
formulas. A plan is a sequence of basic actions and abstract plans. Basic actions
can be executed, resulting in a change to the beliefs of the agent. An abstract
plan can, in contrast with basic actions, not be executed directly in the sense
that it updates the belief base of an agent. Abstract plans serve as an abstraction
mechanism like procedures in procedural programming. If a plan consists of an
abstract plan, this abstract plan could be transformed into basic actions through
the application of plan revision rules, which will be introduced below6.

In the sequel, a language defined by inclusion shall be the smallest language
containing the specified elements.

Definition 1. (belief bases) Assume a propositional language L with typical
formula q and the connectives ∧ and ¬ with the usual meaning. Then the set of
belief bases Σ with typical element σ is defined to be ℘(L).7

Definition 2. (plans) Assume that a set BasicAction with typical element a is
given, together with a set AbstractPlan with typical element p. Then the set of
plans Π with typical element π is defined as follows:

– BasicAction ∪ AbstractPlan ⊆ Π,
– if c ∈ (BasicAction ∪ AbstractPlan) and π ∈ Π then c ;π ∈ Π.

6 Abstract plans could also be modelled as non-executable basic actions.
7 ℘(L) denotes the powerset of L.



Basic actions and abstract plans are called atomic plans and are typically de-
noted by c. For technical convenience, plans are defined to have a list structure,
which means strictly speaking, that we can only use the sequential composition
operator to concatenate an atomic plan and a plan, rather than concatenating
two arbitrary plans. In the following, we will however also use the sequential
composition operator to concatenate arbitrary plans π1 and π2 yielding π1;π2.
The operator should in this case be read as a function taking two plans that
have a list structure and yielding a new plan that also has this structure. The
plan π1 will thus be the prefix of the resulting plan.

We use ε to denote the empty plan, which is an empty list. The concatenation
of a plan π and the empty list is equal to π, i.e., ε;π and π; ε are identified with
π.

A plan and a belief base can together constitute a so-called configuration.
During computation or execution of the agent, the elements in a configuration
can change.

Definition 3. (configuration) Let Σ be the set of belief bases and let Π be the
set of plans. Then Π ×Σ is the set of configurations of a 3APL agent.

Plan revision rules consist of a head πh and a body πb. Informally, an agent that
has a plan πh, can replace this plan by πb when applying a plan revision rule of
this form.

Definition 4. (plan revision (PR) rules) The set of PR rules R is defined as
follows: R = {πh  πb | πh, πb ∈ Π,πh 6= ε}.8

Take for example a plan a; b where a and b are basic actions, and a PR rule
a; b  c. The agent can then either execute the actions a and b one after the
other, or it can apply the PR rule yielding a new plan c, which can in turn be
executed. A plan p consisting of an abstract plan cannot be executed, but can
only be transformed using a procedure-like PR rule such as p a.

Below, we provide the definition of a 3APL agent. The function T , taking a
basic action and a belief base and yielding a new belief base, is used to define
how belief bases are updated when a basic action is executed.

Definition 5. (3APL agent) A 3APL agent A is a tuple
〈Rule, T 〉 where Rule ⊆ R is a finite set of PR rules and T : (BasicAction×σ) → σ
is a partial function, expressing how belief bases are updated through basic ac-
tion execution.

2.2 Semantics

The semantics of a programming language can be defined as a function taking a
statement and a state, and yielding the set of states resulting from executing the
8 In [12], PR rules were defined to have a guard, i.e., rules were of the form πh | φ πb.

For a rule to be applicable, the guard should then hold. For technical convenience
and because we want to focus on the plan revision aspect of these rules, we however
leave out the guard in this paper. The results could be extended for rules with a
guard.



initial statement in the initial state. In this way, a statement can be viewed as
a transformation function on states. In 3APL, plans can be seen as statements
and belief bases as states on which these plans operate. There are various ways
of defining a semantic function and in this paper we are concerned with the
so-called operational semantics (see for example De Bakker [5] for details on this
subject).

The operational semantics of a language is usually defined using transition
systems [14]. A transition system for a programming language consists of a set of
axioms and derivation rules for deriving transitions for this language. A transi-
tion is a transformation of one configuration into another and it corresponds to a
single computation step. Let A = 〈Rule, T 〉 be a 3APL agent and let BasicAction
be a set of basic actions. Below, we give the transition system TransA for our
simplified 3APL language, which is based on the system given in [12]. This tran-
sition system is specific to agent A.

