Agent programming in Dribble: from beliefs to goals with plans

Birna van Riemsdijk
birna@myrealbox.com

Institute of Information and Computing Sciences
Utrecht University, The Netherlands

Supervisors:
prof. dr. J.-J. Ch. Meyer
prof. dr. W. van der Hoek

28th June 2002

Contents

1 Introduction

2 The programming language

2.1 Beliefs and goals
22 Plans.
2.2.1 Basic actions
2.2.2 Abstract plans
2.2.3 [If-then-else

2.2.4 Sequential composition

2.2.5 Definitionof plans oL
2.3 Mental state. L
2.4 Rules.
241 Goalrules
242 PRrules. e
2.5 A choice made in defining plans oL
2.6 A Dribbleagent
2.7 Searching agents e

3 Operational semantics

3.1 Semantics of belief and goal formulas
3.1.1 Possible problems oo
3.2 Transition system
3.2.1 Application of a goalrule oo,
3.2.2 Applicationofa PRrule. o000

3.2.3 Basic action execution

© o o N o oY O Ut xR W W

O ey
_ = O

13
13
14
15
15
16
17

3.2.4 Execution of if-then-else constructs

3.2.5 Execution of sequential composition
3.3 Semantics of a Dribbleagent o o 0oL
Example
4.1 Introduction.
4.2 GOAL e
421 Therules e e
4.2.2 Exampleexecution
4.2.3 A problem: cycles
4.3 Dribble
43.1 Therules e e
4.3.2 Example execution Lo
4.4 GOAL versus Dribble
4.5 3APL . . e
4.6 3APL versus Dribble
4.6.1 Using plan structures to implement goals in 3APL
4.6.2 Using belief structures to implement goals in 3APL
4.7 The benefit of being able to adopt goals
4.7.1 Sub-goals
4.7.2 The rules with adoptionof goals
4.7.3 The rules without adoption of goals
474 An autonomous agent L
4.8 An alternative tower buildingagent L0
4.8.1 Therules e
4.8.2 Example execution Lo Lo
4.8.3 Discussion e e e e e e e
Logic
5.1 The logical language
5.1.1 Mental state formulas 0oL
5.1.2 Thelanguage Lp o o ot e

18
18
19

21
21
22
22
23
24
25
25
26
28
30
30
31
33
33
33
34
35
35
36
36
37
37

5.2 The semantics L . e e e e e 42

5.2.1 Semantics of mental state formulas 42

5.2.2 Semanticsof Lp e 42

5.2.3 Semantics of meta-actions and basic actions 43

5.3 Characteristics of actions in the logic 46
5.4 Example proof 48

6 Correspondence between logic and operational semantics 50
6.1 Computationrunof & 50
6.2 Correspondence L e e o1
6.2.1 Theorem e e o1

6.2.2 Proof e 51

7 Conclusion 57

Abstract

To support the practical development of intelligent agents, several programming languages
have been introduced that incorporate concepts from agent logics: the language 3APL for
example incorporates beliefs and plans, whereas the language GOAL implements the concepts
of beliefs and goals. The language 3APL offers the means for creating and modifying plans
during the execution of the agent. GOAL agents on the other hand do not have planning
features, but they do offer the possibility to use goals to select actions.

My contribution now is the definition of the language Dribble, in which these features of both
languages are combined. The language Dribble thus incorporates beliefs and goals as well as
planning features. The idea is, that a Dribble agent should be able to select a plan to reach
a goal from where it is at a certain point in time. In order to do that, the agent has beliefs,
goals and rules to select plans and to create and modify plans.

The language Dribble has a formally defined operational semantics, defined by means of a
transition system. On top of this semantics, a dynamic logic is constructed that can be used
to specify and verify properties of Dribble agents. Furthermore, the correspondence between
the logic and the operational semantics is proven.

Chapter 1

Introduction

The term agent has been used for a wide variety of applications. There is no real agreement on
the definition of what an agent is. Often however [12], an agent is considered to be a computer
system that displays a certain degree of autonomy. An agent should be able to act without the
direct intervention of humans and should have control over its own actions. Furthermore, an
intelligent agent should respond to changes in its environment (reactive behaviour). Moreover,
it should not only act in response to its environment, but it should also be able to exhibit
pro-active (goal-directed) behaviour and take the initiative where appropriate.

In research on agents, besides architectures, the areas of agent theories and agent program-
ming languages are distinguished. Theories concern descriptions of (the behaviour of) agents.
Agents are often described using logic [1, 10, 11]. Concepts that are commonly incorporated
in such logics are for instance knowledge, beliefs, desires, intentions, commitments, goals and
plans. To support the practical development of intelligent agents, several programming lan-
guages have been introduced that incorporate concepts from agent logics: the language 3APL
[4] for example incorporates beliefs and plans, whereas the language GOAL [5] implements
the concepts of beliefs and goals. The language 3APL offers the means for creating and mo-
difying plans during the execution of the agent. GOAL agents on the other hand do not have
planning features, but they do offer the possibility to use goals to select actions.

Beliefs describe the situation in which the agent is whereas goals describe the situation in
which the agent wants to be. A goal is thus a declarative concept (also called goal-to-be).
Plans are sequences of actions and are the means to get from a belief state to a goal state.

My contribution now is the definition of the language Dribble, in which the features of the
languages GOAL and 3APL are combined. The language Dribble thus incorporates beliefs
and goals as well as planning features. The idea is, that a Dribble agent should be able to
select a plan to reach a goal from where it is at a certain point in time. In order to do that,
the agent has beliefs, goals and rules to select plans and to create and modify plans. Using
these beliefs, goals and rules, the agent can be programmed to exhibit autonomous, reactive
and pro-active behaviour.

In chapter 2, the language Dribble is introduced and the meaning of constructs in the language
is explained informally. The language has a formally defined operational semantics, which is
described in chapter 3. The semantics is defined by means of a transition system. In chapter

4, an example Dribble program is given. Using this example, the languages GOAL, 3APL
and Dribble are compared. On top of the operational semantics of Dribble, a dynamic logic
is constructed that can be used to specify and verify properties of Dribble agents (chapter 5).
Furthermore, the correspondence between the logic and the operational semantics is proven
in section 6. Because of this correspondence, statements proven in the logic actually concern
properties of the agent. I conclude the paper with a summary and an indication of future
research topics concerning Dribble in chapter 7.

Chapter 2
The programming language

In this section, I introduce the programming language Dribble. As was stated in the intro-
duction, the language is inspired by two agent programming languages: GOAL and 3APL.
The language GOAL incorporates as a distinct feature the notion of a declarative goal. GOAL
agents use these declarative goals to select actions. GOAL does not have planning features.
The actions that an agent can select are basic and are executed immediately and completely
when selected for execution (if they are enabled). The language 3APL on the other hand offers
the means for creating and modifying plans during the execution of the agent. The language
Dribble is an attempt to combine these features of both languages, thus creating an agent
programming language which incorporates declarative goals as well as planning features.

A Dribble agent should be able to select a plan to reach a goal from where it is at a certain
point in time. In order to do that, the agent has beliefs, goals and rules to select plans and to
create and modify plans. The beliefs, goals and plan of the agent change during the execution
of the agent. Together, they form the so called mental state of the agent. In the following
sections, I will define these notions and explain the meaning informally. In chapter 3 the
formal meaning will be discussed. In the sequel, sometimes typical elements will be used to
denote the membership of some set without stating that set explicitly.

2.1 Beliefs and goals

The beliefs and goals of a Dribble agent are drawn from the same logical language £, which is a
propositional language. As a consequence, the use of variables or parameter mechanisms is not
discussed. The reason is, that more research is needed to extend the programming language
with a parameter passing mechanism and to extend the programming logic for Dribble with
first order features. There was not enough time in this project to do this research. The agent
keeps two databases: a belief base and a goal base which are both sets of formulas from L.
The difference between the two databases originates from the different meaning assigned to
sentences from the belief base and goal base. This is explained further in section 2.3.

In the rules to select, create or modify plans, one should be able to refer to sentences from
the belief base and/or goal base. Therefore, the language L is extended to the languages Lg,
La and Lpg to denote that reference is made to the belief base, to the goal base or to the

belief and/or goal base respectively. These languages are defined below.

Definition (belief and goal formulas)

The language £ is a propositional language with typical formula ¢ and the connectives A and
= with the usual meaning. The set of belief formulas £p with typical formula £ is defined by:

o if $ € £, then Bo € L,

o if 81,089 € Lp, then —=(31,51 A B € Lp.

The set of goal formulas L with typical formula « is defined by:

o if p € L, then G¢ € Lg,

o if K1,Kk9 € L, then —k1,Kk1 A kg € Lg.
The set of belief and goal formulas Lgg with typical formula ¢ is defined by:

e Lp C Lpa,
e L C Lpa,

o if p1,2 € Lpa, then =1, 01 Ay € Lpa.

The usual abbreviatons for the propositional operators V, — and <> are used for L, Lp, Lg
and Lpg.

2.2 Plans

In order to reach its goals, a Dribble agent adopts plans. A plan is a sequence of basic
elements of a plan. There are three types of basic elements: basic actions, abstract plans and
if-then-else constructs. In the following sections, the basic elements and the construction of
a sequence of basic elements will be discussed.

2.2.1 Basic actions

One type of basic element of a plan is a basic action. As in the languages GOAL and 3APL,
basic actions specify the capabilities with which an agent has to achieve a certain state of
affairs. The effect of execution of a basic action is not a change in the world, but a change
in the belief base of the agent. The state of affairs that can be realised through execution
of basic actions, is therefore a state of affairs of the belief base. One would hope that the
belief base of the agent corresponds to a state of affairs of the external world and that the
action therefore not only changes what the agent believes to be the case, but also what is the
case in the world. This connection with the external world is however not incorporated in
the programming language. A Dribble agent is a mental entity with capabilities to change its
mental state. If execution of basic actions should not only affect the beliefs of the agent but

should also affect the external world, this would have to be done through some interface with
the programming language. If, for instance, the programming language is used to control a
robot, an action moveLeft should make the robot believe that it has moved left and should
actually make him move left through some interface with the programming language. The
programming language however does not require such an interface with an external world.

It may seem unnatural that the effect of execution of a basic action is first of all a change
in the beliefs of the agent and that changes in the external world are only possible “side
effects” (realised through some interface with the programming language). Maybe it would
seem more natural to have an agent execute an action and then have him observe the effects
of this action. These observations could then be used to update the belief base of the agent.
In this way, the agent would have a direct connection with the external world it acts in. Its
beliefs would reflect its observations.

There are however two problems with this approach. First of all, not all actions an agent
should be able to execute, influence the external world in a way which can be observed. For
instance, if you throw a coin off a very tall building, you would expect the coin to end up on
the streets at the foot of the building. There is however no way to observe this, standing on
top of the building. In this case, the agent would not believe anything about the coin until it
finds the coin. This does not seem to be a desirable situation. It seems more natural to have
the agent believe the coin to be on the streets, after the throw. The beliefs of the agent are
then influenced by its actions, or more specificly, by what the agent believes to be the result
of the action. If the agent later observes the coin not to be on the streets, its belief could be
changed according to this observation.

The second problem of defining actions only as changes to some external world, is that not
all actions influence the world. Some actions should influence only the beliefs of the agent
(for instance if the agent wants to memorise something). It is for these reasons that basic
actions update the beliefs of an agent.

2.2.2 Abstract plans

The second basic element of a plan is the abstract plan. An abstract plan cannot be executed
directly in the sense that it updates the belief base of an agent. Abstract plans serve as
an abstraction mechanism like procedures in imperative programming. If a plan consists of
an abstract plan, this abstract plan could be translated into basic actions through reasoning
rules (see section 2.4). These basic actions could then be executed.

In 3APL, abstract plans are called achievement goals. The reason for this is that, apart from
the procedural reading of these plans, an assertional reading is also possible. This is the
case if the abstract plan is the same as some atomic proposition from the language £. If
the plans for achieving this achievement goal actually realise a state of affairs in which the
proposition is true, this reading seems to be valid. The plans for realising an achievement
goal are written by the programmer. Whether the assertional reading of an abstract plan is
valid, is thus determined by the programmer.

2.2.3 If-then-else

The last basic element of a plan is the if 8 then m else mo fi construct. The informal
reading of this construct is as follows: if the agent believes 3 to be the case, adopt the plan 7y,
else adopt the plan m9. This construct does not look like a basic element of a plan, because it
is composed of plans. The meaning however is not defined in terms of the meaning of these
plans. The construct is treated as a basic element and the meaning is defined as such. This
will be explained further in sections 3.2.4 and 5.2.3.

If the construct is executed, the plan of the agent is updated. The plan either becomes 7 or
7o, depending on the truth of the belief formula f.

2.2.4 Sequential composition

In the previous sections, the basic elements of a plan were discussed. A plan can be empty, it
can be a basic element or a sequence of multiple basic elements. A sequence of basic elements
can be constructed using the programming construct sequential composition (denoted by a
semicolon).

2.2.5 Definition of plans

Below, the set of plans is defined. In this definition, the set of executable actions is defined,
consisting of basic actions and if-then-else constructs. Later on, it will be convenient to have
this set.

Definition (plans)

Assume that a set BasicAction of basic actions is given and has typical element a. As-
sume that a set AbstractPlan of abstract plans is given, with typical element p. Let the set
ExecutableAction with typical element b be BasicAction U {if then m; else my fi} (8 € Lp
and 71, my € Plan). The symbol E denotes the empty plan. E; 7 is identified with 7. The set
of plans Plan with typical element 7 is defined by:

e F € Plan,

e BasicAction C Plan,

e AbstractPlan C Plan,

e if m, mo € Plan and § € Lp then if § then m else o fi € Plan,

e if ¢ € ExecutableAction U AbstractPlan U {E'} and « € Plan then c¢;« € Plan.

Plans in the language Dribble are defined different from plans in 3APL. The reason for this
choice will be explained in section 2.5.

