
Agent programming in Dribble:
from beliefs to goals using plans

[Extended Abstract]

Birna van Riemsdijk
∗

Computer Science
Utrecht University
The Netherlands

birna@cs.uu.nl

Wiebe van der Hoek
Computer Science

University of Liverpool
United Kingdom

wiebe@csc.liv.ac.uk

John-Jules Ch. Meyer
Computer Science
Utrecht University
The Netherlands

jj@cs.uu.nl

ABSTRACT
To support the practical development of intelligent agents,
several programming languages have been introduced that
incorporate concepts from agent logics: on the one hand,
we have languages that incorporate beliefs and plans (i.e.,
procedural goals), and on the other hand, languages that
implement the concepts of beliefs and (declarative) goals.
We propose the agent programming language Dribble, in
which these features of procedural and declarative goals are
combined. The language Dribble thus incorporates beliefs
and goals as well as planning features. The idea is, that
a Dribble agent should be able to select a plan to reach a
goal from where it is at a certain point in time. In order
to do that, the agent has beliefs, goals and rules to select
plans and to create and modify plans. Dribble comes with
a formally defined operational semantics and, on top of this
semantics, a dynamic logic is constructed that can be used
to specify and verify properties of Dribble agents. The corre-
spondence between the logic and the operational semantics
is established.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Pro-
grams—Logics of programs; I.2.5 [Artificial Intelligence]:
Programming Languages and Software

General Terms
Languages, Theory

∗PhD student in computer science

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03,July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007 ...$5.00.

Keywords
Intelligent agent, agent-oriented programming, declarative
goals, plans, practical reasoning rule

1. INTRODUCTION
In research on agents, besides architectures, the areas of
agent theories and agent programming languages are distin-
guished.
Theories concern descriptions of (the behaviour of) agents.
Agents are often described using logic ([10, 12]). Concepts
that are commonly incorporated in such logics are for in-
stance knowledge, beliefs, desires, intentions, commitments,
goals and plans.
To support the practical development of intelligent agents,
several programming languages have been introduced that
incorporate concepts from agent logics. Firstly, there is a
family of languages using goals as procedural (goal to do).
Whether they are called commitments (Agent-0, [11]), in-
tentions (AgentSpeak(L), [8]), or goals (3APL, [3]) makes
little difference: all these notions are structures built from
actions and therefore similar in nature to plans. In [2] and
[5] it was argued that the languages AgentSpeak(L) and a
restricted version of ConGolog can be embedded in 3APL.
At the same time, to reason about 3APL, one could try
using a BDI ([9]) or KARO ([13]) like logic, incorporating
beliefs and plans. Such logics however also incorporate a
declarative notion of goals, which was typically missing in
3APL (and, by virtue of the embedding, also in the other
two languages). To bridge this gap, the programming lan-
guage GOAL was proposed ([4]). This language takes the
declarative point of view on goals (goal to be).
The language that we propose in this paper constitutes a
synthesis between the declarative and the procedural ap-
proaches, combining both notions in one and the same pro-
gramming language. The idea is, that in such a language
a more precise mapping with logical specification languages
like BDI or KARO can be obtained. To be more specific,
we define the language Dribble, in which the declarative and
procedural features of the languages GOAL and 3APL are
combined. The language 3APL offers the means for creat-
ing and modifying plans during the execution of the agent.
GOAL agents on the other hand do not have planning fea-
tures, but they do offer the possibility to use declarative
goals to select actions. The language Dribble thus incorpo-

rates beliefs and goals as well as planning features. The idea
is, that a Dribble agent should be able to select a plan to
reach a goal from where it is at a certain point in time. In
order to do that, the agent has beliefs, goals and rules to
select plans and to create and modify plans. When we state
an agent has planning features, we thus mean that this agent
is capable of constructing and modifying a plan (a sequence
of actions meant to achieve some goal). Planning is thus
not understood as deliberation and the agent has no way of
doing lookahead. Programming agent deliberation can how-
ever be done in a meta-language, using 3APL or Dribble as
the object language ([1]).

2. THE PROGRAMMING LANGUAGE
DRIBBLE

2.1 Beliefs and goals
Our agent keeps two databases: a belief base and a goal
base which are both sets of formulas from the propositional
language L. The difference between the two databases origi-
nates from the different meaning assigned to sentences from
the belief base and goal base. Belief and goal formulas are
used to refer to sentences from the belief base and/or goal
base.

Definition 1. (belief and goal formulas) The language L
is a propositional language with typical formula φ and the
connectives ∧ and ¬ with the usual meaning. The set of be-
lief and goal formulas LBG with typical formula ϕ is defined
by:

• if φ ∈ L, then Bφ,Gφ ∈ LBG

• if ϕ1, ϕ2 ∈ LBG, then ¬ϕ1, ϕ1 ∧ ϕ2 ∈ LBG.

Formulas with only B-operators are also called belief for-
mulas, comprising the language LB with typical element β,
and similar for LG, the language with only G-operators.