There are two kinds of transitions, i.e., transitions describing the execution
of basic actions and those describing the application of a plan revision rule. The
transitions are labelled to denote the kind of transition. A basic action at the
head of a plan can be executed in a configuration if the function T is defined for
this action and the belief base in the configuration. The execution results in a
change of belief base as specified through T and the action is removed from the
plan.

Definition 6. (action execution) Let a ∈ BasicAction.

T (a, σ) = σ′

〈a;π, σ〉 →exec 〈π, σ′〉

A plan revision rule can be applied in a configuration if the head of the rule is
equal to a prefix of the plan in the configuration. The application of the rule
results in the revision of the plan, such that the prefix equal to the head of the
rule is replaced by the plan in the body of the rule. A rule a; b  c can for
example be applied to the plan a; b; c, yielding the plan c; c. The belief base is
not changed through plan revision.

Definition 7. (rule application) Let ρ : πh  πb ∈ Rule.

〈πh;π, σ〉 →app 〈πb;π, σ〉

In the sequel, it will be useful to have a function taking a PR rule and a plan,
and yielding the plan resulting from the application of the rule to this given
plan. Based on this function, we also define a function taking a set of PR rules
and a plan and yielding the set of rules applicable to this plan.

Definition 8. (rule application) Let R be the set of PR rules and let Π be
the set of plans. Let ρ : πh  πb ∈ R and π, π′ ∈ Π. The partial function
apply : (R×Π) → Π is then defined as follows.

apply(ρ)(π) =
{
πb;π′ if π = πh;π′,
undefined otherwise.



The function applicable : (℘(R) × Π) → ℘(R) yielding the set of rules appli-
cable to a certain plan, is then as follows: applicable(Rule, π) = {ρ ∈ Rule |
apply(ρ)(π) is defined}.

Using the transition system, individual transitions can be derived for a 3APL
agent. These transitions can be put in sequel, yielding transition sequences. From
a transition sequence, one can obtain a computation sequence by removing the
plan component of all configurations occurring in the transition sequence. In the
following definitions, we formally define computation sequences and we specify
the function yielding these sequences, given an initial configuration.

Definition 9. (computation sequences) The set Σ+ of finite computation se-
quences is defined as {σ1, . . . , σi, . . . , σn | σi ∈ Σ, 1 ≤ i ≤ n, n ∈ N}.

Definition 10. (function for calculating computation sequences) Let
xi ∈ {exec, app} for 1 ≤ i ≤ m. The function CA : (Π × Σ) → ℘(Σ+) is
then as defined below.

CA(π, σ) = {σ, . . . , σm ∈ Σ+ | θ = 〈π, σ〉 →x1 . . .→xm
〈ε, σm〉

is a finite sequence of transitions in TransA}.

Note that we only take into account successfully terminating transition se-
quences, i.e., those sequences ending in a configuration with an empty plan.
Using the function defined above, we can now define the operational semantics
of 3APL.

Definition 11. (operational semantics) Let κ : ℘(Σ+) → ℘(Σ) be a function
yielding the last elements of a set of finite computation sequences, which is
defined as follows: κ(∆) = {σn | σ1, . . . , σn ∈ ∆}. The operational semantic
function OA : Π → (Σ → ℘(Σ)) is defined as follows:

OA(π)(σ) = κ(CA(π, σ)).

We will sometimes omit the superscript A from functions as defined above, for
reasons of presentation. The example below is used to explain the definition of
the operational semantics.

Example 1. Let A be an agent with PR rules {p; a  b, p  c}, where p is an
abstract plan and a, b, c are basic actions. Let σa be the belief base resulting
from the execution of a in σ, i.e., T (a, σ) = σa, let be σab the belief resulting
from executing first a and then b in σ, etc.

Then CA(p; a)(σ) = {(σ, σ, σb), (σ, σ, σc, σca)}, which is based on the transi-
tion sequences 〈p; a, σ〉 →app 〈b, σ〉 →exec 〈ε, σb〉 and 〈p; a, σ〉 →app 〈c; a, σ〉 →exec

〈a, σc〉 →exec 〈ε, σca〉. We thus have that OA(p; a)(σ) = {σb, σca}.



3 Dynamic Logic

In programming language research, an important area is the specification and
verification of programs. Program logics are designed to facilitate this process.
One such logic is dynamic logic [8,9], with which we are concerned in this paper.
In dynamic logic, programs are explicit syntactic constructs in the logic. To be
able to discuss the effect of the execution of a program π on the truth of a
formula φ, the modal construct [π]φ is used. This construct intuitively states
that in all states in which π halts, the formula φ holds.