2.3 Mental state

In sections 2.1 and 2.2 T have defined the beliefs, goals and plans of a Dribble agent. These
are the elements that constitute the mental state of an agent. As was stated, the beliefs in
the belief base and the goals in the goal base are drawn from the same propositional language
L. The beliefs of the agent describe the state (of the world) the agent is in (or believes to
be in) and the goals describe the state (of the world) the agent wants to realise (or wants to
believe to have realised). As was explained, basic actions change the beliefs of the agent. It
has however not yet been explained how the goals of the agent are changed and how the plan
is changed. The plan of the agent is changed through execution of actions from the plan or
through application of rules (see section 2.4). T will now explain how the goals of an agent
are updated.

The question is: when should agents adopt or drop goals? The way in which an agent does
this, is called a commitment strategy [5]. An agent that is very lazy could for instance drop a
goal as soon as it is adopted (thinking, if T do not have a goal, T will not have to do anything
to reach it). An agent could also drop a goal if it believes that that goal has been achieved.
This seems a reasonable commitment strategy. A third way to handle the dropping of goals
could be, that an agent drops a goal if it believes that it has been achieved or if it believes
that it will never be achieved. This seems reasonable too but it is difficult to implement, for
how would the agent come to believe that a goal will never be achieved?

The strategy that was chosen for Dribble agents is the second one: an agent drops a goal if
and only if it believes that that goal has been achieved. The goals of the agent can thus only
be updated through belief updates. They cannot be updated directly through execution of
some action. In this way, a meaningful relation between beliefs and goals is established. It
becomes clear moreover, that beliefs and goals will have to be drawn from the same language,
because otherwise it will be difficult to establish whether the agent believes the goal to have
been achieved. The way in which an agent adopts goals, is that the goals are given to it at
startup (see section 2.6). It cannot adopt goals during execution.

If an agent behaves according to this commitment strategy, the mental state of the agent will
have to meet the requirement that an agent does not believe that ¢ is the case if it has a goal
to achieve ¢. If it believes ¢, it cannot have the goal to achieve ¢, because the state of affairs
¢ is already reached. Another requirement is that a particular goal of an agent is consistent.
It cannot desire a state of affairs which cannot be reached by definition. The last requirement
on mental states of Dribble agents is that their belief bases are consistent. An agent with an
inconsistent belief base would believe everything which is not a desirable situation. It could
hardly function, because all requirements on beliefs in rules would be met, but none of the
requirements on goals would be: the agent would believe everything and therefore would not
have any goals.

The goal base of an agent does not have to be consistent, because two inconsistent goals
could both be realised, although not at the same time. An agent may for instance have the
goals to be at the bakery and be at gym which cannot be realised at the same time (they are
inconsistent). They can however both be reached, but only in succession. A consequence of
this is, that the agent cannot adopt the conjunction of two separate goals in the goal base as
a new goal, for this could lead to inconsistent goals. The mental state of a Dribble agent is

defined below.
Definition (mental state of a Dribble agent)

A mental state of a Dribble agent is a triple (o,7, 7) where o C L are the agent’s beliefs and
v C L are the agent’s goals and w € Plan is the agent’s plan. ¢ and «y are such that for any
1 € v we have:

e ¢ is not entailed by the agent’s beliefs (o [~ 1), and
e ¢ is consistent (¢ = L), and

e o is consistent (o = 1).

Y. with typical element s is the set of all possible mental states.

2.4 Rules

As was described in the previous sections, the plan of an agent can be changed through the
application of rules or execution of executable actions (basic actions or if-then-else constructs).
The execution of actions will be described in chapter 3. In this section I will describe the
application of rules in more detail. There are two kinds of rules: goal rules and Practical
Reasoning (PR) rules. Goal rules are taken from the language GOAL and PR rules are taken
from 3APL. Through a goal rule, a new plan can be adopted, depending on the beliefs and
goals of the agent. With PR rules, an adopted plan can be modified.

2.4.1 Goal rules

Definition (goal rule)
A goal rule g is a pair ¢ — 7 such that ¢ € Lpg and « € Plan.

Informally, a goal rule means that the plan « can be adopted, if the mental condition ¢ holds.
The formula ¢ is a condition on the beliefs and/or goals of the agent (called the antecedent
of the rule). Goal rules are used to select plans to reach a goal from a certain state. The
conditions in the goal rule on the beliefs of an agent are used to describe the situation in
which it could be a good idea to execute the plan. The conditions on goals in ¢ specify what
the plan is good for. It may be the case that the specified goal is not actually reached through
execution of the plan, but the idea is that execution of the plan will at least help in bringing
about the goal condition.

A goal rule can only be applied if the current plan of the agent is empty. This is done because
an agent can only execute one plan at the time. If it would be possible to select new plans
during the execution of another plan, it is not clear what to do with the newly adopted plan.
Should it be executed before or after the old plan? If it would be executed after the old plan,
the agent could just as well first execute its old plan and then apply the goal rule to adopt
the new plan. If the goal rule is not applicable in that situation anymore, it would not have
been a good idea to execute the new plan after the old plan anyway.

If the newly adopted plan is executed before the old plan, this would result in an agent that
is not persistent. After adopting a plan to reach a goal, at the next point in time the agent
could just as well adopt some other plan to go after another goal in an entirely different
direction. These are the reasons why I chose for a goal rule to be applicable only if the agent
has an empty plan. In this way goal rules are used for adoption of new plans only, while the
modifying of plans is left to the PR rules.

2.4.2 PR rules

Definition (PR rule)
A PR rule p is a triple 7, | 8 — m, such that § € Lp and 7y, 1, € Plan.

The informal reading of a PR rule 7, | 8 — m, is the following: if the agent has adopted the
plan 75, and if it believes the belief formula £ to be the case, the plan m;, can be replaced by
the plan 7. 7, is called the head of the rule, 5 is called the guard and 7y is called the body.
I will explain the use of PR rules by demonstrating three ways in which they can be applied:
to create plans (often from abstract plans), to modify plans and to model reactive behaviour.

Suppose p is an abstract plan. The rule p | 8 — a;b;c can then be used to create a more
concrete plan a;b;c from the abstract plan p. This type of rule is similar to a procedure
in imperative programming. The name of the procedure is p, which can be called. If it is
called, the body of the procedure is executed which can in turn contain procedure calls. The
difference between a procedure and this kind of PR rule is, that the body of a procedure is
usually executed completely if the procedure is called. The body of a PR rule on the contrary
can be modified by the application of a PR rule.

Suppose 7, | B — m is a PR rule. Suppose 8 describes a situation in which the plan
would fail. This rule could then be used to modify the plan m; by instead adopting the plan
7, which should be the more appropriate plan for situation 8. The plan 7, could be another
way to realise the state of affairs that m;, was supposed to realise, or could for instance be
empty if that state of affairs could not be realised at all.

In a PR rule 7, | f — m, the head of the rule can be empty, resulting in a rule of the form
E | B — m. This rule is not used to modify plans, but to model reactive behaviour. In any
situation in which the agent believes 3 to be the case, the plan m, can be adopted regardless of
the current plan of the agent. The reason will be explained in section 3.2.5. The idea is that
the agent should act immediately if for instance some hazardous situation occurs, regardless
of what it is doing at the time. This rule has a close resemblance with the goal rule 8 — .
The difference however is, that goal rules are used as a means to adopt new plans only, after
the old plan has been executed completely (the current plan of the agent has to be empty).
The PR rule on the contrary can also be applied if the current plan is not empty.

PR rules and the fact that plans are part of the mental state of an agent, provide the agent
with reflective capabilities concerning plans. The agent can monitor its plans and adapt them
if necessary. Note that these rules could not simply be replaced, for examply by the if-then-
else construct. It would for instance not be possible to simulate the rule a;b | 8 — b;a in
this way. With this rule, the agent can really adapt its plan, which is fundamentaly different
from executing some procedure under some condition or executing a procedure call.

2.5 A choice made in defining plans

The set of plans of the language Dribble is defined a little bit different from the way it is
done for the language 3APL. In both languages, a plan is a sequence of basic elements of
length zero or more. The difference is, that the sequences are constructed in different ways.
In Dribble, a plan can be a sequence of a basic element and a plan: ¢; 7. A 3APL plan can be
a sequence of two plans: m1;me. The way in which a sequence is constructed, should not affect
the execution of the agent. A PR rule ¢y;c9;¢3 | B — mp for instance should be applicable to
the sequence of basic elements cy; co; c3, regardless of whether this sequence was constructed
as a concatenation of ¢; and cg;c3 or of ¢1;¢co and cs.

I will now explain the difference between plans in Dribble and plans in 3APL, using grammars
that abstract from the concrete syntax of plans. These grammars omit the fact that plans
can be empty, because it is not relevant for the discussion.

Plan := BasicElement |
BasicElement Plan

Plan ::= BasicElement |
Plan Plan

The first grammar defines plans of Dribble. The second one defines plans of 3APL. The basic
elements are the same for both grammars.

BasicElement == c¢;|c2|cs

With these grammars, abstract syntax trees can be constructed for some plan c¢i;co;c3. 1
will describe these trees using a predicate notation. The predicate Plan(BasicElement(c;),
Plan(BasicElement(cy), BasicElement(cs))) refers to the tree of which a Plan is the root.
The first child of the root is a BasicElement, which has a child ¢;. The second child of the
root is another Plan, which has two children BasicElement that each have a child: ¢, and c3
respectively. Thus the leaves of the tree are cq, co and c3. From now on I will omit the nodes
BasicElement for the sake of clarity.

The trees that can be constructed for the plan ci;co;c3 with the second grammar are:
Plan(Plan(c1), Plan(eg, ¢3)) and Plan(Plan(cy, ¢2), Plan(cs)). With the first grammar, only
one tree can be constructed: Plan(c;, Plan(cg, ¢3)). The second grammar is ambiguous: for
one plan, multiple different abstract syntax trees can be constructed. The first grammar is
unambiguous: only one abstract syntax tree can be constructed for some plan. The question
is, which grammar do we want and/or need?

I will now try to answer this question, using the example of application of a PR rule
ci1;co;¢3 | B — mp to the plan ¢1;c2; cs of the agent. The PR rule can be applied if the head
of it is equal to the plan of the agent. The rule should thus be applicable. Now suppose that
the second grammar is used to define plans. The abstract syntax tree of the head of the PR
rule can now differ from the tree of the plan of the agent. This difference should however
result in the same execution of the agent, namely that the PR rule can be applied. What
matters is the order of the basic elements of the plan, which are the leaves of the tree. So if
the second grammar would be used, there would have to be some arrangement to make sure
that different trees with the same leaves in the same order, are interpreted in the same way.

10

They would have to be transformed into a format in which they could be compared. This
format could be the format of the first grammar, which I will call the list format. Having
said all this, using the second grammar seems to complicate matters. Therefore, using the
first grammar is preferable.

Not only however is it preferable to use the first grammar, we in fact do not even need the
second grammar. As was stated above, what matters is the order of the leaves of the tree.
Fortunately, the first grammar is enough to express this. The first grammar defines lists
of basic elements and the order in which the elements are arranged in the list, defines the
execution of the program. This is the reason that I chose to use the first grammar.

In the sequel, it will turn out to be useful to be able to express that a certain sequence of
basic elements (which is a plan), is equal to the prefix of some other plan. If one wants to
express that a plan 7 is the prefix of some plan (of which 75 is the rest), this cannot be done
using the construct for sequential composition (m1; 7). This construct can only be used to
express that some basic element is the prefix of some plan (c ;).

To express that a plan is equal to the prefix of another plan, I use the operator o (m o m2).
This operator is a function which concatenates two plans. The result is a new plan with m
as prefix of that plan and 7y as the rest. The operator o is of type : Plan x Plan — Plan. It
is defined as follows (the symbol E denotes the empty plan, which is an empty list):

e Fom = woFE = T,

o (c;m)omy =c;(m om).

2.6 A Dribble agent

In the previous sections, the beliefs, goals and plans of Dribble agents were described. These
form the dynamic components of a Dribble agent which together constitute the mental state
of the agent. Furthermore, goal rules and PR rules were introduced. To program an agent
means to specify its initial beliefs and goals and to write sets of goal rules and PR rules. This
is formalised in the specification of a Dribble agent below.

Definition (a Dribble agent)
A Dribble agent is a quadruple {(og, 7y, ', A) where (og, o, E) is the initial mental state, T" is
a set of goal rules and A is a set of PR rules.

A choice was made to let the plan of the agent be empty in the initial mental state. This was
done because I think the agent should start to act because it has certain goals. A Dribble
agent should adopt plans to reach these goals with the goal rules. Giving the agent a plan at
start up is in contradiction with this idea.

2.7 Searching agents

From the previous sections, it can be concluded that Dribble agents do not use backward
search. In backward search, the agent has a specification of the goal state and it has spe-

11

cifications of the preconditions and results of actions. With these action specifications, the
agent constructs a plan to reach the goal state from the starting state. It constructs this plan,
starting from the goal state (regression).

A Dribble agent does have action specifications and it is possible to define a goal state and
a starting state, but it does not use these to do backward search. It selects its actions (or
plans) in a forward manner. It however does not use forward search, because in that case
it would use the action specifications to construct a plan. A Dribble agent uses its rules to
select a plan. In these goal rules, the programmer can specify the goal state. The execution
of the plan of the rule is supposed to help in bringing about this goal state. It is thus the
programmer that should envision the result of a plan and the programmer should specify this
in the rules. The agent cannot reason about the results of its actions, thus selecting actions
that would result in realisation of the goal state. This is the job of the programmer.

The advantage of letting the programmer do this job is, that the agent does not have to
search through a huge search space. It could then end up doing nothing, because all its
time is consumed by searching for an appropriate plan. A Dribble agent is more flexible
than a searching agent, because the agent can easily adapt its plan with its PR rules during
execution. It does not have to start searching all over if the world changes in some way during
the execution of the plan.

Thus a goal agent acts goal directed in the sense that it selects rules that are supposed to
help in bringing about its goal state. The specification of these rules however is left to the
programmer and the agent cannot reason about its goal state and the actions that should
reach it.

12

Chapter 3

Operational semantics

The mental state of an agent consists of beliefs, goals and a plan. These elements change
during execution of the agent and they are thus the dynamic parts of the agent. The mental
state changes as a consequence of the execution of actions and the application of rules. In
the previous chapter these changes were described informally. In this chapter I will give a
formal semantics of the possible mental state changes. The semantics I use is an operational
semantics defined by means of a transition system ([8], see section 3.2).