2.2 Plans
In order to reach its goals, a Dribble agent adopts plans. A
plan is a sequence of basic elements of a plan. There are
three types of basic elements: basic actions, abstract plans
and if-then-else constructs. As in the languages GOAL and
3APL, basic actions specify the capabilities with which an
agent should achieve a certain state of affairs. The effect
of execution of a basic action is not a change in the world,
but a change in the belief base of the agent. The state of
affairs that can be realized through execution of basic ac-
tions, is therefore a state of affairs of the belief base. The
second basic element of a plan is the abstract plan. An ab-
stract plan cannot be executed directly in the sense that it
updates the belief base of an agent. Abstract plans serve
as an abstraction mechanism like procedures in imperative
programming. If a plan consists of an abstract plan, this ab-
stract plan could be transformed into basic actions through
reasoning rules. The third basic element is the if-then-else
construct (see definition 2).
Plans are sequences of basic elements, which is defined in
definition 2 below. In this definition the set of executable
actions consisting of basic actions and if-then-else constructs
is defined. In section 5.1 it will be convenient to have this
set.

Definition 2. (plans) Assume that a set BasicAction is
given, together with a set AbstractPlan. Let ExecutableAction
be BasicAction ∪ {if β then π1 else π2 fi} (β ∈ LB and
π1, π2 ∈ Plan). The symbol E denotes the empty plan.

• E ∈ Plan,

• BasicAction ∪ AbstractPlan ⊆ Plan,

• if π1, π2 ∈ Plan and β ∈ LB then
if β then π1 else π2 fi ∈ Plan,

• if c ∈ ExecutableAction ∪ AbstractPlan ∪ {E} and
π ∈ Plan then c ;π ∈ Plan.

2.3 Mental state
Above, the beliefs, goals and plans of a Dribble agent were
defined. These are the elements that change during the exe-
cution of the agent and together constitute the mental state
of an agent. The beliefs of the agent describe the state (of
the world) the agent is in (or believes to be in) and the goals
describe the state (of the world) the agent wants to realize
(or wants to believe to have realized). Basic actions change
the beliefs of the agent. We will now discuss how the goals
of the agent are changed.
The question is: when should agents adopt or drop goals?
The way in which an agent does this, is called a commitment
strategy ([4]). The strategy that was chosen for Dribble
agents is as follows: an agent drops a goal if and only if it
believes that that goal has been achieved. The goals of the
agent can thus only be updated through belief updates. In
this way, a meaningful relation between beliefs and goals is
established.
If an agent behaves according to this commitment strategy,
the mental state of the agent will have to meet the require-
ment that an agent does not believe that φ is the case if it
has a goal to achieve φ. If it believes φ, it cannot have the
goal to achieve φ, because the state of affairs φ is already
reached. Another requirement is that a particular goal of
an agent is consistent. It cannot desire a state of affairs
which cannot be reached by definition. The last require-
ment on mental states of Dribble agents is that their belief
bases are consistent. An agent with an inconsistent belief
base would believe everything which is not a desirable situ-
ation. It could hardly function, because all requirements on
beliefs in rules would be met, but none of the requirements
on goals would be: the agent would believe everything and
therefore would not have any goals.
The goals of an agent do not have to be mutually consis-
tent, because two inconsistent goals could both be realized
although not at the same time. A consequence of this is,
that the agent cannot adopt the conjunction of two sepa-
rate goals in the goal base as a new goal, for this could lead
to inconsistent goals.

Definition 3. (mental state of a Dribble agent) A mental
state of a Dribble agent is a triple 〈σ, γ, π〉 where σ ⊆ L
are the agent’s beliefs and γ ⊆ L are the agent’s goals and
π ∈ Plan is the agent’s plan. σ and γ are such that for any
ψ ∈ γ we have:

• ψ is not entailed by the agent’s beliefs (σ 6|= ψ), and

• ψ is consistent (ψ 6|= ⊥), and

• σ is consistent (σ 6|= ⊥).

Σ with typical element s is the set of all possible mental
states.

2.4 Rules
The plan of an agent can be changed through the application
of rules or execution of executable actions (basic actions or
if-then-else constructs). There are two kinds of rules: goal
rules and Practical Reasoning (PR) rules.

Definition 4. (rules) A goal rule g is a pair ϕ → π such
that ϕ ∈ LBG and π ∈ Plan. A PR rule ρ is a triple πh | β →
πb such that β ∈ LB and πh, πb ∈ Plan.

A goal rule means that the plan π can be adopted, if the
mental condition ϕ holds. Goal rules are used to select plans
to reach a goal from a certain state. The conditions in the
goal rule on the beliefs of an agent are used to describe the
situation in which it could be a good idea to execute the
plan. The conditions on goals in ϕ specify what the plan is
good for.
The informal reading of a PR rule πh | β → πb is the follow-
ing: if the agent has adopted the plan πh and if it believes
the belief formula β to be the case, the plan πh can be re-
placed by the plan πb. PR rules can be used to create plans
(often from abstract plans), to modify plans and to model
reactive behaviour (using PR rules with empty head).

2.5 A Dribble agent
To program a Dribble agent means to specify its initial be-
liefs and goals and to write sets of goal rules and PR rules.
This is formalized in the specification of a Dribble agent.

Definition 5. (Dribble agent) A Dribble agent is a quadru-
ple 〈σ0, γ0,Γ,∆〉 where 〈σ0, γ0, E〉 is the initial mental state,
Γ is a set of goal rules and ∆ is a set of PR rules.