Programs in general are constructed from atomic programs and composition
operators. An example of a composition operator is the sequential composition
operator (;), where the program π1;π2 intuitively means that π1 is executed first,
followed by the execution of π2. The semantics of such a compound program can
in general be determined by the semantics of the parts of which it is composed.
This compositionality property allows analysis by structural induction (see also
[20]), i.e., analysis of a compound statement by analysis of its parts. Analysis of
the sequential composition operator by structural induction can in dynamic logic
be expressed by the following formula, which is usually a validity: [π1;π2]φ ↔
[π1][π2]φ. For 3APL plans on the contrary, this formula does not always hold.
This is due to the presence of PR rules.

We will informally explain this using the 3APL agent of example 1. As ex-
plained, the operational semantics of this agent, given initial plan p; a and initial
state σ, is as follows: O(p; a)(σ) = {σb, σca}. Now compare the result of first “ex-
ecuting”9 p in σ and then executing a in the resulting belief base, i.e., compare
the set O(a)(O(p)(σ)). In this case, there is only one successfully terminating
transition sequence and it ends in σca, i.e., O(a)(O(p)(σ)) = {σca}. Now, if it
would be the case that σca |= φ but σb 6|= φ, the formula [p; a]φ↔ [p][a]φ would
not hold10.

Analysis of plans by structural induction in this way thus does not work for
3APL. In order to be able to prove correctness properties of 3APL programs
however, one can perhaps imagine that it is important to have some kind of
induction. As we will show in the sequel, the kind of induction that can be
used to reason about 3APL programs, is induction on the number of PR rule
applications in a transition sequence. We will introduce a dynamic logic for 3APL
based on this idea.

3.1 Syntax

In order to be able to do induction on the number of PR rule applications in
a transition sequence, we introduce so-called restricted plans. These are plans,
9 We will use the word “execution” in two ways. Firstly, as in this context, we will use

it to denote the execution of an arbitrary plan in the sense of going through several
transition of type exec or app, starting in a configuration with this plan and resulting
in some final configurations. Secondly, we will use it to refer to the execution of a
basic action in the sense of going through a transition of type exec.

10 In particular, the implication would not hold from right to left.



annotated with a natural number11. Informally, if the restriction parameter of a
plan is n, the number of rule applications during execution of this plan cannot
exceed n.

Definition 12. (restricted plans) Let Π be the language of plans and let N− =
N ∪ {−1}. Then, the language Πr of restricted plans is defined as {π�n | π ∈
Π,n ∈ N−}.

Below, we define the language of dynamic logic in which properties of 3APL
agents can be expressed. In the logic, one can express properties of restricted
plans. As will become clear in the sequel, one can prove properties of the plan
of a 3APL agent by proving properties of restricted plans.

Definition 13. (plan revision dynamic logic (PRDL)) Let π �n∈ Πr be a re-
stricted plan. Then the language of dynamic logic LPRDL with typical element φ
is defined as follows:

– L ⊆ LPRDL,
– if φ ∈ LPRDL, then [π�n]φ ∈ LPRDL,
– if φ, φ′ ∈ LPRDL, then ¬φ ∈ LPRDL and φ ∧ φ′ ∈ LPRDL.

3.2 Semantics

In order to define the semantics of PRDL, we first define the semantics of re-
stricted plans. As for ordinary plans, we also define an operational semantics for
restricted plans. We do this by defining a function for calculating computation
sequences, given an initial restricted plan and a belief base.

Definition 14. (function for calculating computation sequences) Let
xi ∈ {exec, app} for 1 ≤ i ≤ m. Let Napp(θ) be a function yielding the number
of transitions of the form si →app si+1 in the sequence of transitions θ. The
function CAr : (Πr ×Σ) → ℘(Σ+) is then as defined below.

CAr (π�n, σ) = {σ, . . . , σm ∈ Σ+ | θ = 〈π, σ〉 →x1 . . .→xm
〈ε, σm〉

is a finite sequence of transitions in TransA where 0 ≤ Napp(θ) ≤ n}

As one can see in the definition above, the computation sequences CAr (π�n, σ)
are based on transition sequences starting in configuration 〈π, σ〉. The number
of rule applications in these transition sequences should be between 0 and n, in
contrast with the function CA of definition 10, in which there is no restriction
on this number.

Based on the function CAr , we define the operational semantics of restricted
plans by taking the last elements of the computation sequences yielded by CAr .
The set of belief bases is empty if the restriction parameter is equal to −1.

11 Or with the number −1. The number −1 is introduced for technical convenience and
it will become clear in the sequel why we need this.