First T will however define the meaning of a statement about the beliefs or goals of the agent
(for instance B¢). This is necessary because these statements can be used in rules. Depending
on the truth of these statements, the rules can or cannot be applied.

3.1 Semantics of belief and goal formulas

In section 2.1, the belief and goal formulas were defined. In this section the meaning of these
formulas will be defined. Belief and goal formulas are evaluated in a mental state. A formula
B¢ is true in a mental state, if and only if the belief base o models ¢. In this way, the agent
believes all logical consequences of its beliefs. If the agent for instance believes two formulas
¢1 and ¢o, it also believes @1 A ¢s.

The definition of when a formula G is true, is a little bit more complicated. In section 2.3 it
was explained that the goal base of an agent can be inconsistent, because two separate goals
may be inconsistent. It was also explained that because of this, two separate goals should not
be combined into one goal. The definition of the semantics of G will therefore have to be
defined in terms of separate goals, as opposed to defining it in terms of the entire goal base.
The idea is, that all logical consequences of a particular goal are also goals, but only if they
are not believed. This is expressed with the relation ~, [5].

Definition (~,)

Let (0,7, m) be a mental state. Let 11, 19 € L be propositional formulas.
o~ v iff for some ¢ € v : 1P = o and o E o

Below, the semantics of belief and goal formulas (Lp¢) is defined. The belief formulas Lg are

13

a subset of Lpg. The semantics of the belief formulas is thus also defined by the definition
below. The semantics of G is defined in terms of the relation ~».

Definition (semantics of belief and goal formulas)

Let (0,7, m) be a mental state. Let ¢, 1» € L be propositional formulas and ¢, @1, 2 € Lpg
be belief and goal formulas.

. = B¢ iff o = ¢
= G iff)~y

= iff (o,y,m) @

9,7,

9,7,

a,7,

a,7,

{
{
{
{

)
)
)
™) = o1 A iff (0,7, m) |= @1 and (0,7, 7) = @2

Suppose that pAgq is a goal in the goal base of the agent in a mental state and that Gp — 7 is
a goal rule. This rule could be applied in that mental state, because p is a logical consequence
of p A ¢ (assuming p is not believed by the agent). It turns out to be very convenient to be
able to formulate a goal as a conjunction of other goals and to have rules that apply to the
individual conjuncts (see chapter 4). Moreover, it doesn’t seem counterintuitive that an agent
executes a plan that will help in bringing about p, if it has p A ¢ as a goal. The execution
of the plan will at least help to realise the state of affairs p A q. The plan will probably not
completely realise p A q. If this is the case however, the goal p A ¢ will remain present in the
goal base.

3.1.1 Possible problems

In the definition semantics of belief and goal formulas defined above, a formula —y is true in
a mental state if and only if that mental state does not model . It is not immediately clear
why this definition does not cause problems. I will first explain which problems could arise
and then I will explain why these problems will not occur. I will explain this in terms of the
belief base, but the same kind of argument can be constructed for the goal base.

The key point to make is, that formulas from the belief base are “shielded” with the belief
operator B. Formulas that can be evaluated in a mental state are always formulas formed with
the belief operator (belief formulas). A formula ¢ from the belief base cannot be evaluated
in a mental state. The consequence of this is the following. If ¢ is equal to B¢ and if B¢ is
not true in a certain mental state, the negation of B¢ becomes true in that mental state, as
opposed to the negation of ¢ becoming true.

If one would evaluate formulas ¢ from the belief base in a mental state (¢ is true if it follows
from the belief base), it would cause problems to state that a formula —¢ is true if and only if
it is not the case that ¢ is true. This problematic definition of the meaning of formulas from
the belief base would be the following:

(o.M Ed & okE¢,
<07777T>):_'¢ g <07777T>bé¢-

This definition would give rise to the following equivalences:

14

o & (oy,m) P
& (o,7,m) ¢
& o9

The equivalence o £ ¢ < o |= —¢ causes problems if for instance ¢ is equal to p V ¢:

pValEp & pVaglE-p
pValrEq & pVagE—q

= pVgE-pA—q
= pVqgE-(pVa)

This last statement is simply untrue. The problematic equivalence will not occur if formulas
evaluated in a mental state are belief formulas (formulas shielded with the B operator). The
following equivalence can then be derived: o [~ ¢ < (0,7, 7) = B¢ < (0,7, 7) = "Bé. The
problematic definition implements a closed world assumption: if ¢ cannot be derived from the
belief base, assume that ¢ is false. The definition with the B operator does not implement a
closed world assumption. A formula B¢ can be read as “¢ is derivable from the belief base
o”, whereas —B¢ can be read as “¢ is not derivable from the belief base ¢”. One cannot
conclude from the fact that a formula is not derivable, that the negation of this formula s
derivable. There is a difference between —-B¢ and B—¢. The last formula states that —¢ is

derivable.

Thus formulas of the form B¢ can be seen as atoms in the logic of belief formulas. They are
evaluated in a mental state and the truth of these atoms is determined by the derivability
of ¢ from the belief base in that mental state. A formula ¢ is always either derivable or
not derivable. Therefore it does not cause problems to state that if it is not the case that a
formula is derivable, this formula is not derivable.

3.2 Transition system

Transition systems are a means to define the operational semantics of a programming lan-
guage. A transition system consists of a set of derivation rules for deriving transitions for an
agent. A transition is a transformation of one mental state into another and it corresponds to
a single computation step. A set of transition rules can be viewed as an inductive definition
of a transition relation —. The relation — defined by a transition system, is the smallest
relation which contains all the axioms of the system and all conclusions which are derivable
by using these axioms. This transition relation specifies the possible computation steps of an
agent. In this section, the transition rules of a Dribble agent with goal rules I' and PR rules
A are specified.

3.2.1 Application of a goal rule

A goal rule is applicable in a mental state if the antecedent of the goal rule is true in that
mental state. It can only be applied if the plan of the agent is empty. In the mental state
resulting from application of a goal rule, the plan becomes equal to the consequent of the goal
rule. The beliefs and the goals are not influenced by application of a goal rule.

15

Definition (application of a goal rule)

(0,7, E) E o
(Ja Y, E) _>app1yRule(g) (Ja g 7T>

with g : ¢ — 7w € T a goal rule.

For each transition, the kind of transition (for instance application of a goal rule) is specified
as a subscript of the transition relation —. This is necessary because the transition rule for
sequential composition should not be applied to transitions derived with the transition rule
for application of a goal rule. This will be explained in section 3.2.5.

The transition rule for application of a goal rule only specifies how to apply a rule in a mental
state. It however does not specify which applicable rule should be applied, in case more than
one rule is applicable.

3.2.2 Application of a PR rule

A PR rule is applicable in a mental state, if the plan of the agent is equal to the head of the
rule and if the guard of the rule is true in that mental state. The result of the application
of a PR rule is that the plan in the body of the rule is adopted, replacing the plan which
was equal to the head of the rule. The beliefs and goals are not changed when a PR rule is
applied. As for goal rules, the transition rule for application of a PR rule does not specify
which PR rule should be applied in case more rules are applicable.

Definition (application of a PR rule)
(U’ 7Y, 7Th>): ﬁ

(U’ Y, 7Th> _>applyRule(p) <Ua s 7Tb>

with p: 7, | B — m € A a PR rule.

The guard of a PR rule is a condition on the beliefs of the agent. This is in contrast with
goal rules, in which the antecedent can be a condition on beliefs and/or goals. I will try to
explain the reason for the decision to let the guard of PR rules be a condition on beliefs only.

The idea is, that a goal rule g : B(¢) A G(¢)) — 7 is used to select a plan 7 in a mental state
in which the plan of the agent is empty. The plan 7 should help in bringing about the goal
from the belief state ¢. PR rules can be used during execution of 7, for example to modify it
if the agent encounters some obstacle. Once the goal rule ¢ is applied, 1) is chosen as the goal
to be realised. The plan 7 should result in a mental state in which 1 holds (or at least in a
mental state closer to 1 than ¢ was). Any change of the plan during execution should thus
be directed towards realising a state of affairs in which ¢ holds. For this it is not necessary
to check the goals of the agent. Moreover, using belief and goal formulas as the guard of PR
rule, obscures the idea of separation of plan selection and plan execution.

There is another disadvantage of letting the guard of PR rules be a condition on beliefs
and/or goals. If this would be possible, it would be possible to specify the following PR rule:
p: E | ¢ — m. This rule has a close resemblance with goal rule ¢ — 7. The difference is, that
the goal rule can only be applied if the plan of the agent is empty, whereas the PR rule can

16

also be applied if the plan is not empty. The goal rule is applicable in a subset of the mental
states in which the PR rule would be applicable. The reason for the restriction on mental
states in which a goal rule is applicable, was explained in section 2.4.1. For this reason, it is
not desirable that the PR rule p can be specified in the language Dribble.

An advantage of letting the guard of PR rules be a condition on beliefs and/or goals is the
following. The plan of the agent could be modified, depending on the goals of the agent. I
will explain this using an example. Suppose that the agent has the goal to be at the gym. In
order to satisfy this goal, the agent adopts the plan to get downtown by bus. It however turns
out that the employers of the buscompany have declared a strike. It is thus not possible to get
downtown by bus and the agent will have to modify its plan. It can either drop the plan to
get downtown or adopt an alternative plan for example to go by bike. If it would be possible
to use goals in PR rules to modify plans, the agent could modify its plan depending on the
goal for which it was selected. If the agent selected the plan to go downtown because it wants
to be at the gym, the agent could for example drop this plan: it could try again tomorrow.
If however the plan to go downtown would have been selected because the agent needs to go
to work there, the agent should not drop this plan. It should try to get to work for example
by bike. Despite this advantage, I chose to let the guard of PR rules be a condition on beliefs
only because of the disadvantages described above. As demonstrated by the example, it would
perhaps still be useful to establish some connection between the plan of the agent and the
goal for which it was selected. I think that this connection should however not be realised by
introducing goals in the guard of the PR rules because of the described disadvantages. More
research is needed to develop a method for realising this connection without introducing goals
in the guard of the PR rules.

3.2.3 Basic action execution

As was explained, basic actions update the belief base of an agent if they are executed. These
belief updates are formally represented by a partial function 7 of type : BasicAction x p(L) —
©(L). T(a,0) returns the result of updating belief base o by performing action a. The fact
that 7 is a partial function represents the fact that an action may not be executable in some
belief states.

A basic action can be executed in a mental state if the function 7 is defined (and thus has
some result ¢’) and if the plan of the agent is equal to the action in that mental state. If
T (a,0) = o', execution of basic action a in a mental state with belief base o, results in a
mental state with belief base o’. As was explained, the goals of an agent are updated through
belief updates. Goals that are reached through execution of an action, should be removed
from the goal base. This is specified in the definition below. After execution of an action, the
action is removed from the plan.

Definition (action execution(1))
T(a,0) =o'
<07 Y, a’> _>execute(a) (Jla ’7,7 E>
with ' =y\{y €[o' = ¢}.

17

3.2.4 Execution of if-then-else constructs

An if-then-else construct can always be executed, as long as the plan of the agent is equal
to this construct. The result of execution of the construct depends on the truth of the belief
formula after the if. If the belief formula is true, the plan of the agent becomes equal to
the then-part of the construct and if it is false, the plan becomes equal to the else-part. The
beliefs and goals are not influenced by executing an if-then-else construct.

The truth of a belief formula in a mental state can always be established: it is either true or
false. This is a consequence of the definition of the meaning of belief formulas (see section
3.1): (o,v,7) = =B & (0,7, m) = B. If it is not the case that a belief formula is true, it is
false. The premise of the second transition below could therefore be replaced by stating the
following: (o,~,if [then m else my fi) [~ f.

Definition (action execution(2))

(0,v,if B then 7 else my fi) = [
(U"}/a if B then 7 else m fi) —7execute(ite) (U,’)’,W1>

(0,7,1if [then 7 else m fi) = (3
(U"}/a if B then 7 else m fi) —7execute(ite) (U,’Y,W2>

with ite = if J then 7 else my fi.

The if-then-else construct is defined as a basic element of a plan, which can be executed in
one step. It could instead have been defined in terms of a non-deterministic choice operator,
sequential composition and a test (87;m + —(7;m2). The meaning would be the same (if
the test for 8 succeeds, the non-deterministic choice is replaced by 7 and if the test for =
succeeds, it is replaced by m3). The reason that I do not use the non-deterministic choice
operator is, that in section 5.2.3 it will prove to be convenient to be able to define the if-
then-else construct as an executable basic element of a plan. Furthermore, for the language
Dribble I could not think of a situation in which the non-deterministic choice operator would
be used, other than to define the meaning of the if-then-else construct.

The if-condition of the if-then-else construct is a condition on the beliefs of the agent. The
reason that it is not a condition on beliefs and/or goals is, that the construct is part of the
plan. In section 3.2.2 it was explained that the execution of plans should not depend on the
goals of the agent. This is the reason that the if-condition is a condition on beliefs only.

3.2.5 Execution of sequential composition

As was defined in section 2.2.5, a plan can be either a basic element or a sequence of basic
elements. The meaning of executing a basic element (for instance a basic action) or a certain
fixed sequence of basic elements (the head of a PR rule), was defined in the previous transition
rules. In the transition rule for execution of sequential composition, it is defined what it
means to execute an arbitrary sequence of basic elements (a plan). The first part of the plan
is executed first, any changes to the belief base and goal base are recorded and the agent
continues executing the remainder of the plan.

18

Definition (ezecution of sequential composition)

(0,7, m) =4 (0,9,)
<07777T1 o 7T2> —z <0177177T,1 o 7T2>

with z € {applyRule(p), execute(a),execute(if 3 then m else my £i)}.

In this rule, the operator o which was defined in section 2.5 is used. It is used to denote that
some plan is a sequence of basic elements of which m; (or 7}) is the first part and w5 is the
second part: m; (or 7) is the prefix of this plan. This prefix can be executed and the rest of
the plan remains to be executed.