The plan of the agent should be empty in the initial mental
state. This choice reflects the idea that an agent should
start to act because it has certain goals. A Dribble agent
should adopt plans to reach these goals with the goal rules.
Giving the agent a plan at start up is in contradiction with
this idea.
Like agents searching for a plan, a Dribble agent has a goal
state, a starting state and action specifications. A Dribble
agent however does not search, but it uses its goal rules to
select a plan. In these rules, the programmer can specify the
goal state. The execution of the plan of the rule is supposed
to help in bringing about this goal state. It is thus the
programmer that should envision the result of a plan and
the programmer should specify this in the rules. The agent
cannot reason about the results of its actions, thus selecting
actions that would result in realisation of the goal state.
This is the job of the programmer.
The advantage of letting the programmer do this job is, that
the agent does not have to search through a huge search
space. It could then end up doing nothing, because all of
its time is consumed by searching for an appropriate plan.
A Dribble agent is moreover more flexible than a searching
agent, because the agent can easily adapt its plan with its
PR rules during execution. It does not have to start search-
ing all over if the world changes in some way during the
execution of the plan. We do not intend to say that search-
ing or deliberation is never a good idea. A balance should
be achieved between deliberation and plan execution.

3. OPERATIONAL SEMANTICS
The mental state of a Dribble agent consists of beliefs, goals
and a plan. The mental state changes as a consequence of
the execution of actions and the application of rules. We
now give an operational semantics of the possible mental
state changes using transition systems ([7]). First we will
however define the meaning of a statement about the beliefs
or goals of the agent.

3.1 Semantics of belief and goal formulas

Definition 6. (semantics of belief and goal formulas) Let
〈σ, γ, π〉 be a mental state, φ, ψ ∈ L and ϕ, ϕ1, ϕ2 ∈ LBG.

• 〈σ, γ, π〉 |= Bφ iff σ |= φ

• 〈σ, γ, π〉 |= Gψ iff for some ψ′ ∈ γ : ψ′ |= ψ and
σ 6|= ψ

• 〈σ, γ, π〉 |= ¬ϕ iff 〈σ, γ, π〉 6|= ϕ

• 〈σ, γ, π〉 |= ϕ1∧ϕ2 iff 〈σ, γ, π〉 |= ϕ1 and 〈σ, γ, π〉 |= ϕ2

A formula Bφ is true in a mental state, if and only if the
belief base σ models φ. In this way, the agent believes all
logical consequences of its beliefs. The semantics of Gψ is
defined in terms of separate goals, as opposed to defining
it in terms of the entire goal base. All logical consequences
of a particular goal are also goals, but only if they are not
believed ([4]). Two separate goals may be inconsistent and
should therefore not be combined into one goal.

3.2 Transition system
Transition systems are a means to define the operational
semantics of a programming language. A transition system
consists of a set of derivation rules for deriving transitions
for an agent. A transition is a transformation of one mental
state into another and it corresponds to a single computation
step. Here, we leave out the transition rule for execution of
an if-then-else construct.
A goal rule is applicable in a mental state if the antecedent
of the goal rule is true in that mental state. It can only be
applied if the plan of the agent is empty. The idea is, that an
agent can only select a new plan if it has finished executing
its old plan. In the resulting mental state, the plan becomes
equal to the consequent of the goal rule.

Definition 7. (application of a goal rule) Let g : ϕ→ π ∈
Γ a goal rule.

〈σ, γ,E〉 |= ϕ

〈σ, γ,E〉 →applyRule(g) 〈σ, γ, π〉

A PR rule is applicable in a mental state, if the plan of
the agent is equal to the head of the rule and if the guard
of the rule is true in that mental state. The result of the
application of a PR rule is that the plan in the body of the
rule is adopted, replacing the plan which was equal to the
head of the rule.

Definition 8. (application of a PR rule) Let ρ : πh | β →
πb ∈ ∆ a PR rule.

〈σ, γ, πh〉 |= β

〈σ, γ, πh〉 →applyRule(ρ) 〈σ, γ, πb〉

Basic actions update the belief base of an agent if they are
executed. These belief updates are formally represented by
a partial function T , where T (a, σ) returns the result of
updating belief base σ by performing action a. The fact
that T is a partial function represents the fact that an action
may not be executable in some belief states. Goals that are
reached through execution of an action are removed from
the goal base. After execution of an action, the action is
removed from the plan.

Definition 9. (basic action execution) Let γ′ = γ \ {ψ ∈
γ | σ′ |= ψ}.

T (a, σ) = σ′

〈σ, γ, a〉 →execute(a) 〈σ′, γ′, E〉

A plan can be either a basic element or a sequence of basic
elements. The meaning of executing a basic element (for
instance a basic action) or a certain fixed sequence of basic
elements (the head of a PR rule), was defined in the previ-
ous transition rules. In the transition rule for execution of
sequential composition, it is defined what it means to exe-
cute an arbitrary sequence of basic elements (a plan). The
first part of the plan is executed first, any changes to the be-
lief base and goal base are recorded and the agent continues
executing the remainder of the plan.

Definition 10. (execution of sequential composition) Let
x ∈ {applyRule(ρ), execute(a), execute(if β then π1 else

π2 fi)}.

〈σ, γ, π1〉 →x 〈σ′, γ′, π′1〉
〈σ, γ, π1 ◦ π2〉 →x 〈σ′, γ′, π′1 ◦ π2〉

In this rule, we use the operator ◦. It is used to denote that
some plan is a sequence of basic elements of which π1 (or
π′1) is the first part and π2 is the second part: π1 (or π′1) is
the prefix of this plan. This prefix can be executed and the
rest of the plan remains to be executed.
The transition rule specifies that it can only be used if the
transition that is used as the premise of the rule, was not
derived with the transition rule for application of a goal
rule: x 6= applyRule(g). The reason is, that goal rules
should only be applied if the plan of the agent is empty. It
should therefore not be possible to derive some transition
〈σ, γ,E ◦ π′〉 →applyRule(g) 〈σ, γ, π ◦ π′〉 with g : ϕ→ π ∈ Γ a
goal rule. If this transition could be derived, the goal rule
would be applicable in a mental state with a plan that is
not empty. This transition could be derived through ap-
plication of the transition rule for sequential composition,
after deriving the transition 〈σ, γ,E〉 →applyRule(g) 〈σ, γ, π〉
with the rule for application of a goal rule (see definition 7).
The restriction that the transition rule for sequential compo-
sition cannot be applied to a transition si →applyRule(g) si+1,
is thus necessary to prevent the derivation of the transition
〈σ, γ,E ◦ π′〉 →applyRule(g) 〈σ, γ, π ◦ π′〉 from the transition
〈σ, γ,E〉 →applyRule(g) 〈σ, γ, π〉.