Definition 15. (operational semantics) Let κ be as in definition 11. The oper-
ational semantic function OA

r : Πr → (Σ → ℘(Σ)) is defined as follows:

OA
r (π�n)(σ) =

{
κ(CAr (π�n, σ)) if n ≥ 0,
∅ if n = −1.

In the following proposition, we relate the operational semantics of plans and
the operational semantics of restricted plans.

Proposition 1. ⋃
n∈ N

Or(π�n)(σ) = O(π)(σ)

Proof. Immediate from definitions 15, 14, 11 and 10.

Using the operational semantics of restricted plans, we can now define the se-
mantics of the dynamic logic.

Definition 16. (semantics of PRDL) Let q ∈ L be a propositional formula, let
φ, φ′ ∈ LPRDL and let |=L be the entailment relation defined for L as usual. The
semantics |=A of LPRDL is then as defined below.

σ |=A q ⇔ σ |=L q
σ |=A [π�n]φ⇔ ∀σ′ ∈ OA

r (π�n)(σ) : σ′ |=A φ
σ |=A ¬φ ⇔ σ 6|=A φ
σ |=A φ ∧ φ′ ⇔ σ |=A φ and σ |=A φ′

As OA
r is defined in terms of agent A, so is the semantics of LPRDL. We use

the subscript A to indicate this. Let Rule ⊆ R be a finite set of PR rules. If
∀T , σ : σ |=〈Rule,T 〉 φ, we write |=Rule φ.

In the dynamic logic PRDL, one can express properties of restricted plans,
rather than of ordinary 3APL plans. The operational semantics of ordinary plans
O and of restricted plans Or are however related (proposition 1). As the seman-
tics of the construct [π�n]σ is defined in terms of Or, we can use this construct
to specify properties of 3APL plans, as shown by the following corollary.

Corollary 1.

∀n ∈ N : σ |=A [π�n]φ⇔ ∀σ′ ∈ OA(π)(σ) : σ′ |=A φ

Proof. Immediate from proposition 1 and definition 16.

4 The Axiom System

In order to prove properties of restricted plans, we propose a deductive system
for PRDL in this section. Rather than proving properties of restricted plans,
the aim is however to prove properties of 3APL plans. We thus want to prove
properties of the form ∀n ∈ N : [π�n]φ, as these are directly related to 3APL by
corollary 1. The idea now is, that these properties can be proven by induction
on n. We will explain this in more detail after introducing the axiom system for
restricted plans.



Definition 17. (axiom system (ASRule)) Let BasicAction be a set of basic ac-
tions, AbstractPlan be a set of abstract plans and Rule ⊆ R be a finite set of
PR rules. Let a ∈ BasicAction, let p ∈ AbstractPlan, let c ∈ (BasicAction ∪
AbstractPlan) and let ρ range over applicable(Rule, c;π). The following are then
the axioms of the system ASRule.

(PRDL1) [π�−1]φ
(PRDL2) [p�0]φ
(PRDL3) [ε�n]φ↔ φ if 0 ≤ n
(PRDL4) [c;π�n]φ↔ [c�0][π�n]φ ∧

∧
ρ[apply(ρ, c;π)�n−1]φ if 0 ≤ n

(PL) axioms for propositional logic
(PDL) [π�n](φ→ φ′) → ([π�n]φ→ [π�n]φ′)

The following are the rules of the system ASRule.

(GEN)
φ

[π�n]φ

(MP)
φ1, φ1 → φ2

φ2

As the axiom system is relative to a given set of PR rules Rule, we will use the
notation `Rule φ to specify that φ is derivable in the system ASRule above.

The idea is that properties of the form ∀n ∈ N : `Rule [π�n]φ can be proven by
induction on n as follows. If we can prove [π�0]φ and ∀n ∈ N : ([π�n]φ `Rule [π�n+1

]φ), we can conclude the desired property. These premises should be proven using
the axiom system above. Consider for example an agent with a PR rule a a; a
and assume that T is defined such that [a�0]φ. One can then prove ∀n : [a�n]φ
by proving [a�n]φ `Rule [a�n+1]φ, for arbitrary n.