The transition rule specifies that it can only be used if the transition that is used as the
premise of the rule, was not derived with the transition rule for application of a goal rule:
x # applyRule(g). The reason is, that goal rules should only be applied if the plan of the agent
is empty. It should therefore not be possible to derive some transition
(0,7, Eom') = appiyhute(q) (0,7, mo @) with g : ¢ — m € T a goal rule. If this transition
could be derived, the goal rule would be applicable in a mental state with a plan that is
not empty. This transition could be derived through application of the transition rule for
sequential composition, after deriving the transition (7,7, E) —app1yrute(g) (0;7,7) with the
rule for application of a goal rule.

The restriction that the transition rule for sequential composition cannot be applied to a
transition s; —app1yRule(g) Si+1, 1S thus necessary to prevent the derivation of the transition
<07 s Eo 7TI> _>app1yRule(g) <07 Y, o ﬂ-,) from the transition <07 s E> _>app1yRule(g) <07 s 7T>.

I will explain now that a PR rule of the form E | f — m, can always be applied in
a mental state, regardless of the plan of the agent. The reason is, that the transition
(0,7v,E)Y =4 (0,7,m) can always be derived (provided that the condition specified by the
guard of the rule is met by the belief base). Using the transition rule for sequential composi-
tion, the transition (o,v, E o m) —, (0,7, 7 o) can be derived. In a mental state (o,~,),
the rule can thus be applied.

3.3 Semantics of a Dribble agent

The semantics of a Dribble agent is derived directly from the transition relation —. The
meaning of a Dribble agent consists of a set of so called computation runs. Computation runs
are defined below.

Definition (computation run)
A computation run CR(sg) for a Dribble agent with goal rules I' and PR rules A is a finite or

infinite sequence sq,..., s, or So,... where:

e s; € X are mental states,

e Viu0: 8;—1 —g S 18 a transition in the transition system for the Dribble agent.

The meaning of a Dribble agent can now be defined in terms of a set of computation runs.

19

Definition (semantics of a Dribble agent)

The meaning of a Dribble agent (09,7, L', A) is the set of computation runs CR({oy, Y0, F)).

Note that the first state of the computation runs is the initial mental state of the Dribble
agent as defined in section 2.6. As was explained in sections 3.2.1 and 3.2.2, the transition
rules for goal rule application and PR rule application do not specify which rule to apply, in
case more than one rule is applicable in a mental state. The transition rules neither specify
whether to apply a rule or to execute an action, if both are possible in a mental state. Any
implementation of the language Dribble has to deal with how to reduce this non-determinism
in the semantics of the language. Control structures are needed to determine whether an
action should be executed or whether a rule should be applied and possibly which rule should
be applied. I will however not discuss these control structures in this paper.

20

Chapter 4

Example

In this chapter, I give an example to illustrate how the programming language Dribble can
be used to program agents. The example agent has to solve the problem of building a tower
of blocks. The blocks have to be stacked in a certain order. In the example, I use variables
as a means for abbreviation. Variables should be thought of as being instantiated with the
relevant arguments in such a way that predicates with variables reduce to propositions.

I will first show how the tower building agent can be programmed in GOAL and then how it
can be programmed in Dribble. T will compare the languages GOAL and Dribble with respect
to the example. Then I will show how the tower building agent can be programmed in 3APL,
followed by a comparison of the languages Dribble and 3APL. At the end of this section I
will give a second way of programming a tower building agent in Dribble.

4.1 Introduction

The only action an agent can take, is to move a block x from some block y to another block
z (move(zx,y, z)). The action is enabled only if the block to be moved (x) and the block to
which z is moved (z) are clear. The floor (F) is treated as a block that is always clear. The
predicate on(z,y) is used to denote that a block x is on block y. The predicate clear(z) is
used to denote that block z is clear.

I assume that the function 7 (move(z,y, z),0) which specifies the changes to belief base o
if action move(z,y,z) is executed, has the following properties. The function is defined
only if o implies clear(z) A clear(z) A on(x,y). The result is a belief base that implies
on(x,z) A clear(y) A —on(z,y) A —clear(z) if z # Fl. If z = FI, the resulting belief base
implies on(x, z) A clear(y) A —on(z,y).

T (move(z,y, z),0) =o' & o0 [dear(z) A clear(z) A on(z,y)
T (move(z,y,z),0) =0' N z#Fl = o =on(z,z)Acdear(y) A —on(z,y) A ~clear(z)
T (move(z,y,2),0) =c' N z=Fl = o =on(z,z)Acdear(y) A —on(z,y)

Above, the changes to the predicates on(x,y), on(z, z), clear(y) and clear(z) which are caused
by the action move(z,y,z), are specified. Now, I will specify which predicates are not

21

changed by the action move(z,y, z), assuming that the function T (move(z,y,z),0) is de-
fined: T (move(z,y,z),0) =o'
o = on(u,v) AN u#zx = o E on(u,v)

ok —on(u,v) AN ((u#z)V(v#2) = o FE-on(u,v)

o Edear(w) AN w#z = o E cear(w)

o | —cear(w) N w#y = o E —cear(w)
For the example programs in the different languages, the following initial belief base and goal
base are used (see figure 4.1).

oo = {on(C,A)Non(A,Fl) Non(B, Fl) A clear(B) A clear(C) A clear(Fl),

on(z,y) — —clear(y)}
v = {on(A4,B)Aon(B,C)Aon(C,Fl)}

@)
=

Figure 4.1: Initial beliefs and goal

4.2 GOAL

4.2.1 The rules

In GOAL, the tower building agent can be programmed with the following goal rules.
g1 : B(on(z,y) Aclear(z) A clear(z)) A Glon(z,z)) — move(z,y,2)

g2 : B(on(z,y) A —clear(z)) A G(on(z,z)) — adopt(G(clear(x)))
g3 : B(on(z,y) A —clear(z)) A G(on(z,2z)) — adopt(G(clear(z)))
94 : B(on(z,y) A clear(zx)) A Glclear(y)) — move(z,y, Fl)

g5 : B(on(z,y) A —clear(z)) A G(cear(y)) — adopt(G(clear(x)))

The consequent of a goal rule in GOAL is a basic action. In contrast with Dribble, plans
cannot be used as the consequent of a goal rule. Furthermore, the special actions adopt(G(¢))
and drop(G(v)) can be used in GOAL. These actions respectively add or delete the goal v
from the goal base. Rule g; specifies that a move(z,y, z) action to fulfil a goal on(z,z) can
be executed if the preconditions for the action are satisfied. If the precondition that x is clear
or z is clear is not satisfied, rules gs or g3 can be used to adopt the new goal that these blocks
should become clear. A goal clear(y) can be satisfied by executing rule g4, which specifies

22

that the block that is on top of block ¥ is moved to the floor. This move action can only be
executed if the block on top of y is clear. If it is not clear, rule g5 can be used to adopt the
goal to clear block z that is on top of block .

Suppose for instance that the agent believes that blocks A, B,C and D
are stacked in that order with A on top and D at the bottom (see figure
4.2). Suppose the agent has a goal to clear block D. Rule g4 cannot be
used to move C to the floor, because C is not clear. The agent could
then adopt the goal to clear C with rule g5. Block B that is on top of
C cannot yet be moved to the floor to clear C, so the goal to clear B
can be adopted with rule g5. Now block A can be moved to the floor D
to clear B, using rule g4. After moving A to the floor, B and C can be
moved to the floor successively using rule g4, satisfying the initial goal Figure 4.2: Tower
to clear block D.

Q= |»

4.2.2 Example execution

Suppose the move action and the initial belief base and goal base are as specified in section 4.1.
Note that the goal on(A, B) for example is a logical consequence of the goal in the goal base. If
a goal rule specifies a condition G(on(A, B)), this rule is applicable in the initial mental state:
the goal G(on(A, B)) is implied by a goal in the goal base and it is not implied by the belief
base (see section 3.1). In the initial mental state of the agent (og, o), the instantiation of rule
g1 with z = B, y = Fl, z = C could be applied (yielding move(B, Fl,C)). Another option
is applying an instantiation of rule g; with x = C, y = A, z = Fl (yielding move(C, A, F1)).
Yet another rule that can be applied in the initial mental state is the instantiation of rule g
with x = A, y = Fl, z = B (adopt(G(clear(A)))). Suppose the second instantiation of rule
g1 is executed to satisfy the goal on(C, Fl). The new mental state of the agent satisfies the
following specifications (see figure 4.3):

o1 E on(A,Fl) Non(B, Fl) Aon(C, Fl) A clear(A) A clear(B) A clear(C) A clear(F1),
v1 = {on(4,B)Aon(B,C)Aon(C,Fl)}.

In this mental state, the instantiation of rule g; with x = B, y = Fl, z = C is a rule that
could be applied (yielding move(B, Fl,C)). The mental state resulting from application of
this rule satisfies the following:

oy | on(A,Fl) ANon(B,C) Aon(C, Fl) A clear(A) A clear(B) A clear(F1),

v2 = {on(4,B)Aon(B,C)Aon(C,Fl)}.
The only rule that can be applied in this mental state, is the instantiation of rule ¢g; with
z=A, y=Fl, z= B (yielding move(A, Fl, B)):

o3 E on(A,B)ANon(B,C) Aon(C, Fl) A clear(A) A clear(F1),

v3 o= 0.
This example execution shows, that it is possible for the specified GOAL agent to reach its
initial goal.

23

>
=
A
!
>
A
!
W A= |»

1 2

Figure 4.3: Example execution

4.2.3 A problem: cycles

Although the agent could reach its goal if the specified instantiations of rules are executed,
it is unfortunately not the case that it will always reach its goal if other instantiations are
applied. The problem is, that the agent could get into a cycle.

Suppose that all blocks are on the floor (mental state 1 of section 4.2.2). In section 4.2.2 block
B is moved onto C. The agent could however instead execute the action move(A, Fl, B) to
satisfy the goal on(A, B) (see figure 4.4). In the mental state in which A is on B and C is
on the floor, the only part of the initial goal that is not satisfied is on(B, C). To satisfy this
goal, rule g is applied to adopt the goal clear(B). Then rule g4 is applied and A is moved
to the floor (yielding move(A, B, Fl)). In this mental state, all blocks are on the floor again
and the only goal in the goal base is the initial goal. The mental state is thus equal to mental
state number 1 (see section 4.2.2). The agent now has two options: it can move A onto B
again or it can move B onto C. If the agent decides somehow to move block A, the agent
enters a cycle. The only way to escape from this cycle is to move B onto C' in mental state
number 1. This shows that the agent will not always reach its initial goal. If it chooses to
move A onto B every time it is in mental state 1, it will keep moving around in circles, not
realising its goal.

Figure 4.4: Cycle

This problem could possibly be solved by letting the agent keep track of which rules it executes
in which mental state. It would record a graph as shown in figure 4.5. The nodes in the figure
indicate the different mental states and the arrows denote mental state transitions. Mental
state number 1 is the initial mental state and number 9 is the goal state (these numbers do
not correspond with the numbers of the example execution above). If more than one arrow
leaves from a node, multiple different rules are applicable in that state. Mental states 7, 10

24

and 11 are an example of a cycle. The agent could apply a rule in state number 1, resulting in
state number 7. In this state, it could apply a rule resulting in state number 10. Then it will
have to go to 11 and back to 7 again. The agent should now apply a different rule, resulting
in state number 8 instead of 10. It should thus if possible apply a rule it has not applied yet.
In this way, the agent will not move around in circles. The problem would however be to
determine whether two mental states are equal.

Figure 4.5: State diagram GOAL

4.3 Dribble

4.3.1 The rules

A Dribble agent can solve the tower building problem with the following rules.
' = { g1:B(on(z,y)) A G(on(z, z)) = move(z,y,z) }

A = { p1:move(x,y,z) | B(=cear(z) A on(a,z)) — move(a,x, Fl); move(z,y, z),
p2 : move(z,y, z) | B(—clear(z) A on(a, z)) — move(a, z, Fl); move(z,y,z) }

The goal rule is used to derive the move(z,y, z) action that should be executed to fulfil a goal
on(x,z). The preconditions of the move action are not checked in this rule, so it is possible
that the derived action cannot be executed in a particular mental state. The PR rules can
then be used to create a mental state in which this action can be executed.

PR rule p; can be applied if the condition that z is clear is not satisfied. Rule py can be
applied if z is not clear. The PR rules with head move(z,y,z) construct a plan to create
a mental state in which this action can be executed. Rule p; for example specifies that
if x is not clear because on(a,x), a move(z,y,z) action should be replaced by the plan

25

move(a, x, Fl);move(x,y, z): first clear z, then move z. If in turn the action move(a, z, F)
cannot be executed because there is some block b on top of z, the plan could be changed to
move(b, a, Fl); move(a, x, Fl);move(x,y, z): clear a, clear z and then move x.

4.3.2 Example execution

Suppose the move action and the initial belief base and goal base are as specified in section
4.1.

In the initial mental state of the agent (g, o, E), three possible instantiations of goal rule g;
could be applied: t=A, y=Fl, z=Borxz=B, y=Fl, 2=Corz=C, y=A, z=FlI
(yielding move(A, Fl, B), move(B, Fl,C) or move(C, A, Fl)). Suppose the first instantiation
is chosen. After application of this goal rule, the plan of the agent becomes equal to the plan
in the consequent of the rule, resulting in the following mental state (see figure 4.6):

o1 = {on(A, Fl) Non(B, Fl) Aon(C, A) A clear(B) A clear(C) A clear(F1)},
m1 = {on(A4,B)Aon(B,C)Aon(C,Fl)},
m = move(A,Fl,B).

The plan cannot be executed because the preconditions of the action are not satisfied in this
mental state. The goal rule cannot be applied because the plan of the agent is not empty.
The only applicable rule is the PR rule py:

oo = {on(A, Fl) Non(B,Fl) ANon(C, A) A clear(B) A clear(C) A clear(F1)},
v2 = {on(A4,B)Aon(B,C)Aon(C,Fl)},
my = move(C, A, Fl);move(A, Fl, B).