3.3 Semantics of a Dribble agent
The semantics of a Dribble agent is derived directly from
the transition relation →. The meaning of a Dribble agent
consists of a set of so called computation runs.

Definition 11. (computation run) A computation run
CR(s0) for a Dribble agent with goal rules Γ and PR rules

∆ is a finite or infinite sequence s0, . . . , sn or s0, . . . where
si ∈ Σ are mental states, and ∀i>0 : si−1 →x si is a transi-
tion in the transition system for the Dribble agent.

The meaning of a Dribble agent 〈σ0, γ0,Γ,∆〉 is the set of
computation runs CR(〈σ0, γ0, E〉). Note that the first state
of the computation runs is the initial mental state of the
Dribble agent.
The transition rules for goal rule application and PR rule
application do not specify which rule to apply, in case more
than one rule is applicable in a mental state. The transition
rules neither specify whether to apply a rule or to execute
an action, if both are possible in a mental state. Any im-
plementation of the language Dribble has to deal with how
to reduce this non-determinism in the semantics of the lan-
guage. Control structures are needed to determine whether
an action should be executed or whether a rule should be
applied and possibly which rule should be applied.

4. EXAMPLE
Our example agent has to solve the problem of building a
tower of blocks. The blocks have to be stacked in a certain
order: block C has to be on the floor, B on C and block A on
B. Initially, the blocks A and B are on the floor, while C is
on A. The only action an agent can take, is to move a block
x from some block y to another block z (move(x, y, z)). The
action is enabled only if the block to be moved (x) and the
block to which x is moved (z) are clear. The result of the
action is, that x is on z and not on y, block y becomes clear
and block z is not clear anymore (assuming that z is not
the floor, because the floor is always clear). In the example,
variables are used as a means for abbreviation. Variables
should be thought of as being instantiated with the relevant
arguments in such a way that predicates with variables re-
duce to propositions. Let

σ0 = {on(C,A) ∧ on(A,F l) ∧ on(B,F l) ∧ clear(B) ∧
clear(C) ∧ clear(Fl), on(x, y) → ¬clear(y)},

γ0 = {on(A,B) ∧ on(B,C) ∧ on(C,F l)}
where y 6= Fl.

4.1 The rules
A Dribble agent can solve the tower building problem with
the following rules.

Γ = {g1 : B(on(x, y)) ∧G(on(x, z)) → move(x, y, z)}
∆ = {ρ1 : move(x, y, z) | B(¬clear(x) ∧ on(a, x)) →

move(a, x, F l);move(x, y, z),
ρ2 : move(x, y, z) | B(¬clear(z) ∧ on(a, z)) →

move(a, z, F l);move(x, y, z)}
The goal rule is used to derive the move(x, y, z) action that
should be executed to fulfil a goal on(x, z). The precondi-
tions of the move action are not checked in this rule, so it
is possible that the derived action cannot be executed in a
particular mental state. The PR rules can then be used to
create a mental state in which this action can be executed.
Note that the goal rule is used to select an action to fulfil a
single proposition of the form on(x, z). The initial goal base
however contains a conjunction of on(x, z) propositions. The
goal rule is applicable to this conjunction, because a formula
Gψ is true if ψ is a logical consequence of a goal in the goal
base, but only if on(x, z) is not believed by the agent (see
section 3.1).

PR rule ρ1 can be applied to an action move(x, y, z) if the
condition that x is clear is not satisfied which means that
the action cannot be executed. Rule ρ2 can be applied if z is
not clear. The PR rules with head move(x, y, z) construct a
plan to create a mental state in which the move action can be
executed. Rule ρ1 for example specifies that if x is not clear
because on(a, x), a move(x, y, z) action should be replaced
by the plan move(a, x, F l);move(x, y, z): first clear x, then
move x. If in turn the action move(a, x, F l) cannot be exe-
cuted because there is some block b on
top of x, the plan could be changed to
move(b, a, F l);move(a, x, F l);move(x, y, z): clear a, clear x
and then move x. These PR rules can also be used to adapt
an agent’s plan if some other block moving agent is present,
resulting in a very flexible agent. Suppose the first agent
plans to do move(A,F l,B) and suppose A was clear when
he selected this action. Suppose the second agent now moves
block C onto A, executing move(C,D,A). The first agent
now adapts its plan to move(C,A, F l);move(A,F l,B), in-
stead of blindly trying to execute its initial move action.
If the action by the second agent would have resulted in a
part of the first agent’s goal (for instance on(C,D)) becom-
ing unsatisfied again, the first agent could apply its goal rule
to select an action to achieve this goal once again.