We will now explain the PRDL axioms of the system. The other axioms and
the rules are standard for propositional dynamic logic (PDL) [8]. We start by
explaining the most interesting axiom: (PRDL4). We first observe that there are
two types of transitions that can be derived for a 3APL agent: action execution
and rule application (see definitions 6 and 7). Consider a configuration 〈a;π, σ〉
where a is a basic action. Then during computation, possible next configurations
are 〈π, σ′〉12 (action execution) and 〈apply(ρ, a;π), σ〉 (rule application) where ρ
ranges over the applicable rules, i.e., applicable(Rule, a;π)13. We can thus analyze
the plan a;π by analyzing π after the execution of a, and the plans resulting
from applying a rule, i.e., apply(ρ, a;π)14. The execution of an action can be
represented by the number 0 as restriction parameter, yielding the first term of
12 assuming that T (a, σ) = σ′

13 See definition 8 for the definitions of the functions apply and applicable.
14 Note that one could say we analyze a plan a; π partly by structural induction, as it

is partly analyzed in terms of a and π.



the right-hand side of (PRDL4): [a�0][π�n]φ15. The second term is a conjunction
of [apply(ρ, c;π)�n−1]φ over all applicable rules ρ. The restriction parameter is
n−1 as we have “used” one of our n permitted rule applications. The first three
axioms represent basic properties of restricted plans. (PRDL1) can be used to
eliminate the second term on the right-hand side of axiom (PRDL4), if the left-
hand side is [c;π�0]φ. (PRDL2) can be used to eliminate the first term on the
right-hand side of (PRDL4), if c is an abstract plan. As abstract plans can only
be transformed through rule application, there will be no resulting states if the
restriction parameter of the abstract plan is 0, i.e., if no rule applications are
allowed. (PRDL3) states that if φ is to hold after execution of the empty plan, it
should hold “now”. It can be used to derive properties of an atomic plan c, by
using axiom (PRDL4) with the plan c; ε.

Example 2. Let A be an agent with one PR rule, i.e., Rule = {a; b c} and let
T be such that [a�0]φ, [b�0]φ and [c�0]φ. We now want to prove that ∀n : [a; b�n]φ.
We have [a; b�0]φ by using that this is equivalent to [a�0][b�0]φ by proposition
3 (section 4.1). The latter formula can be derived by applying (GEN) to [b�0]φ.
We prove ∀n ∈ N : ([a; b�n]φ `Rule [a; b�n+1]φ) by taking an arbitrary n and
proving that [a; b�n]φ `Rule [a; b�n+1]φ. Using (PRDL4) and (PRDL3), we have
the following equivalences. In order to apply (PRDL4) to the conjunct [c�n−1]φ,
n has to be greater than 0. This is however not a problem, as the result was
proven separately for n = 0.

[a; b�n]φ↔ [a�0][b�n]φ ∧ [c�n−1]φ
↔ [a�0][b�0][ε�n]φ ∧ [c�0][ε�n−1]φ
↔ [a�0][b�0]φ ∧ [c�0]φ

Similarly, we have the following equivalences for [a; b�n+1]φ, yielding the desired
result.

[a; b�n+1]φ↔ [a�0][b�n+1]φ ∧ [c�n]φ
↔ [a�0][b�0][ε�n+1]φ ∧ [c�0][ε�n]φ
↔ [a�0][b�0]φ ∧ [c�0]φ

4.1 Soundness and Completeness

The axiom system of definition 17 is sound.

Theorem 1. (soundness) Let φ ∈ LPRDL. Let Rule ⊆ R be an arbitrary finite
set of PR rules. Then the axiom system ASRule is sound, i.e.:

`Rule φ ⇒ |=Rule φ.

Proof. We prove soundness of the PRDL axioms of the system ASRule.
(PRDL1) The proof is through observing that Or(π�−1)(σ) = ∅ by definition 15.
(PRDL2) The proof is analogous to the proof of axiom (PRDL1), with p for π

15 In our explanation, we consider the case where c is a basic action, but the axiom
holds also for abstract plans.



and 0 for −1 and using definition 6 to derive that OA
r (p�0)(σ) = ∅.

(PRDL3) The proof is through observing that κ(Cr(ε�n, σ)) = {σ} by definition
14.
(PRDL4) Let π ∈ Π be an arbitrary plan and φ ∈ LPRDL be an arbitrary PRDL
formula. To prove: ∀T , σ : σ |=〈Rule,T 〉 [c;π�n]φ↔ [c�0][π�n]φ∧

∧
ρ[apply(ρ, c;π)�n−1

]φ, i.e.:

∀T , σ : σ |=〈Rule,T 〉 [c;π�n]φ⇔ ∀T , σ : σ |=〈Rule,T 〉 [c�0][π�n]φ and

∀T , σ : σ |=〈Rule,T 〉
∧
ρ

[apply(ρ, c;π)�n−1]φ.