The only option is to execute the first action of the plan:
o3 E on(A, Fl) Non(B, Fl) Aon(C, Fl) A clear(A) A clear(B) A clear(C) A clear(F1),

v3 = {on(4,B)Aon(B,C)Aon(C,Fl)},
w3 = move(A, Fl,B).

The only option is to execute 73:
os | on(A,B)ANon(B, Fl) ANon(C, Fl) A clear(A) A clear(C) A clear(F1),
va = {on(A4,B)ANon(B,C) Aon(C, Fl)},
my = FE.

The only applicable rule instantiation is g; with £ = B, y = Fl, z = C, because the goal
on(B,C) is the only (logical consequence of the) goal that is not satisfied:

o5 E on(A,B)Aon(B,Fl) Aon(C, Fl) A clear(A) A clear(C) A clear(F1),

vs = {on(4,B)Aon(B,C)Aon(C,Fl)},

w5 = move(B,Fl,C).
In this mental state, a plan is constructed using rule p; to move B onto C:
move(A, B, Fl);move(B, Fl,C). The previous move move(A, Fl, B) is undone. The plan
is executed, resulting in the following mental state:

o7 E on(A,Fl) ANon(B,C) Aon(C, Fl) A clear(A) A clear(B) A clear(F1),

v = {on(A4,B)Aon(B,C) Aon(C, Fl)},

. = K.

26

The only applicable rule is g;, resulting in adoption of the plan move(A, Fl, B). This plan is
executed:

os E on(A,B)Aon(B,C) Aon(C,Fl) A clear(A) A clear(F1),
Y8 = V)a
g = E.
C A
A B - A B C - B C -
0,1,2 3 4,5
A
B B
A B c | ° A C — C
6 7 8

Figure 4.6: Example execution

This example execution shows that it is possible for the Dribble agent to reach its initial goal.
Reaching the goal is however not only a possibility, but the example Dribble agent will always
reach its initial goal. This is illustrated in figure 4.7, which shows the transition diagram for
the example Dribble agent. Mental state number 1 is the initial mental state and number 11
is the goal state (these numbers do not correspond with the numbers of the example execution
above). As is shown by the transition diagram, it does not matter which instantiation of a
rule is chosen in a mental state. The agent will eventually reach its goal (although some paths
to the goal state are shorter than others). This is partially due to the fact that the diagram
does not contain cycles.

I will now explain why the goal specified in the goal rule is on(z,y), instead of for instance
on(x1,y1) Non(xza,y2). The reason is that a goal rule with only a goal on(z,y) is more general.
It can be used to help in satisfying any goal on(z1,y1) A ... A on(zy,y,). Furthermore, it is
not clear what the consequent of a goal rule with goal on(x1,y1) A on(x2,y2) should be. The
consequent could be two move actions, but the order in which the move actions should be
executed cannot be determined in general. The second move can undo the first move, so the
result of executing these move actions will not always be that both goals are fulfilled. Thus
this example shows that it is convenient that the meaning of goal formulas is defined the way
it is (see section 3.1).

The example also illustrates how PR rules can be used to modify plans. The guard of the
rule describes a situation in which the move action cannot be executed (or would fail). The
PR rules are used to replace the move action by a plan that eventually makes it possible to
execute the move action that could not be executed at first. In summary, the goal rule in the

27

example is used to select a plan to satisfy a goal. The PR rules are used to modify this plan
if the initally selected plan cannot be executed yet.

Figure 4.7: State diagram Dribble

4.4 GOAL versus Dribble

The main difference between GOAL and Dribble is that the mental state of a GOAL agent
only contains beliefs and goals, whereas the mental state of a Dribble agent also contains a
plan component. The idea of the way in which the agents are programmed in the languages
GOAL and Dribble to solve the tower building problem is the same for both languages. Move
actions are derived to realise parts (logical consequences) of the initial goal of the agent. If a
move action that directly realises a goal cannot be executed, the conditions under which the
action can be executed have to be created. In GOAL this is done by means of deriving new
goals. These goals have to be satisfied before the action to realise a part of the initial goal

28

can be executed. In Dribble it is done by constructing a plan to create the conditions for the
action. The plan is constructed using PR rules.

The biggest difference between the two example agents is, that the Dribble agent will always
reach its goal, but for the GOAL agent this is not guaranteed. The GOAL agent could stay
in a cycle not realising its initial goal, but the Dribble agent will always eventually end up on
the path leading to the goal state.

The reason that the Dribble agent will not get into cycles is that it will always eventually
execute a derived move action. If the Dribble agent decides to try to realise the goal on(A, B),
the action move(A, z, B) is recorded as the plan of the agent (applying goal rule g; of section
4.3.1). The PR rules can modify this plan, but the action move(A,z, B) will remain the
last action of the plan until it is executed. The way in which the PR rules are programmed,
ensures this. If move(A, x, B) is adopted as the plan, the Dribble agent will eventually execute
this action.

A GOAL agent does not have a plan component in its mental state. In contrast with a Dribble
agent, a GOAL agent therefore cannot create and modify a plan. The GOAL agent executes
the action in the consequent of a rule as soon as the rule is applied. The conditions in the
antecedent of the rule should make sure that the rule is only selected if the preconditions
for the action are satisfied. The rules that adopt new goals and the rules that achieve these
goals, make sure that these preconditions are realised. Nothing however guarantees that the
rule whose preconditions have just been satisfied, will be executed: in that state another rule
could be applicable as well.

Suppose for instance that block A is on B and block B and C

are on the floor (see figure 4.8). The only part of the initial A
goal that is not satisfied is on(B,C). The idea of for instance
rule go of section 4.2.1 is the following: if the agent has a goal B C

on(B,C) but B is not clear, it should adopt the goal to clear B.
This block has to be cleared, because then the goal on(B, C) Figure 4.8: Example

can be realised through application of an instantiation of rule g;. It is however not recorded
that the situation in which B is clear has to be realised because then the goal on(B,C) can
be realised. If the goal clear(B) is realised, all blocks are on the floor and the only goal of
the agent is the initial goal. In this situation, the agent should execute the instantiation of g;
which moves B onto C', because B was cleared to satisfy the preconditions for this action. The
agent could however instead execute the action move(A, Fl, B), because the preconditions for
this action are also realised. If it does this, it will get into a state it was in before. If the
agent keeps on doing this, it will keep moving around in circles and it will not reach its goal.

In summary, the problem in GOAL is that there is no direct relation between the newly
adopted goals and the initial goals. The state that is described by a new goal is supposed to
be a state (sub-state) on the way to a specific end-goal. If this sub-state is realised however,
nothing guarantees that the specific end-goal for which it was created, is realised next. Instead
of applying the specific rule realising the end-goal, just as well another applicable rule could be
applied. In Dribble the end-goal (which is a part of the initial goal) will always be reached.
The reason is, that the move action realising this goal is recorded and will be executed
eventually. The agent does not reach some sub-state in which it could go into a direction
away from the end-state for which it was created.

29

One reason that the Dribble agent will always reach its initial goal is that it cannot get into
a cycle. The other reason is that all paths lead to the goal (see figure 4.7). There is not a
path with a dead end from which the initial goal cannot be reached anymore. This is due to
the fact that actions can always be reversed. This is a characteristic of the problem domain.
Suppose for example that the domain is such, that the agent can fall into a deep pit from
which it cannot get out. Entering the branch of the state diagram leading to this situation
would be fatal. The agent would not be able to get onto the path leading to the goal state
(assuming that falling into the pit is not a goal of the agent....). In the domain of the pit,
choosing the right applicable rule will not only speed up the process of reaching the goal, but
it is also crucial for the agent to reach the goal at all.

A last remark has to be made about the GOAL agent. Although the state diagram (figure
4.5) contains cycles, there is always the possibility of getting out of a cycle onto the path
leading to the goal. The agent just has to choose the right rule for application.

4.5 3APL

In 3APL one cannot use declarative goals. The only available rules are the PR rules. With
the following PR rules, the tower building problem can be solved.

prion(z2) | Blon(s.y)) S move(s,,2)
p2 : move(z,y,z) | B(-cear(x) Aon(a,z)) — move(a,z, Fl);move(z,y, z)
p3 : move(z,y,z) | B(-cear(z) ANon(a,z)) — move(a,z, Fl);move(z,y,z)

A 3APL agent gets an initial plan, comparable to the initial goal of a Dribble agent. The
initial plan would have to be on(C, Fl);on(B,C);on(A, B). Suppose that the move action
and the initial belief base of the agent are as specified in section 4.1. With rule p; the action
move(C, A, Fl) is derived. The plan becomes move(C, A, Fl);on(B,C);on(A, B). The first
action of the plan is executed, after which it is removed from the plan. Then rule p; is applied
again, resulting in the following plan: move(B, Fl,C); on(A, B). The move action at the head
of the plan is executed. Rule p; has to be applied one more time and the plan of the agent
becomes the following: move(A, Fl, B). This action is executed after which the plan is empty.

The plan on(C, Fl); on(B, C);on(A, B) is a sequence of abstract plans. After execution of for
instance the abstract plan on(C, Fl), the agent believes that C' is on the floor: B(on(C,F1)).
In this case, the assertional reading of an abstract plan that was referred to in section 2.2.2,
is valid. After execution of the abstract plan or achievement goal as it is called in 3APL, the
agent believes the goal to be true.

In the following section, the differences between 3APL and Dribble are discussed using the
example programs of the tower building agent in both languages.

4.6 3APL versus Dribble

The main difference between a 3APL agent and a Dribble agent is, that the mental state
of the 3APL agent has a belief component and a plan component, whereas the mental state
of the Dribble agent also contains goals. The question is, whether these goals really add

30

something. I will try to answer this question by trying to implement goals in the language
3APL. If this could be done, we would not need Dribble and 3APL would be enough.

Imple
or usi
used.

paper
by let

Goals

menting goals in 3APL could be done in two ways: using the plan structures of 3APL
ng the belief structures. In the example program in section 4.5, the plan structures are
Achievement goals as they are called in 3APL (abstract plans as they are called in this
) fulfil the role of declarative goals. Implementing goals in the belief base could be done
ting the agent believe a predicate goal(x).

in Dribble have several properties:

one goal can be a logical combination of propositions,
all logical consequences of a goal in the goal base are also goals,

goals are removed if the agent believes the goal situation to be the case.

These properties would have to be implemented in 3APL. T will explain in the following
two sections whether this can or cannot be done using plan structures or belief structures
respectively.

4.6.1

Using plan structures to implement goals in 3APL

PR rule p; of section 4.5 has a close resemblance with the goal rule of section 4.3.1:

p1:on(z,z) | B(on(z,y)) — move(z,y,z),
g1 :B(on(z,y)) N G(on(z,z)) — move(z,y,z).

In 3APL, the achievement goal on(z, z) is used as a declarative goal. The properties of this
achievement goal in 3APL are however different from those of the declarative goal on(z, z) in
Dribble.

A goal on(A, B) Aon(B, C) cannot be expressed in 3APL because logical operators are
not allowed in achievement goals.

Because a goal on(A, B) A on(B,C) cannot be expressed in 3APL, this would have to
be translated into two separate goals on(A, B) and on(B, C). If one wants to program a
3APL agent that realises these goals, the order in which these goals have to be realised
has to be specified by the programmer. In the example 3APL program in section 4.5
for instance, the initial plan of the agent is on(C, Fl);on(B, C);on(A, B). This plan
however has a different meaning than the goal on(A, B) A on(B,C) A on(C, Fl). The
three conjuncts of the goal have to be realised at the same time. The three achievement
goals of the plan can only be realised in sequence.

A goal of a Dribble agent is removed from its goal base only if it is achieved. An
achievement goal is removed from the plan if a rule is applied to translate the goal into
an action. This action should achieve the goal. There is however no guarantee that
the agent will actually have reached the goal after execution of the action, yet the goal
will be gone anyway. This shows an advantage of the clear separation between beliefs,

31

goals and plans which is realised in Dribble. The relation between beliefs and goals in
Dribble provides for a kind of maintenance goal. If one conjunct of a goal is reached in
a mental state, it is not a goal in that state. If in the next mental state the conjunct is
not believed by the agent anymore, it becomes a goal again. This is useful in the domain
of building a tower: actions to realise one part of the initial goal, often undo already
realised other parts. Ounly if the entire goal is believed by the agent, it is removed from
the goal base. In 3APL, achievement goals are part of the plan. If they are translated
into actions and if these actions are executed, the goals are gone. If after execution the
achievement goal is not reached, it will have to be explicitly added to the plan again.

In 3APL, the programmer specifies the order in which the achievement goals should
be reached. This order cannot always be any order. In the example of tower building,
the agent should start at the bottom of the tower and end at the top. In 3APL the
programmer of the agent would therefore have to think about the way a certain tower
is built for every tower the agent should build. In Dribble the programmer can specify
the goal state and the agent has to figure out how to reach this state. In 3APL, the
programmer would either need to have knowledge about the initial beliefs of the agent,
or a rule would have to be specified that removes an achievement goal from the plan if
it is believed by the agent.

Suppose for example that the initial mental state of the
agent is, that block C' is on the floor, B is on C' and
A is on the floor (figure 4.9). The goal is as specified
in section 4.1. The agent only has to execute the ac- B
tion move(A, Fl, B) to reach its goal. The programmer C A
should now either specify the initial plan of the agent
to be on(A, B), or specify a rule that would drop the Figure 4.9: Example
achievement goal on(z,y) if the agent believes this to be

the case.

In the previous item I explained the disadvantage of letting the programmer specify the
order in which the achievement goals should be reached. There can however also be an
advantage to this. There is no guarantee that the Dribble agent will choose the shortest
path to the goal state. Some actions may be superfluous. The advantage of letting the
programmer specify the order now is, that the agent will follow the shortest path to the
goal state (assuming the programmer did a good job, see also section 4.8).

In summary, being able to specify declarative goals in an agent programming language can
be an advantage. These goals and the meaningful relation between beliefs and goals cannot
be replaced by achievement goals in 3APL. This is due to the different meaning of declarative
goals which are a separate component of the agent and achievement goals, which are part of
the plan of the agent.