4.2 Example execution
In the initial mental state of the agent 〈σ0, γ0, E〉, three
possible instantiations of goal rule g1 could be applied: x =
A, y = Fl, z = B or x = B, y = Fl, z = C or x =
C, y = A, z = Fl (yielding move(A,F l,B),move(B,F l, C)
or move(C,A, F l)). Suppose the first instantiation is cho-
sen. After application of this goal rule, the plan of the agent
becomes equal to the plan in the consequent of the rule, re-
sulting in the following mental state:

σ1 = {on(A,F l) ∧ on(B,F l) ∧ on(C,A) ∧ clear(B) ∧
clear(C) ∧ clear(Fl)},

γ1 = {on(A,B) ∧ on(B,C) ∧ on(C,F l)},
π1 = move(A,F l,B).

The plan cannot be executed because the preconditions of
the action are not satisfied in this mental state (block A is
not clear). The goal rule cannot be applied because the plan
of the agent is not empty. The only applicable rule is the
PR rule ρ1:

σ2 = {on(A,F l) ∧ on(B,F l) ∧ on(C,A) ∧ clear(B) ∧
clear(C) ∧ clear(Fl)},

γ2 = {on(A,B) ∧ on(B,C) ∧ on(C,F l)},
π2 = move(C,A, F l);move(A,F l,B).

The only option is to execute the first action of the plan:

σ3 |= on(A,F l) ∧ on(B,F l) ∧ on(C,F l) ∧ clear(A) ∧
clear(B) ∧ clear(C) ∧ clear(Fl),

γ3 = {on(A,B) ∧ on(B,C) ∧ on(C,F l)},
π3 = move(A,F l,B).

In s3, the action move(A,F l,B) is executed. In the result-
ing state, the only (logical consequence of the) goal which
is not satisfied, is on(B,C). A plan is constructed to move
B onto C: first A is moved onto the floor, then B is moved
onto C. The only goal which is not satisfied is on(A,B).
The action move(A,F l,B) is selected using the goal rule
en then executed. This results in the following final mental
state in which the goal is reached and thus removed from

the goal base:

σF |= on(A,B) ∧ on(B,C) ∧ on(C,F l) ∧ clear(A) ∧
clear(Fl),

γF = ∅,
πF = E.

This example execution shows that the Dribble agent can
reach its initial goal. In [14] it is shown that the agent will
always reach its initial goal, although it will not always take
the shortest path. The length of the path depends on which
choices are made if multiple instantiations of the goal rule
are applicable. As was shown, three instantiations of the
goal rule are for instance applicable in the initial mental
state.
The example also illustrates how PR rules can be used to
modify plans. The guard of the rule describes a situation in
which the move action cannot be executed (or would fail).
The PR rules are used to replace the move action by a plan
that eventually makes it possible to execute the move action
that could not be executed at first. In summary, the goal
rule in the example is used to select a plan to satisfy a goal.
The PR rules are used to modify this plan if the initially
selected plan cannot be executed yet.
In [14], it is shown that the tower building agent can be pro-
grammed in GOAL as well. The GOAL agent however will
not always reach its initial goal, because it can get caught
in a cycle. This is due to the fact that GOAL agents do not
have a plan component in their mental states. In [14], an
example of the tower building agent programmed in 3APL is
also given. A 3APL agent however does not have declarative
goals. In 3APL, a PR rule with the abstract plan on(x, z)
as the head (on(x, z) | B(on(x, y)) → move(x, y, z)), can be
used to select appropriate move actions (replacing the goal
rule). Abstract plans however do not have the same prop-
erties as declarative goals do in Dribble. An abstract plan
is gone once it is “executed” (transformed using a PR rule)
whereas a goal is removed only when believed to have been
achieved. Suppose the plan on(C,F l); on(B,C); on(A,B)
is the initial plan of a 3APL agent (meant to achieve the
goal from the example above). The abstract plan on(C,F l)
will be transformed into move(C,A, F l) (assuming the ini-
tial belief base from the example). Once this move action is
executed, it is gone. Suppose a second agent now moves C
back onto A again. The 3APL agent will continue execut-
ing the remainder of its plan and the goal the programmer
had in mind will not be reached. Finally, [14] gives an ex-
ample of an efficient Dribble program, which always takes
the shortest path to the goal. This agent however is pro-
grammed to drop and adopt goals “manually” using rules,
instead of just using the commitment strategy to modify
them (see section 2.3). Therefore, the relation between be-
liefs and goals established through the commitment strategy
is lost. Furthermore, this agent is prone to the same kind of
problems that can arise for the 3APL tower building agent.

5. LOGIC
On top of the language Dribble and its semantics, we con-
struct a dynamic logic (LD) to prove properties of Dribble
agents. Mental state formulas LM are used to describe prop-
erties of the mental state of a Dribble agent. They are an
extension of the belief and goal formulas (see section 3.1),
with the additional clause if π ∈ Plan then Com(π) ∈ LM .

This formula is thus used to refer to the plan component
of a mental state. It is true in a mental state 〈σ, γ, π′〉 iff
π′ = π.