Let σ ∈ Σ be an arbitrary belief base and let T be an arbitrary belief update
function. Assume c ∈ BasicAction and furthermore assume that 〈c;π, σ〉 →execute

〈π, σ1〉 is a transition in TransA, i.e., κ(CAr (c�0, σ)) = {σ1} by definition 14. Let
ρ range over applicable(Rule, c;π). Now, observe the following by definition 14:

κ(CAr (c;π�n, σ)) = κ(CAr (π�n, σ1)) ∪
⋃
ρ

κ(CAr (apply(ρ, c;π)�n−1, σ)). (1)

If c ∈ AbstractPlan or if a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is not
derivable, the first term of the right-hand side of (1) is empty.

(⇒) Assume σ |=Rule [c;π�n]φ, i.e., by definition 16 ∀σ′ ∈ OA
r (c;π�n, σ) : σ′ |=Rule

φ, i.e., by definition 15:

∀σ′ ∈ κ(CAr (c;π�n, σ)) : σ′ |=Rule φ. (2)

To prove: (A) σ |=Rule [c�0][π�n]φ and (B) σ |=Rule

∧
ρ[apply(ρ, c;π)�n−1]φ.

(A) If c ∈ AbstractPlan or if a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is
not derivable, the desired result follows immediately from axiom (PRDL2) or an
analogous proposition for non executable basic actions. If c ∈ BasicAction, we
have the following from definitions 16 and 15.

σ |=Rule [c�0][π�n]φ⇔ ∀σ′ ∈ OA
r (c�0, σ) : σ′ |=Rule [π�n]φ

⇔ ∀σ′ ∈ OA
r (c�0, σ) : ∀σ′′ ∈ OA

r (π�n, σ′) : σ′′ |=Rule φ
⇔ ∀σ′ ∈ κ(CAr (c�0, σ)) : ∀σ′′ ∈ κ(CAr (π�n, σ′)) : σ′′ |=Rule φ
⇔ ∀σ′′ ∈ κ(CAr (π�n, σ1)) : σ′′ |=Rule φ

(3)

From 1, we have that κ(CAr (π�n, σ1)) ⊆ κ(CAr (c;π�n, σ)). From this and assump-
tion (2), we can now conclude the desired result (3).

(B) Let c ∈ (BasicAction ∪ AbstractPlan) and let ρ ∈ applicable(Rule, c;π). Then
we want to prove σ |=Rule [apply(ρ, c;π)�n−1]φ. From definitions 16 and 15, we
have the following.

σ |=Rule [apply(ρ, c;π)�n−1]φ⇔ ∀σ′ ∈ OA
r (apply(ρ, c;π)�n−1, σ) : σ′ |=Rule φ

⇔ ∀σ′ ∈ κ(CAr (apply(ρ, c;π)�n−1, σ)) : σ′ |=Rule φ

(4)



From 1, we have that κ(CAr (apply(ρ, c;π)�n−1, σ)) ⊆ κ(CAr (c;π�n, σ)). From this
and assumption (2), we can now conclude the desired result (4).

(⇐) Assume σ |=Rule [c �0][π �n]φ and σ |=Rule

∧
ρ[apply(ρ, c;π) �n−1]φ, i.e.,

∀σ′ ∈ κ(CAr (π�n, σ1)) : σ′ |=Rule φ (3) and ∀σ′ ∈ κ(CAr (apply(ρ, c;π)�n−1, σ)) :
σ′ |=Rule φ (4).
To prove: σ |=Rule [c;π �n]φ, i.e., ∀σ′ ∈ κ(CAr (c;π �n, σ)) : σ′ |=Rule φ (2). If
c ∈ AbstractPlan or if a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is not
derivable, we have that κ(CAr (c;π�n, σ)) =

⋃
ρ κ(CAr (apply(ρ, c;π)�n−1, σ)) (1).

From this and the assumption, we have the desired result.
If c ∈ BasicAction and a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is

derivable, we have (1). From this and the assumption, we again have the desired
result.

In order to prove completeness of the axiom system, we first prove proposition
2, which says that any formula from LPRDL can be rewritten into an equivalent
formula where all restriction parameters are 0. This proposition is proven by
induction on the size of formulas. The size of a formula is defined by means of
the function size : LPRDL → N3. This function takes a formula from LPRDL and
yields a triple 〈x, y, z〉, where x roughly corresponds to the sum of the restriction
parameters occurring in the formula, y roughly corresponds to the sum of the
length of plans in the formula and z is the length of the formula.

Definition 18. (size) Let the following be a lexicographic ordering on tuples
〈x, y, z〉 ∈ N3:

〈x1, y1, z1〉 < 〈x2, y2, z2〉 iff x1 < x2 or
(x1 = x2 and y1 < y2) or (x1 = x2 and y1 = y2 and z1 < z2).