The example of the tower building agent is a good example of an agent for which it is intuitive
and useful to specify a goal state. A goal has convenient properties. Implementing the agent
without using declarative goals leads to a less intuitive specification and extra rules have to be
specified to realise the desired behaviour. For other agents it may be more natural to specify
an initial plan instead of an initial goal and think of the agent in terms of actions it should

32

execute instead of goals it should reach. This can be the case if it is difficult to describe the
desired goal state.

4.6.2 Using belief structures to implement goals in 3APL

Instead of letting achievement goals fulfil the role of declarative goals, one could try to use
the beliefs of the agent to implement the concept of declarative goals. An example of the use
of beliefs as goals in a PR rule p is demonstrated below. The PR rule has a close resemblance
with goal rule g; of section 4.3.1:

p: | Blon(z,y)) A Bl(goal(on(z,z))) — move(z,y,z),
g1: B(on(z,y)) A G(on(z,z)) — move(z,y, 2).

The properties of the belief-goal B(goal(on(z,z))) are however different from the goal
G(on(z,z)) in Dribble.

e A belief-goal cannot include logical operators. One could use predicates to describe a
logical combination of propositions, for instance goal(and(on(A, B),on(B,C))). The
meaning of these predicates however would have to be defined. This is not trivial.

e A goal in Dribble is removed if the agent believes that the goal is achieved. In 3APL
this removal would have to be done explicitly in definitions of actions.

e Because a belief-goal cannot include logical operators, the mechanism of maintenance
goals that was explained in the previous section, is not supported by belief-goals. If
a belief-goal is removed from the belief base because it is achieved, it will not return.
One could try to use action specifications to let maintenance goals return if necessary.
It would however be very difficult to specify the conditions under which they should
return and it would make the specifications of actions very counterintuitive.

Concluding, belief-goals cannot replace the declarative goals of Dribble easily.

4.7 The benefit of being able to adopt goals

In section 4.2.3 it was explained that programming the tower building agent in GOAL with
goal rules that adopt new goals, can lead to problems. The agent could stay in a cycle, not
reaching its initial goal. Being able to adopt goals in the goal rules can however be beneficial.
That will be explained in this section. The special actions to adopt and drop goals in the
consequent of goal rules are not part of the language Dribble. More research is needed to
extend the language with these actions. In this section I will nevertheless show that it can
be beneficial to use goal adoption in goal rules and that this research could thus be useful.

4.7.1 Sub-goals

An agent realises a goal in a sequence of steps. After each step, the world is in a certain state
(the agent believes the world to be in a certain state). As in section 4.4, T call these states

33

on the way to the end-goal, sub-states. If these sub-states are adopted as goals, I call them
sub-goals. An agent can execute a plan, while these sub-states are passed during execution of
the plan. This was done in the example Dribble agent. The agent could however instead be
programmed with goal rules that adopt these sub-states as goals if these rules are executed.
Other goal rules should specify the plan (or basic action in case of GOAL) to reach these
sub-goals. This was done in the example GOAL agent. The difference is, that the GOAL
agent can decide once more what to do if it is in some sub-state. The Dribble agent already
has a plan to be executed in a certain sub-state.

For the example domain of building towers, being able to decide once more what to do in
a realised sub-state does not lead to desirable behaviour. In this domain, usually multiple
actions can be executed in a sub-state. Executing the wrong one again and again results in
cyclic behaviour. In other domains however in which these cycles are not likely to occur,
adoption of new goals can be beneficial. Using the adoption of goals, the goal rules can be
specified more general than would be possible without adoption of goals. Specification of an
agent with these rules also leads to an agent that is more autonomous than a 3APL agent.

4.7.2 The rules with adoption of goals

I will try to explain the benefit of being able to adopt goals, using the following goal rules.
g1 B(¢) A Glg2) = m

g2: B(d2) A G(gs) — m
gy —B(d2) N G(¢3) — adopt(G(¢z))
g3: B(gs) A G(dg) — m3
g5: —B(¢3) AN G(ps) — adopt(G(¢3))

ga: B(ds) N G(gs) — m
gi: —B(ds) A G(ds) — adopt(G(ds))
The idea is that a plan m; reaches the goal ¢;11 if it is executed (see figure 4.10). T assume

that this is indeed the case. A plan m; to reach a goal ¢; 11 can be executed in a state ¢;.
This state can be considered a precondition for the plan.

Figure 4.10: Subgoals
Rule g, for example specifies that the plan 7o can be adopted if the agent believes to be in
state ¢o and has as a goal ¢3. This rule can only be used to go from ¢ to ¢3. Now suppose

that the agent is not in ¢ but does have ¢3 as a goal. Rule g4 can then be used to adopt ¢o
as a goal. This goal now is a sub-goal on the way from where the agent is to the goal ¢3.

34

These rules are very general, because they can be used for an agent who believes any state
from ¢; to ¢4 and has as a goal any state from ¢9 to ¢5 (as long as ¢ < j for B¢; and
G¢;). The agent cannot get from a state ¢; to ¢; where ¢ > j because it does not have plans
achieving this.

4.7.3 The rules without adoption of goals

Suppose that the adoption of goals would not be possible. Suppose that an agent believes
¢5 and has ¢, as a goal. Rule g3 of section 4.7.2 cannot be applied because the agent is not
(yet) in state ¢3. Rule g1 cannot be applied because the agent only has the end-goal ¢ and
cannot derive the sub-goal ¢4. The rules would have to be changed to ones using only ¢- as
goal condition.

gi1: B(o1) ANG(gy) = m
g2.1: B(d2) A G(dyg) — mo
g3.1: B(¢s) N G(ps) = 73

These rules can however only be used for an agent with the goal ¢4 and they are thus less
general. If the agent should also be able to handle goals ¢, 3 and ¢5, rules would have to
be added to deal with these goals. An agent with the same behaviour as the agent of the
previous section could be created in this way. This agent would however have far more rules
than the agent of the previous section.

Being able to adopt goals is thus useful, but I have not shown that it is necessary to model
certain behaviour. More research is needed to proof or refute this.

4.7.4 An autonomous agent

The goal rules of the agent using the adoption of goals are more general than rules of the
agent not using adoption of goals. I will now compare a Dribble agent using the rules with
adoption of goals of section 4.7.2 to a 3APL agent that can execute plans ;.

The rules of the Dribble agent can be used for an agent believing any state from ¢ to ¢4 and
having as a goal any state from ¢, to ¢5 (as long as i < j for B¢; and G¢;). For each of these
mental states with B¢; and G¢;, a plan can be derived to reach the goal from the belief state.
There are 10 different possible initial mental states of the agent. For each mental state, there
is a different plan to reach the goal from the initial belief state (for instance y;mwo; wg; 7y if
the agent believes ¢ and has ¢35 as the initial goal, or mo; 3 if the agent initially believes ¢o
and has ¢4 as a goal).

In Dribble, the programmer needs to specify the initial goal (assuming the agent already has
beliefs about its current situation). In 3APL, the programmer would have to specify the plan
the agent should execute, to reach a certain implicit goal. The programmer would have to
know the initial beliefs of the agent, because the plan differs if the initial beliefs differ. The
programmer would also have to think of the goal the agent should reach, because the plan
differs if the (implicit) goal differs. Thus, the programmer is doing a job the agent could do.
The Dribble agent is more autonomous than the SAPL agent because it receives less guidance
from its programmer.

35

4.8 An alternative tower building agent

In the previous sections, I compared the languages GOAL, Dribble and 3APL, using example
implementations of a tower building agent in the different languages. The GOAL and Dribble
tower building agents that were described, may not follow the shortest path to the goal (or
may not even reach the goal at all, in case of the GOAL agent). In this section, I will give an
implementation of a Dribble agent that will follow the shortest path to the goal. This agent
will use the special actions to adopt or drop goals, although these actions are not yet part of
the language Dribble.

I will first explain why the agents of the previous sections may not follow the shortest path
to the goal. Suppose that the agent believes that block A and B are on the floor and C is on
A. Suppose the goal is that C' is on the floor, B is on C and A is on B as in section 4.1 (see
figure 4.11).

A
C B
A B | T > C

Figure 4.11: Initial beliefs and goal

The shortest path to the goal is moving C' onto the floor, moving B onto C' and then A onto
B. The agent could however move B onto C first, satisfying the part of the goal that B should
be on C. It does not know that this move will have to be undone later on. The example
agents only have rules to satisfy parts of the goal. Satisfying some part of the goal may undo
an earlier satisfied part. The agent has no way of knowing which part to satisfy first in order
to follow the shortest path to the goal. It does not know that it should start at the bottom
of the tower and work its way to the top. All parts of the goal have an equal status and it is
not specified in which order they should be satisfied. For a 3APL tower building agent, the
order is specified, but this also has disadvantages as was explained (see section 4.6.1).

4.8.1 The rules

It seems there should be a way of programming an agent that knows it should build a tower
bottom-up. A possibility could be to change the way in which the goal of the agent is
described. Instead of the predicate on(z,y), a predicate tower(z,T) could be used. This
predicate means that the agent has the goal to build a tower of which z is the bottom block.
T is a variable denoting the tower that is supposed to be built on top of block . The goal of
the agent to have for example a tower A on B on C on the floor, could be described by the
following predicate: tower(Fl, tower(C,tower(B,tower(A,nil)))).

The following goal rules could be used to program the Dribble agent using this tower predicate.

36

G(tower(z,T)) A B(clear(z)) AB(T = tower(x,nil) ANon(z,y)) — move(z,y,z);
drop(G(tower(z,T)))
G(tower(z,T)) A B(clear(z)) AB(T = tower(z,T') Non(z,y)) — move(z,y,2);
adopt(G (tower(z,T")));
drop(G(tower(z,T)))

PR rules should be added to deal with blocks that need to be cleared, but they are omitted
here. The second rule can be applied if the agent has a goal that a tower is built of which z
is the bottom block and of which T is the tower to be built on top of z. This bottom block
has to be clear if a tower is to be built on top of it. The bottom block of the tower to be
built on top of z, is . The block z is clear and z should be on top of z. Therefore the action
move(z,y, z) is derived. The part of the goal that is left to be satisfied is tower(z,T"), which
is adopted. The goal of which a part has already been satisfied (tower(z,T)), is dropped.

The first rule is used to stop the adoption of goals if the tower is finished. If the tower is
finished except for the top block, the goal of the agent satisfies T = tower(x,nil). In that
case, x should be moved onto z and no new goal should be adopted. The goal (tower(z,T'))
can be dropped, because it is realised.

4.8.2 Example execution

Suppose the beliefs and goal of the agent are as described above (figure 4.11). The second rule
can be applied. The goal of the agent is tower(FIl,T). The floor is always clear, so the second
belief condition of this rule is satisfied. The bottom block of the tower T to be built on the
floor, is C (T = tower(C,T")). Therefore the action move(C, A, Fl) is derived. Furthermore,
the goal tower(C, tower(B, tower(A,nil))) is adopted and the goal

tower (F1, tower(C, tower (B, tower(A,nil)))) is dropped. The second rule can be applied
again, but now with the goal tower(C, T) where T = tower(B,T"). The action move(B, Fl,C)
is derived, the goal tower (B, tower(A,nil)) is adopted and the goal

tower (C, tower(B, tower(A,nil))) is dropped. Now the first rule can be applied, because the
goal is tower(B,T) where T' = tower (A, nil). The action move(A, Fl, B) is derived, the goal
tower (B, tower(A,nil)) is dropped after which the goals of the agent are empty and the tower
is finished.

4.8.3 Discussion

The benefit of programming the tower building agent in this way, is that it will follow the
shortest path to the goal. It will always start building the tower at the bottom. If it is for
some reason crucial that the agent operates fast, this can be a good approach.

This approach has a procedural flavour to it. In the tower predicate the order in which blocks
have to be stacked, is specified. This is exactly what we wanted, but it has some disadvantages.
It is perhaps not surprising that these disadvantages correspond to the disadvantages of the
3APL tower building agent (see section 4.5).

Because of the specification of the goal with the tower predicate, the connection between
beliefs and goals is lost. The tower predicate denoting the goal, will not at some point be

37

believed by the agent after which it is removed from the goal base. The manipulation of goals
is done manually through the adopt and drop actions.

The problem now is, that the programmer in fact specifies what the agent should do instead
of what situation the agent should achieve. The programmer will need to have knowledge
about the initial beliefs of the agent. If the agent already believes the tower to have been
built except for the top block, the goal should be tower(B, tower(A, nil)). The goal specifies
what the agent should do and if the situation is such that it should do less, the goal needs
to specify this. In the case of the example Dribble agent, the connection between beliefs and
goals solves this problem. The goal of the agent can be on(A, B) A on(B,C) A on(C, Fl). If
the last two conjuncts now are true in a mental state, these are not goals in that mental state
by definition. The agent will therefore only apply rules to satisfy the goal on(A, B).

In a world in which other agents are present that can also move blocks, the lack of connection
between beliefs and goals again causes problems. The goal rules of section 4.8.1 assume,
that once a block is in the right position at the bottom of the tower, this block will remain
in that position. Assume for example that the agent has already moved the bottom two
blocks into their right position (C on the floor and B on C'). The goal of the agent now is
tower (B, tower(A,nil)), because only block A needs to be moved. Suppose now that a hostile
agent moves block B onto the floor again. The first rule of section 4.8.1 can still be applied,
because B is still clear. A is moved onto B and the agent assumes that the goal is reached.
The removal of goals is done manually and there is no guarantee that the goal is actually
reached after the removal. The example Dribble agent on the other hand, would believe that
B is not on C and would therefore not drop its initial goal on(A, B) A on(B,C) A on(C, F1).
This is due to the connection between beliefs and goals.

Using the tower predicate to describe the goal causes a lack of connection between beliefs
and goals. The Dribble agent described in this section does not use the commitment strategy
connecting beliefs and goals. Using the tower predicate as an achievement goal in 3APL could
therefore result in an agent with the same behaviour as the agent of this section.

tower(z,T) | B(clear(z)) AB(T = tower(x,nil) Aon(z,y)) — move(z,y,z)
tower(z,T) | B(clear(z)) AB(T = tower(z,T'") ANon(z,y)) — move(z,y,z);tower(x,T")

The achievement goal tower(z,T) does indeed have a close resemblance with the goal
tower(z,T). The goal is dropped manually after the move action and the new goal goal
is adopted manually. The achievement goal is automatically dropped once it is replaced
through application of a PR rule and the new achievement goal is adopted by adding it to
the plan.