5.1 Meta-actions
The language LD is a language of dynamic logic [6]. Dy-
namic logic can be used to reason about computer programs.
These programs are explicit syntactic constructs in the logic.
To be able to discuss the effect of the execution of a program
p on the truth of a formula φ, the modal construct 〈p〉φ is
used. This construct intuitively states that it is possible to
execute p and to halt in a state satisfying φ. In conven-
tional procedural programming languages, the program p is
a transformation function on states: p can be executed in a
state, resulting in a new state.
A Dribble agent is a quadruple 〈σ0, γ0,Γ,∆〉. A mental state
consists of beliefs, goals and a plan. A transformation of
one mental state into another can be established by rule
application or execution of an action from the plan. This
is in contrast with conventional procedural programs, where
some fixed program is the transformation function on states.
In a dynamic logic for procedural programs, it is this proce-
dural program that can be reasoned about. The question is,
what the program is that should be reasoned about in the
dynamic logic for Dribble agents.
For Dribble agents, the transformation of one mental state
into another depends on whether an applicable rule is ap-
plied (and which, if more than one is applicable) or whether
an action from the plan is executed. It is these mental state
transitions that we want to reason about in the logic, be-
cause these transitions define the execution of the agent.
We refer to these transitions using so called meta-actions.
In the dynamic logic for Dribble, a sequence of meta-actions
is used as the program p in the formula 〈p〉φ.

Definition 12. (meta-actions) The set MetaAction is de-
fined by:

• if π ∈ Plan then commit(π) ∈ MetaAction and
uncommit(π) ∈ MetaAction,

• if g ∈ Γ then applyRule(g) ∈ MetaAction,

• if ρ ∈ ∆ then applyRule(ρ) ∈ MetaAction,

• if b ∈ ExecutableAction then execute(b) ∈ MetaAction.

The meta-actions commit(π) and uncommit(π) are used in
defining the semantics of the other meta-actions. The meta-
actions applyRule(g) and applyRule(ρ) are used to specify
that a goal rule g and a PR rule ρ are applied respectively.
An executable action b is a basic action or an if-then-else
construct (see section 2.2) and the meta-action execute(b)
is used to specify that b is executed.

5.2 Semantics
Formulas from the language LD are evaluated in a mental
state. These formulas consist of mental state formulas µ and
of formulas of the form 〈α〉µ. The latter formula is true in
a mental state s, if it is possible to reach a mental state in
which µ holds, through execution of the sequence α of meta-
actions and basic actions in the state s. The sequence α is
a sequence of meta-actions and basic actions because the
meaning of the meta-action execute(a) is defined in terms

of the meaning of basic action a. The formula [α]µ is short-
hand for ¬〈α〉¬µ, meaning that all states resulting from ex-
ecution of α satisfy µ. The mental state reached through
execution of α should not be E , the state to which all im-
possible basic actions and meta-actions lead: from there, no
other actions can be performed anymore (properties of E are
not important, because formulas are never evaluated in this
undefined state).
Execution of a basic action or meta-action changes the men-
tal state of the agent. This change is specified with the re-
sult function r∗(α)〈σ, γ, π〉. This function yields the mental
state resulting from executing α in 〈σ, γ, π〉. There is only
one possible resulting mental state, because basic actions
and meta-actions are deterministic. The formula 〈σ, γ, π〉 |=
〈α〉µ then is true iff there exists a mental state 〈σ′, γ′, π′〉 6=
E ∈ r∗(α)〈σ, γ, π〉 with 〈σ′, γ′, π′〉 |= µ. Although actions
are deterministic, the function r∗ is defined using “exists”
to be able to make a distinction between the meaning of [α]µ
and 〈α〉µ. Below, the function r∗ is defined for single meta-
actions and for basic actions (except for the meta-action for
execution of the if-then-else construct). For a complete def-
inition of r∗, we refer to [14].

Definition 13. (semantics of (un)commit)
r∗(commit(π′))〈σ, γ,E〉 = 〈σ, γ, π′〉
r∗(commit(π′))〈σ, γ, π〉 = E with π 6= E

r∗(uncommit(π′))〈σ, γ, π〉 = 〈σ, γ,E〉 if π = π′

r∗(uncommit(π′))〈σ, γ, π〉 = E otherwise

The actions commit and uncommit are defined because it
makes the definition of the other meta-actions easier. A
Dribble agent should not be thought of as having the capa-
bility to commit or uncommit to plans. A Dribble agent can
only manipulate its plan through rule application or action
execution, as was defined in section 3.2.

Definition 14. (semantics of goal rule application) Let g :
ϕ→ π′ be a goal rule.
r∗(applyRule(g))〈σ, γ, π〉 = r∗(commit(π′))〈σ, γ, π〉
if 〈σ, γ, π〉 |= ϕ

r∗(applyRule(g))〈σ, γ, π〉 = E otherwise

The semantics of the applyRule(g) action is defined in terms
of the commit action. If goal rule g is applied, the agent
should adopt the plan in the consequence of g.

Definition 15. (semantics of PR rule application) Let ρ :
πh | β → πb be a PR rule.
r∗(applyRule(ρ))〈σ, γ, π〉 =
r∗(uncommit(πh ◦ π′); commit(πb ◦ π′))〈σ, γ, π〉
if π = πh ◦ π′ and 〈σ, γ, π〉 |= β

r∗(applyRule(ρ))〈σ, γ, π〉 = E otherwise

The semantics of the applyRule(ρ) action is defined in terms
of the commit and uncommit actions. First the plan of the
agent is dropped, after which the plan is empty. Then the
plan that has as a prefix the body of the PR rule instead of
the head, is adopted through the commit action.

Definition 16. (semantics of basic action execution)
r∗(execute(a))〈σ, γ, π〉 =
r∗(a; uncommit(a;π′); commit(π′))〈σ, γ, π〉
if π = a;π′

r∗(execute(a))〈σ, γ, π〉 = E otherwise

The meta-action execute(a) is defined in terms of the basic
action a and the commit and uncommit meta-actions. First a
is executed which possibly changes the belief base and goal
base of the agent (see definition 17). Then the plan of the
agent is updated. There is thus a difference between exe-
cuting the meta-action execute(a) and executing the basic
action a. The first also results in an update of the plan of
the agent, whereas the second one only updates the beliefs
and goals.