Let max be a function yielding the maximum of two tuples from N3 and let f
and s respectively be functions yielding the first and second element of a tuple.
Let l be a function yielding the number of symbols of a syntactic entity and let
q ∈ L. The function size : LPRDL → N3 is then as defined below.

size(q) = 〈0, 0, l(q)〉

size([π�n]φ) =
{
〈n+ f(size(φ)), l(π) + s(size(φ)), l([π�n]φ)〉 if n > 0
〈f(size(φ)), s(size(φ)), l([π�n]φ)〉 otherwise

size(¬φ) = 〈f(size(φ)), s(size(φ)), l(¬φ)〉
size(φ ∧ φ′) = 〈f(max(size(φ), size(φ′))), s(max(size(φ), size(φ′))), l(φ ∧ φ′)〉

In the proof of proposition 2, we use the following lemma. The first clause spec-
ifies that the right-hand side of axiom (PRDL4) is smaller than the left-hand
side. This axiom will usually be used by applying it from left to right to prove a
formula such as [π�n]φ. Intuitively, the fact that the formula will get “smaller”
as specified through the function size, suggests convergence of the deduction
process.



Lemma 1. Let φ ∈ LPRDL, let c ∈ (BasicAction ∪ AbstractPlan), let ρ range
over applicable(Rule, c;π) and let n > 0. The following then holds:

1. size([c�0][π�n]φ ∧
∧

ρ[apply(ρ, c;π)�n−1]φ) < size([c;π�n]φ),
2. size(φ) < size(φ ∧ φ′) and size(φ′) < size(φ ∧ φ′).

Proof. The proof is simply by applying definition 18.

Proposition 2. Any formula φ ∈ LPRDL can be rewritten into an equivalent
formula φPDL where all restriction parameters are 0, i.e.:

∀φ ∈ LPRDL : ∃φPDL ∈ LPRDL : size(φPDL) = 〈0, 0, l(φPDL)〉 and `Rule φ↔ φPDL.

Proof. The fact that a formula φ has the property that it can be rewritten as
specified in the proposition, will be denoted by PDL(φ) for reasons that will
become clear in the sequel. The proof is by induction on size(φ).

– φ ≡ q
size(q) = 〈0, 0, l(q)〉 and let qPDL = q, then PDL(q).

– φ ≡ [π�n]φ′

If n = −1, we have that [π�n]φ′ is equivalent with > (PRDL1). As PDL(>),
we also have PDL([π�n]φ′) in this case.
Let n = 0. We then have that size([π�n]φ′) = 〈f(size(φ′)), s(size(φ′)), l([π�n
]φ′)〉 is greater than size(φ′) = 〈f(size(φ′)), s(size(φ′)), l(φ′)〉. By induc-
tion, we then have PDL(φ′), i.e., φ′ can be rewritten into an equivalent
formula φ′PDL, such that size(φ′PDL) = 〈0, 0, l(φ′PDL)〉. As size([π�n]φ′PDL) =
〈0, 0, l([π�n]φ′PDL)〉, we have PDL([π�n]φ′PDL) and therefore PDL([π�n]φ′).
Let n > 0. Let π ≡ ε. By lemma 1, we have size(φ′) < size([ε �n]φ′).
Therefore, by induction, PDL(φ′). As [ε�n]φ′ is equivalent with φ′ by axiom
(PRDL3), we also have PDL([ε�n]φ′). Now let π ≡ c;π′ and let L = [c;π′�n]φ′

and R = [c�0][π′�n]φ′ ∧
∧

ρ[apply(ρ, c;π
′)�n−1]φ′. By lemma 1, we have that

size(R) < size(L). Therefore, by induction, we have PDL(R). As R and L
are equivalent by axiom (PRDL4), we also have PDL(L), yielding the desired
result.

– φ ≡ ¬φ′
We have that size(¬φ′) = 〈f(size(φ′)), s(size(φ′)), l(¬φ′)〉, which is greater
than size(φ′). By induction, we thus have PDL(φ′) and
size(φ′PDL) = 〈0, 0, l(φ′PDL)〉. Then, size(¬φ′PDL) = 〈0, 0, l(¬φ′PDL)〉 and thus
PDL(¬φ′PDL) and therefore PDL(¬φ′).