38

Chapter 5
Logic

On top of the language Dribble and its semantics, I now construct a dynamic logic to prove
properties of Dribble agents.

5.1 The logical language

In this section, the logical language is defined that is used to specify and verify properties of
Dribble agents. The meaning of the language is defined in section 5.2. The language consists
of mental state formulas and of formulas denoting the results of actions.

5.1.1 Mental state formulas

The mental state formulas are used to describe properties of the mental state of a Dribble
agent. They are an extension of the belief and goal formulas of section 2.1. With mental
state formulas it is not only possible to formulate statements about the beliefs and goals of
the agent, but also about the plan.

Definition (mental state formulas)

The set of mental state formulas £,; with typical formula p is defined by:

* Lpa C Lu,
e if 7 € Plan then Com(7) € Ly,

o if puy, po € Lar, then —py, 1 A po € Ly

The usual abbreviatons for the propositional operators V, — and <> are used for L;.

5.1.2 The language Lp

The language Lp is a language of dynamic logic [6, 3, 2, 7, 9]. Dynamic logic can be used
to reason about computer programs. These programs are explicit syntactic constructs in the

39

logic. To be able to discuss the effect of the execution of a program p on the truth of a formula
¢, the modal construct (p)¢ is used. This construct intuitively states that it is possible to
execute p and to halt in a state satisfying ¢. The program p can be a compound program,
built inductively from primitive programs using a small set of program operators. The state
resulting from execution of p is determined by the states resulting from execution of parts of
p (compositionality). In conventional procedural programming languages, the program p is a
transformation function on states: p can be executed in a state, resulting in a new state.

A Dribble agent is a quadruple {og,7vp, I, A). A mental state consists of beliefs, goals and a
plan. A transformation of one mental state into another can be established by rule application
or execution of an action from the plan. This is in contrast with conventional procedural
programs, where some fixed program is the transformation function on states. In a dynamic
logic for procedural programs, it is this procedural program that can be reasoned about. The
question is, what the program is that should be reasoned about in the dynamic logic for
Dribble agents. A possibility is to reason about the plan component of the mental state of
the agent.

The plan component of the mental state of a Dribble agent has a resemblance with a proce-
dural program. There is however a difference. In contrast with the meaning of a procedural
program, the meaning of the execution of a plan of an agent cannot be defined in terms of
the meaning of its parts. If the plan is for instance a sequence of basic actions, this does not
necessarily mean that these actions will all be executed in sequence. It is possible that a PR
rule is applied to change the sequence of actions. The plan of an agent can be modified during
execution of the agent because it is part of the mental state of the agent. A conventional
procedural program is on the contrary usually fixed. It is not part of a state, but it is a
transformation function on states. The meaning of the formula (p)¢ is usually defined in
terms of the mental state resulting from execution of p, which is defined in terms of execution
of the parts of p. If the program p in the formula (p)¢ would be the plan of the agent, the
definition of the meaning of this formula would be very difficult: the meaning of a plan cannot
be defined in terms of the meaning of its parts.

Thus the mental state transitions of a Dribble agent are not solely defined by the (parts of
the) plan of the agent. The transformation of one mental state into another however depends
on whether an applicable rule is applied (and which, if more than one is applicable) or whether
an action from the plan is executed. It is these mental state transitions that I want to reason
about in the logic, because these transitions define the execution of the agent. I refer to
these transitions using so called meta-actions. In the dynamic logic for Dribble, a sequence
of meta-actions is used as the program p in the formula (p)¢.

In summary, the execution of a program is a series of state transitions. In dynamic logic we
can reason about the execution of a program. For a conventional procedural program, the
program defines the transformations on states. It is thus this program that is reasoned about
in the logic. For Dribble agents, mental state transitions are either caused by application
of a rule or execution of an action. In the logic for Dribble it is thus these actions that are
reasoned about. Below, the set of meta-actions is defined.

40

Definition (meta-actions)

The set MetaAction with typical element m is defined by:

e if 7 € Plan then commit(7) € MetaAction and uncommit(7) € MetaAction,

e if g € T then applyRule(g) € MetaAction,

e if p € A then applyRule(p) € MetaAction,

e if b € ExecutableAction then execute(b) € MetaAction.
The meta-actions applyRule(g) and applyRule(p) are used to specify that a goal rule g
and a PR rule p are applied respectively. The meta-actions commit(7) and uncommit(7) are
used in defining the semantics of the other meta-actions (see section 5.2.3). The result of a
commitment to the plan 7 is that the agent has 7 as its plan. The result of an uncommitment

to 7 is that the plan 7 of the agent is dropped. The meta-action execute(b) is used to describe
that a basic action or an if-then-else construct is executed.

As T explained above, with these meta-actions the language of dynamic logic for Dribble can
be defined. The meta-actions are used as the program p in the formula (p)¢. This formula
can be used to express the result of executing a sequence of meta-actions. For reasons that
will be explained in section 5.2.3, the sequence of actions is in fact a sequence of meta-actions
and basic actions, instead of just a sequence of meta-actions.

Below, the set of sequences of basic actions and meta-actions is defined.
Definition (basic and meta-actions)
The set BasicAndMetaAction with typical element « is defined by:

e BasicAction C BasicAndMetaAction,

e MetaAction C BasicAndMetaAction,

e if o € BasicAndMetaAction and am € BasicAction U MetaAction
then am; o € BasicAndMetaAction.

The language Lp consists of mental state formulas and of formulas that can be used to reason
about the result of execution of a sequence of meta-actions and basic actions. The result of
this execution is expressed in terms of mental state formulas. Below, the language Lp is
defined.

Definition (language of dynamic logic for Dribble: Lp)
The dynamic logic language L£p with typical formula ¢ is defined by:

b EM C ED?
e if @ € BasicAndMetaAction and p € Ly then {(a)u € Lp,

e if §1,09 € Lp, then —d1,61 Ao € Lp.

The formula [a]u is shorthand for —(a)—u. The usual abbreviatons for the propositional
operators V, — and < are used for Lp.

41

5.2 The semantics

5.2.1 Semantics of mental state formulas

Mental state formulas are evaluated in a mental state. As was stated, mental state formulas
are an extension of the belief and goal formulas. The meaning of the belief and goal formulas
was already defined in section 3.1. A formula Com(x') is true in a mental state, if and only
if the agent is committed to the plan 7' in that state. It is committed to this plan if the plan
component of the mental state is equal to 7’. Note that the agent only has one commitment,
which is the commitment to its current plan. The agent is not committed to prefixes of its
plan. The reason is, that we do not need commitment to prefixes when defining the meaning
of the meta-actions (see section 5.2.3).

Definition (semantics of mental state formulas)

Let (0,7,) be a mental state. Let ¢,) € L be propositional formulas, let =, #’ € Plan be
plans and pu, p1, po € Ly be mental state formulas.

U’IYa | B¢lﬁ.0|—
o,7,m G iff p ~5

(0,7, m)
(7,7, m)
o (0,7,7) | Com(') iff 7 = 7'
(7,7, m)
(0,7, m)

=y iff (o, m)

= p1 A pe iff (o,v,7) = p1 and (0,7, 7) = pe

a,7%, T

0,7, T

5.2.2 Semantics of Lp

Formulas from the language Lp are evaluated in a mental state. The semantics of mental
state formulas (L£7) in Lp was defined in the previous section (5.2.1). The formula (a)u is
true in a mental state s, if it is possible to reach a mental state in which yx holds, through
execution of the sequence « of meta-actions and basic actions in the state s. The mental state
reached through execution of a should not be £. £ is a state to which all impossible basic
actions and meta-actions lead: from there, no other actions can be performed anymore. £ is
not an element of the set X of possible mental states.

Execution of a basic action or meta-action changes the mental state of the agent. This
change is specified with the result function r*(a){o,vy,). This function yields the mental
states resulting from executing « in (o,7, 7). The function is defined in section 5.2.3.

Definition (semantics of formulas in Lp)

The semantics of formulas in Lp is defined as follows with « € BasicAndMetaAction, u € Ly
and 0, 61,09 € Lp:

e (0,7,m) |= 1 see section 5.2.1,

e (0,7, m) | (a)p iff exists a mental state (o/,+',7’) # € € r*(a)(o, 7y,)
with (o', 7,7} |-

42

i <0-777 7T> |: = iff <0777 7T> 17& 57

i (U"}/a 7T> |: 01 A 0y iff (U”}/a 7T> |: 41 and <Ua Y, 7T>): d2.

5.2.3 Semantics of meta-actions and basic actions

The function r* is a transformation function on mental states through sequences of meta-
actions and basic actions. It is defined in terms of the function r, which is a transformation
function on mental states through atomic actions. Atomic actions are actions that are not
defined in terms of a sequence of other actions. Basic actions, the commit and uncommit
actions and the applyRule(g) action are atomic actions as will become clear later on, whereas
for instance applyRule(p) is not atomic. The set of atomic actions is defined below.

Definition (atomic actions)

The set AtomicAction with typical element aa is defined by:

e BasicAction C AtomicAction,
e if 7 € Plan then commit(7) € AtomicAction and uncommit(w) € AtomicAction,

e if g € T then applyRule(g) € AtomicAction.

Now, the semantics of r* can be defined. r* is defined in terms of r, which is a function of type
: AtomicAction X (X U{€}) = p(XU{€}). The function r* is of type : BasicAndMetaAction x
(2U{€}) = p(EU{E}). The result of both functions is thus a set of mental states. The
meaning of actions is however in this paper defined such, that they are deterministic: the
resulting set contains only one element. For convenience, the result functions will therefore
in the sequel be defined as if the result type was ¥ U {£}, instead of p(X U {€}).

Definition (semantics of r*)

The semantics of r* is defined as follows, with aa € AtomicAction, am € BasicAction U
MetaAction and « € BasicAndMetaAction:

r*(aa){o,y,m) = r(aa)(o,7,),
r*(am; a)(o,y,m) = r*(a)(r*(am){o,7,m)),
r(a) £ = £.

In the definition above I have defined what it means to execute a sequence of meta-actions
and basic actions. Now I will define the semantics of executing specific single actions.

I will first define what it means to execute the meta-action commit (7). This action is used in
defining the meaning of the meta-actions for rule application and action execution. Executing
a commit () action leads to the adoption of the plan 7. It can only be executed in a mental
state if the plan of the agent is empty in that mental state. The reason for this is, that in the
definitions of meta-actions using the commit action, this action is executed in a state with an
empty plan. It is thus only necessary to have a commitment action for the case of an agent
with an empty plan.

43

Definition (semantics of commit)
r(commit(n’)) (0,7, E) = (0,7,7)
r(commit(n'))(o,y,7) = £ with # # E

The meta-action uncommit(7) can only be executed if the agent is committed to . If this is
the case, the plan of the agent becomes empty in the mental state resulting from executing
the uncommit action. The agent only has one commitment in a mental state, which is equal
to the plan in that mental state. It does not have commitments to prefixes of the plan and it
can thus not uncommit to a prefix. This is the reason why the result of an uncommitment is
always an empty plan (assuming the uncommitment can be executed succesfully).

Definition (semantics of uncommit)
r(uncommit(n')){0,v,7) = (0,7, E) if m ==’
r(uncommit(n'))(o,vy,m) = & otherwise

The actions commit and uncommit are defined because it makes the definition of the other
meta-actions easier. A Dribble agent should not be thought of as having the capability to
commit or uncommit to plans. A Dribble agent can only manipulate its plan through rule
application or action execution, as was defined in chapter 3.

The meta-action applyRule(g) where g is ¢ — 7' can be executed in a mental state if the
plan of the agent is empty and if ¢ is true in that mental state. In the mental state resulting
from the application of g, 7’ is the plan of the agent.

Definition (semantics of goal rule application)

Let g : ¢ — 7 be a goal rule.

r(applyRule(g)){(o,v,m) = r(commit(n’))(o,v,7) if 7 = E and (0,7,7) = ¢
r(applyRule(g)){o,v,) = & otherwise

The meta-action applyRule(p) where p is 7, | 8 — 7, can be executed in a mental state if
the head of the PR rule p is equal to a prefix of the plan of the agent and if the guard of
the rule is true in that mental state. In the mental state resulting from application of p, the
prefix of the plan of the agent is equal to the body of the PR rule. The semantics of the
applyRule(p) action is defined in terms of the commit and uncommit actions. First the plan
of the agent is dropped, after which the plan is empty. Then the plan that has as a prefix the
body of the PR rule instead of the head, is adopted through the commit action.

Definition (semantics of PR rule application)
Let p: 7, | B — m be a PR rule.

r*(applyRule(p))<Ua 7 7T> =r (uncommit(wh o WI); Commj-t(ﬂb o 7TI))<0—’ 7 7T>

if m=mpon and (o,v,7) E B
r*(applyRule(p))(o,v,m) = & otherwise

The meta-action execute(a) where a is a basic action, can be executed if a is a prefix of the
plan of the agent. The meta-action is defined in terms of the basic action and the commit
and uncommit meta-actions. First a is executed which possibly changes the belief base and
goal base of the agent (see definition of semantics of actions). Then the plan of the agent
is updated. There is thus a difference between executing the meta-action execute(a) and
executing the basic action a. The first also results in an update of the plan of the agent,

44

whereas the second one only updates the beliefs and goals.

Definition (semantics of action execution(1))
r*(execute(a))(o,v,7) = r*(a;uncommit(a;n’); commit(n’)){c,y,)
if T=a;n
r*(execute(a)){o,v,m) = & otherwise

The meaning of the meta-action execute(a) could have been defined without defining the
meaning of the execution of a separately. I however thought that separating the plan upda-
ting part from the belief updating part, results in a clearer specification of the semantics of
execute(a). Because I define the meaning of execute(a) in terms of the meaning of a, I use
sequences of meta-actions and basic actions to reason about in the logic. In this way, one can
reason about a as well as about execute(a).