Definition 17. (semantics of basic actions)
r(a)〈σ, γ, π〉 =
〈T (a, σ), γ′, π〉 with γ′ = γ \ {ψ ∈ γ | T (a, σ) |= ψ}
if T (a, σ) is defined

r(a)〈σ, γ, π〉 = E otherwise

If basic actions are executed, the beliefs and goals of the
agent are updated. As in section 3.2, the belief update is
formally represented by a partial transformation function
T . If this function is not defined, the basic action cannot be
executed.

5.3 Characteristics of actions
We now show how characteristics of meta-actions can be
specified in the logic. These are characteristics of realizabil-
ity and results of meta-actions. Realizability specifies when
an action can be executed and results specify the properties
of the mental state resulting from executing a meta-action.
In the following, ρ is a PR rule πh | β → πb and g is a goal
rule ϕ→ π.

Theorem 1. (realizability of meta actions)
1 |= Com(E) ↔ 〈commit(π)〉>
2 |= Com(π) ↔ 〈uncommit(π)〉>
3 |= Com(E) ∧ ϕ ↔ 〈applyRule(g)〉>

4 |= Com(πh ◦ π) ∧ β → 〈applyRule(ρ)〉>
5 |= Com(a;π) ∧ 〈a〉> → 〈execute(a)〉>

All actions require a commitment to some plan to be ex-
ecuted successfully. The first three properties specify an
equivalence whereas the last two specify an implication. The
last two properties do not specify an equivalence because no
conclusion can be drawn about the plan of the agent, assum-
ing that one of these meta-actions is executable. Assuming
that the meta-action execute(a) is executable for example,
the agent could have a commitment to a;π1, to a;π2 and
so on and so forth. The third and fourth properties do not
only have a requirement on the plan, but also on the beliefs
and/or goals and the beliefs respectively. The fifth property
has the requirement that basic action a should be realizable.
Only then can the meta-action execute(a) be executed suc-
cessfully.

Theorem 2. (results of meta actions)
1 |= [commit(π)]Com(π)
2 |= [uncommit(π)]Com(E)
3 |= [applyRule(g)]Com(π)
4 |= Com(πh ◦ π) → [applyRule(ρ)]Com(πb ◦ π)

5 |= Com(a;π) ∧ [a]β → [execute(a)]
(
Com(π) ∧ β

)
The first, second and third properties state that if the spec-
ified atomic actions can be executed, they have the specified

commitments as a result. The fourth action needs a condi-
tion on the plan of the agent (Com(πh ◦ π)). Without this
condition, no statement can be made about the resulting
plan. The same holds for the fifth meta-action. The fifth
property specifies the result of the meta-action execute(a)
if the result on the belief base of executing the basic action
a is known.
Actions are deterministic. A consequence of this is, that the
formula 〈α〉µ is stronger than the formula [α]µ. The dia-
mond formula expresses that µ holds in the state resulting
from executing α. The box formula only states that if α can
be executed, µ will hold in the resulting state. The following
equivalence holds: 〈α〉µ ↔ (〈α〉> ∧ [α]µ). The conditions
on realizability 〈α〉> and results [α]µ of actions can thus be
combined, deriving the formula 〈α〉µ.

5.4 Example
An example of a property which can be specified in the logic
for the Dribble agent of section 4, is the following: it is
possible to realize the goal from the initial beliefs (where the
goal, initial beliefs and rules are as specified in that section).
We will need the following instantiations of the goal rule of
that section.

Definition 18. (goal rule instantiations)
g1 : B(on(C,A)) ∧ G(on(C,F l)) → move(C,A, F l)
g2 : B(on(B,F l)) ∧ G(on(B,C)) → move(B,F l, C)
g3 : B(on(A,F l)) ∧ G(on(A,B)) → move(A,F l,B)

The property is expressed in the following formula:

s0 |= 〈applyRule(g1); execute(move(C,A, F l));
applyRule(g2); execute(move(B,F l, C));
applyRule(g3); execute(move(A,F l,B))〉
B(on(A,B) ∧ on(B,C) ∧ on(C,F l)).

The formula specifies that in the initial mental state s0, the
following is true: the specified sequence of rule applications
and action executions results in a state in which the agent
believes that the goal tower is built. It can be shown that
this property indeed holds for the example agent, using the
definitions of r∗ and of the meta-actions (see [14]).

6. CORRESPONDENCE BETWEEN LOGIC
AND OPERATIONAL SEMANTICS

In section 3.3, the meaning of a Dribble agent was defined
as the set of computation runs, starting in the initial mental
state of the agent. A computation run is a series of men-
tal state transitions, where each transition is a transition
in the transition system for the Dribble agent. In section
5, a dynamic logic was sketched in which one can reason
about actions defined in that logic. These actions transform
the mental state of the agent, expressed with the function
r∗. The idea is, that mental state transitions defined by ac-
tions in the logic, correspond to the mental state transitions
defined by the transition system. If this were the case, prop-
erties derived for actions in the logic are actually properties
of the Dribble agent, since the meaning of a Dribble agent is
defined in terms of these transitions in the transition system.
The correspondence is however not defined for all actions in
the logic. This is because these actions do not all correspond
to a mental state transition in the transition system. The
meta-actions commit and uncommit for instance were only
defined because it made the definition of other meta-actions