– φ ≡ φ′ ∧ φ′′
By lemma 1, we have size(φ′) < size(φ′ ∧φ′′) and size(φ′′) < size(φ′ ∧φ′′).
Therefore, by induction, PDL(φ′) and PDL(φ′′) and therefore size(φ′PDL) =
〈0, 0, l(φ′PDL)〉 and size(φ′′PDL) = 〈0, 0, l(φ′′PDL)〉. Then, size(φ′PDL ∧ φ′′PDL) =
〈0, 0, l(φ′PDL∧φ′′PDL)〉 and therefore size((φ′∧φ′′)PDL) = 〈0, 0, l((φ′∧φ′′)PDL)〉
and we can conclude PDL((φ′ ∧ φ′′)PDL) and thus PDL(φ′ ∧ φ′′).

Although structural induction is not possible for plans in general, it is possible
if we only consider action execution, i.e., if the restriction parameter is 0. This is
specified in the following proposition, from which we can conclude that a formula
φ with size(φ) = 〈0, 0, l(φ)〉 satisfies all standard PDL properties.



Proposition 3. (sequential composition) Let Rule ⊆ R be a finite set of PR
rules. The following is then derivable in the axiom system ASRule.

`Rule [π1;π2�0]φ↔ [π1�0][π2�0]φ

Proof. The proof is through repeated application of axiom (PRDL4), first from
left to right and then from right to left (also using axiom (PRDL1) to eliminate
the rule application part of the axiom).

Theorem 2. (completeness) Let φ ∈ LPRDL and let Rule ⊆ R be a finite set of
PR rules. Then the axiom system ASRule is complete, i.e.:

|=Rule φ ⇒ `Rule φ.

Proof. Let φ ∈ LPRDL. By proposition 2 we have that a formula φPDL exists such
that `Rule φ↔ φPDL and size(φPDL) = 〈0, 0, l(φPDL)〉 and therefore by soundness
of ASRule also |=Rule φ↔ φPDL. Let φPDL be a formula with these properties.

|=Rule φ⇔ |=Rule φPDL (|=Rule φ↔ φPDL)
⇒ `Rule φPDL (completeness of PDL)
⇔ `Rule φ (`Rule φ↔ φPDL)

The second step in this proof needs some justification. The general idea is, that
all PDL axioms and rules are applicable to a formula φPDL and moreover, these
axioms and rules are contained in our axiom system ASRule. As PDL is complete,
we have |=Rule φPDL ⇒ `Rule φPDL. There are however some subtleties to be
considered, as our action language is not exactly the same as the action language
of PDL, nor is it a subset (at first sight).

In particular, the action language of PDL does not contain abstract plans or
the empty action ε. These are axiomatized in the system ASRule and the question
is, how these axioms relate to the axiom system for PDL. It turns out, that the
semantics of p�0 and ε�0 (or ε�n, for that matter) correspond respectively to
the special PDL actions fail (no resulting states if executed) and skip (the
identity relation). These actions are respectively defined as 0? and 1?. Filling
in these actions in the axiom for test ([ψ?]φ ↔ (ψ → φ)), we get the following,
corresponding exactly with the axioms (PRDL2) and (PRDL3).

[0?]φ↔ (0 → φ) ⇔ [0?]φ ⇔ [fail]φ
[1?]φ↔ (1 → φ) ⇔ [1?]φ↔ φ ⇔ [skip]φ↔ φ

Our axiom system is complete for formulas φPDL, because it contains the PDL
axioms and rules that are applicable to these formulas, that is, the axiom for
sequential composition, the axioms for fail and skip as stated above, the axiom
for distribution of box over implication and the rules (MP) and (GEN). The
axiom for sequential composition is not explicitly contained in ASRule, but is
derivable for formulas φPDL by proposition 3. Axiom (PRDL3), i.e., the more
general version of [ε�0]φ ↔ φ, is needed in the proof of proposition 2, which is
used elsewhere in this completeness proof.



5 Conclusion and Future Research

In this paper, we presented a dynamic logic for reasoning about 3APL agents,
tailored to handle the plan revision aspect of the language. As we argued, 3APL
plans cannot be analyzed by structural induction. Instead, we proposed a logic
of restricted plans, which should be used to prove properties of 3APL plans by
doing induction on the restriction parameter.

Being able to do structural induction is usually considered an essential prop-
erty of programs in order to reason about them. As 3APL plans lack this prop-
erty, it is not at all obvious that it should be possible to reason about them,
especially using a clean logic with sound and complete axiomatization. The fact
that we succeeded in providing such a logic, thus at least demonstrates this
possibility.

We did some preliminary experiments in actually using the logic to prove
properties of certain 3APL agents. More research is however needed to establish
the practical usefulness of the logic to prove properties of 3APL agents and the
possibility to do for example automated theorem proving. In this light, incorpo-
ration of interaction with an environment in the semantics is also an important
issue for future research.
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