easier (see section 5.2). They do not have a counterpart in
the transition system. The actions that do have a counter-
part in the transition system are applyRule(g), applyRule(ρ)
and execute(b), which are called transition actions. In the
logic, one can reason about sequences of these transition ac-
tions θ (= t1; . . . ; tn). Note that the fact that we exclude the
(un)commit actions from θ, does not mean that r∗(θ) is un-
defined. The mental state resulting from execution of θ can
be defined in terms of (un)commit actions without including
them in the sequence θ initially.
What we want to prove is, that the mental state result-
ing from execution of some sequence θ, corresponds to the
mental state resulting from a sequence of transitions in the
transition system. This sequence of transitions is however
not just any sequence. The elements of the sequence of
transitions have a one to one correspondence with the ele-
ments of the sequence of transition actions θ: each transition
si →ti si+1 corresponds to the transition action ti in the se-
quence θ. We express this correspondence using the concept
of a computation run of θ (CRθ(s0)). A computation run of
θ is a finite sequence s0, t1, s1, . . . , tn, sn where si are mental
states and ∀i>0 : si−1 →ti si is a transition in the transition
system and θ = t1; . . . ; tn.
The correspondence between logic and operational seman-
tics is expressed in the following theorem, which is proven
in [14]. The function last yields the last state of the finite
computation run.

Theorem 3. (correspondence between operational seman-
tics and actions in the logic) For θ ∈ TransitionActionSeq
and s0, sn ∈ Σ, the following holds for a Dribble agent with
goal rules Γ and PR rules ∆ :

r
∗(θ) s0 = sn ⇔ last(CRθ(s0)) = sn

7. CONCLUSION AND FUTURE WORK
The language Dribble combines features from the languages
GOAL and 3APL. It incorporates beliefs and (declarative)
goals, as well as planning features (or procedural goals). It
thus implements key concepts of logics like BDI and KARO.
It is an enhancement of the language 3APL which only uses
procedural goals and of the language GOAL, using only
declarative goals.
An obvious limitation of Dribble is that it is a propositional
language. Extending the language with first order features
is therefore an important issue for future research. Fur-
thermore, Dribble uses goals for plan selection only. An-
other extension could therefore concern for instance the ad-
dition of rules to reason with goals. A third possibility to
extend Dribble concerns the commitment strategy. In the
current version, the agent drops a goal only if it believes
it has been achieved. An interesting issue could be to in-
vestigate whether the strategy can be extended in such a
way that the agent will drop its goal also if it believes it
is unachievable. Finally, the goal for which an agent’s plan
was selected, should be recorded. The agent could then be
programmed to drop its plan if the goal for which it was
selected, is achieved. Extending Dribble with these features
is important to make it suitable for practical use. We never-
theless believe that the language presented in this paper is
an important step towards bridging the gap between theory
and practice.

8. REFERENCES
[1] M. Dastani, F. S. de Boer, F. Dignum, and J.-J. Ch.

Meyer. Programming agent deliberation. In
Proceedings of AAMAS, Melbourne, 2003.

[2] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and
J.-J. Ch. Meyer. A formal embedding of
AgentSpeak(L) in 3APL. In G. Antoniou and
J. Slaney, editors, Advanced Topics in Artificial
Intelligence, pages 155–166. Springer, LNAI 1502,
1998.

[3] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and
J.-J. Ch. Meyer. Agent programming in 3APL. Int. J.
of Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

[4] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and
J.-J. Ch. Meyer. Agent programming with declarative
goals. In Intelligent Agents VI - Proceedings of the 7th
International Workshop on Agent Theories,
Architectures, and Languages (ATAL’2000), Lecture
Notes in AI. Springer, Berlin, 2001.

[5] K. V. Hindriks, Y. Lespirance, and H. Levesque. A
formal embedding of ConGolog in 3APL. In
Proceedings of the 14th European Conference on
Artificial Intelligence, pages 558–562, 2002.

[6] D. Kozen and J. Tiuryn. Logics of programs. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B: Formal Models and Semantics,
pages 789–840. Elsevier, Amsterdam, 1990.

[7] G. Plotkin. A structural approach to operational
semantics. Technical report, Aarhus University,
Computer Science Department, 1981.

[8] A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logical computable language. In W. van der Velde and
J. Perram, editors, Agents Breaking Away (LNAI
1038), pages 42–55. Springer-Verlag, 1996.

[9] A. S. Rao and M. Georgeff. BDI Agents: from theory
to practice. In Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95),
pages 312–319, San Francisco, CA, June 1995.

[10] A. S. Rao and M. P. Georgeff. Modeling rational
agents within a BDI-architecture. In J. Allen,
R. Fikes, and E. Sandewall, editors, Proceedings of the
Second International Conference on Principles of
Knowledge Representation and Reasoning (KR’91),
pages 473–484. Morgan Kaufmann, 1991.

[11] Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60:51–92, 1993.

[12] W. van der Hoek, B. van Linder, and J.-J. Ch. Meyer.
An integrated modal approach to rational agents. In
M. Wooldridge and A. S. Rao, editors, Foundations of
Rational Agency, Applied Logic Series 14, pages
133–168. Kluwer, Dordrecht, 1998.

[13] B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer.
Formalizing abilities and opportunities of agents.
Fundamenta Informaticae, 34(1,2):53–101, 1998.

[14] M. B. van Riemsdijk. Agent programming in Dribble:
from beliefs to goals with plans. Master’s thesis,
Utrecht University, 2002.