The meta-action execute(if [then m; else m f£i) can be executed in a mental state if the
if-then-else construct is a prefix of the plan of the agent in that mental state. The plan of
the agent in the mental state resulting from executing this meta-action, depends on the truth
of the if-condition. If the condition is true, the if-then-else construct is replaced by the plan
in the then-part of the construct. If the condition is false (or if it is not the case that the
condition is true, which is equivalent), the construct is replaced by the plan in the else-part.

Definition (semantics of action execution(2))
r*(execute(if S then m; else my fi))(o,y,m) =
r* (uncommit(if (B then m else my fi;n'); commit(my o W’))(U,’}’,ﬂ'>
if m=1if [then m else my fi;n’ and (o,v,7) = B
r*(execute(if [then m else mo fi)){o,y,m) =
r* (uncommit(if (B then m else my fi;n'); commit (7o o W’))(U,’}’,ﬂ'>
if m=1if then m else my fi;«’ and (0,7,) = -0
r*(execute(if S then m else mo £i))(o,v,7) = & otherwise

The if-then-else construct can only be executed through the meta-action execute. The mea-
ning of the formula (if 5 then m else my fi)u is not defined. The reason is, that one does
not reason about plans in the logic, but about rule application and action execution. This
was explained in section 5.1.2. Basic actions are the exception to this rule, as was explained
above.

In section 3.2.4 it was stated that it is convenient to define the if-then-else construct as a
basic element of a plan, instead of in terms of a non-deterministic choice operator. If the
construct would have been defined in terms of this operator, the meaning of the execution
of the operator would have to be defined in the logic. This would lead to a complicated
definition, whereas the meaning of the construct can be defined in a simple manner using
the commit and uncommit actions. Furthermore, the execution of a non-deterministic choice
operator would not be deterministic by definition. The definition of r* would therefore have
to be changed.

If basic actions are executed, the beliefs and goals of the agent are updated. As in section
3.2.3, the belief update is formally represented by a partial transformation function 7 of type
: BasicAction x p(L) — @(L£). If this function is not defined, the basic action cannot be
executed.

45

Definition (semantics of actions)

r(a){o,v,7) = (T (a,0),y,7) with ¥ =y \ {¢p € v | T(a,0) E ¥} if T(a,0) is defined

r(a)(o,v,) = € otherwise

The meaning of basic action execution is defined through the function 7. One typically
thinks of actions in terms of preconditions and postconditions. The action can only be
executed in a mental state if the preconditions are satisfied in that mental state. The state
resulting from executing the basic action should satisfy the postconditions. In section 4.1, T
described the preconditions and postconditions of the action move(z,y, z). I will repeat this
definition here. The function T (move(z,y, z), o) is defined, only if o satisfies the preconditions
for the action move(x,y, z) (Preconditions). Some predicates are changed by the action
(Postconditions). Other predicates are not changed by the action (Frame conditions).

Definition (semantics of basic action move(x,y,z))

Preconditions
T (move(z,y,2),0) =0’ < o | cear(z) A clear(z) A on(z,y)

Postconditions
T (move(z,y,z),0) =0' N z#Fl = o =on(z,z)Acdear(y) A —on(z,y) A ~clear(z)
T (move(z,y,2),0) =c' N z=Fl = o =on(z,z)Acdcear(y) N —on(z,y)

Frame conditions
T (move(z,y, z),0) =o' o = on(u,v) AN u#zx
T (move(z,y,z),0) =o' N o -on(u,v) AN ((u#z)V(v#2))

>

o' = on(u,v)

=
= o E -on(u,v)

>

T (move(x,y, z),0) = o Edear(w) AN w#z

o o' = clear(w)
T (move(z,y,z),0) =0’ AN o —cear(w) AN w#y

o' E ~clear(w)

Ly

5.3 Characteristics of actions in the logic

Meta-actions and basic actions are mental state transformers. The mental states resulting
from execution of these actions were defined in the previous section using the function r(*). If
some action cannot be executed, the mental state resulting from executing the action anyway,
is £. In this section, I will define characteristics of these mental state transformer actions in the
logic. I will split the characteristics into two parts: the preconditions or realizability and the
postconditions or results of actions. The realizability specifies when an action can be executed
({am)T where am € BasicAction U MetaAction). The results specify the properties of the
mental state resulting from executing an action ([am]u where am € BasicActionUMetaAction).

In the following, p is a PR rule 7, | § — 7, and g is a goal rule p — .

46

Proposition (realizability of meta actions)

1 E Com(E) < (commit(m))T

= Com(m) < (uncommit (7)) T
3 ECom(E)Ay < (applyRule(g))T
4 E Com(mpom)AfB — (applyRule(p))T
5 E Com(a;m)A{a)T — (execute(a))T

6 | Com(if [then m; else mp fi;m) — (execute(if [then m else my £fi))T

All actions require a commitment to some plan to be executed succesfully. The first three
properties specify an equivalence whereas the last three specify an implication. The last
three properties do not specify an equivalence because no conclusion can be drawn about the
plan of the agent, assuming that one of these meta-actions is executable. Assuming that the
meta-action execute(a) is executable, the agent could have a commitment to a; 7y, to a; 7o
and so on and so forth. The third and fourth properties do not only have a requirement on
the plan, but also on the beliefs and/or goals and the beliefs respectively. The fifth property
has the requirement that basic action a should be realizable. Only then can the meta-action
execute(a) be executed succesfully. An if-then-else construct can always be executed as long
as a prefix of the plan is equal to this construct.

Proposition (results of meta actions)
1 [[commit(m)]Com(n)
= [uncommit(7)]Com(FE)
3 = [applyRule(g)]Com(n)

4 | Com(mpom) —
[applyRule(p)]Com(, o)
5 E Com(a;m)Ala]f —
[execute(a)] (COII’I(?T) A ﬁ)
6 F Com(if then m; else mp fi;m) AS —
[execute(if [then m else my £i)]Com(m o 7)
7 E Com(if then m; else mp fij;m) A= —
[execute(if [then m else my £i)]Com(my o)

The first, second and third properties state that if the specified atomic actions can be
executed, they have the specified commitments as a result. The fourth action needs a con-
dition on the plan of the agent (Com(w, o w)). Without this condition, no statement can
be made about the resulting plan. The same holds for the rest of the meta-actions. The
fifth property specifies the result of the meta-action execute(a) if the result on the belief
base of executing the basic action a is known. The result of execution of the meta-action
execute(if [then m; else my fi) depends on the truth of f.

The last three properties of the first proposition specify implications and not equivalences, as
was explained. If an assumption is made about the plan after execution of the meta-actions
in question, the following equivalences can be specified.

47

Proposition (equivalences)
4 = Com(rpom)Ap + (applyRule(p))Com(m, o 7)
5 E Com(a;m)A(a)T < (execute(a))Com(n)
6 | Com(if [then m else mp fij;m) <> (execute(if [then m else my fi))Com(r)

The realizability (1) and result (2 - 7) of the basic action move(z,y, z) which was defined in
the previous chapter are specified below.

Proposition (realizability and result of basic action move(z,y, z))
1 [B(dear(z) Aclear(z) Aon(z,y)) < (move(z,y,z))T

2 [move(z,y, 2)|B(on(z, 2) A clear(y) A —on(z,y))

3 F [move(, y,)] B(~clear())
where z # Fl

4 £ Blon(u,)) 5 [move(z,y, 2)]B(on(u,))
where u # z

5 & B(-on(u,v)) > [move(z, y, 2)|B(~on(u,)
where (u # z) V (v # 2)

6 £ B(cear(w)) — [move(z,y, z)|B(clear(w))
where w # z

7 E B(—dear(w)) — [move(z,y, z)|B(—clear(w))
where w #£ y

Variables are used as a means for abbreviation. Variables should be thought of as being
instantiated with the relevant arguments in such a way that predicates with variables reduce
to propositions. If a condition on variables is specified, these variables can only be instantiated
with arguments if the instantiation satisfies the condition.

As was explained in the previous section, actions are deterministic. A consequence of this
is, that the formula («)u is stronger than the formula [@]pu. The diamond formula expresses
that p holds in the state resulting from executing o. The box formula only states that
if « can be executed, p will hold in the resulting state. The following equivalence holds:
() <> ({(@) T A [a]p). The conditions on realizability (o) T and results [a]u of actions can
thus be combined, deriving the formula (a)pu.

5.4 Example proof

In this section I will give an example of a proof of a property of the Dribble agent of section
4.3. The property is that it is possible to realise the goal from the initial belief state with
a certain sequence of meta-actions (where the goal and initial belief state are as specified in
section 4.1). T will need the following instantiations of the goal rule of section 4.3.1.

B(on(C,A)) A G(on(C,Fl)) — move(C, A, Fl)
gg B(on(B Fl)) N G(on(B,C)) — move(B,FIl,C)
g3 : B(on(A,Fl)) N G(on(A,B)) — move(A,Fl,B)

The initial mental state sg of the agent is the following:

48

oo = {on(A,Fl)Non(B,Fl) ANon(C,A) A clear(B) A clear(C) A clear(F1l)},
v = {on(4,B)Aon(B,C)Aon(C,Fl)},
T = K.

The following formula is true in that mental state:

so = (applyRule(g:);execute(move(C, A, Fl)); applyRule(gs); execute(move(B, Fl,C));
applyRule(gs); execute(move(A, Fl, B))) B(on(A, B) Aon(B,C) A on(C, Fl)).

The formula specifies that in state sy, the following is true: the specified sequence of rule
applications and action executions results in a state in which the agent believes that the
goal tower is built. The mental state resulting from execution of the specified sequence of
meta-actions satisfies the following:

o¢ = {on(A,B)Aon(B,C) Aon(C,Fl) A clear(A) A clear(F1)},

Y6 = wa
e — E.

This mental state is obtained by applying the definitions of the meta-actions applyRule(g)
and execute(a) and the definition of a sequence of meta-actions r* (see section 5.2.3). First
the mental state s; resulting from execution of the meta-action applyRule(g;) in sg is derived.
Then the mental state sy resulting from executing the meta-action execute(move(C, A, F))
in s; is derived. The mental state resulting from execution of the complete sequence of meta-
actions is sg and is specified above. In this mental state, the belief formula B(on(A, B) A
on(B,C) A on(C, Fl)) is true and thus the property of the example Dribble agent is proven.

49

Chapter 6

Correspondence between logic and
operational semantics

In chapter 3, the meaning of a Dribble agent was defined as the set of computation runs,
starting in the initial mental state of the agent. A computation run is a series of mental
state transitions, where each transition is a transition in the transition system for the Dribble
agent. In chapter 5, a dynamic logic was defined in which one can reason about actions
defined in that logic. These actions transform the mental state of the agent, expressed with
the function r*. The idea is, that mental state transitions defined by actions in the logic,
correspond to the mental state transitions defined by the transition system. If this were the
case, properties derived for actions in the logic are actually properties of the Dribble agent.
This is because the meaning of a Dribble agent is defined in terms of these transitions in
the transition system. In this chapter I will prove this correspondence between logic and
operational semantics.

6.1 Computation run of #

The actions that can be reasoned about in the logic are basic actions and meta-actions. These
do not all correspond to a mental state transition in the transition system. The meta-actions
commit and uncommit for instance were only defined because it made the definition of other
meta-actions easier. They do not have a counterpart in the transition system. The same
holds for the basic actions: in the logic one can reason about the result of a basic action with
respect to the beliefs and goals of the agent, regardless of whether the basic action is part of
the plan of the agent. The only transition defined in the transition system with respect to a
basic action, is however the execution of it if it is a prefix of the plan.

The meta-actions that do have a counterpart in the transition system are the actions
applyRule(g), applyRule(p),execute(a) and execute(if [then m; else my fi). I call
these actions transition actions. The mental state transitions defined by transition actions,
correspond to the mental state transitions defined by the transition system. This will be
proven in section 6.2. First I will however define sequences of transitions actions.

50

Definition (sequences of transition actions)

The set TransitionAction with typical element 6 is defined below, where applyRule(g),
applyRule(p), execute(b) € MetaAction:

e if t € {applyRule(g), applyRule(p), execute(b)} then ¢ € TransitionAction,

e if t € {applyRule(g),applyRule(p), execute(b)} and O € TransitionAction then ¢ ;6 €
TransitionAction.

In the logic, one can reason about sequences of transition actions 0 (= #1;...;¢,). What
I want to prove is, that the mental state resulting from execution of @, corresponds to the
mental state resulting from a sequence of transitions in the transition system. This sequence
of transitions is not just any sequence. The elements of the sequence of transitions have a
one to one correspondence with the elements of the sequence of transition actions 6: each
transition s; — s;+1 corresponds to the transition action ¢; in the sequence 6. I express this
correspondence using the concept of a computation run of 6.

Definition (computation run of 6)

A computation run of # CRy(sg) for a Dribble agent with goal rules T' and PR rules A is a
finite sequence sg, t1, S1, ..., tn, S, Where:

e s5; € 3 are mental states,
e Viu0: S;—1 — S;is a transition in the transition system for the Dribble agent,

o O =ty;...;ty.

6.2 Correspondence

6.2.1 Theorem

In the following theorem I express the correspondence between logic and operational seman-
tics. The function last yields the last state of the finite computation run. In the next section
I will proof this theorem.

Theorem (equivalence of operational semantics and actions in the logic)
For 6 € TransitionAction and sg, s, € %, the following holds for a Dribble agent with goal
rules I and PR rules A :

r*(0) so = sn < last(CRy(sg)) = sn

6.2.2 Proof

The inductive proof of the theorem above is constructed by proving the theorem for every
transition action ¢ and then proving that it also holds for sequences of transition actions t;6'.
The proofs of the various cases should be read as follows: statements derived in a certain
step, can be derived from results of all previous derivation steps. First the theorem is proven
from left to right, followed by a proof from right to left.

ol

Left to right

The first four cases below which prove the theorem for a specific transition action, all have
the same structure. First the left part of the theorem is instantiated for a specific transition
action (¢). A mental state not equal to £ thus results from execution of ¢. From this and
from the definition of r*(¢), conclusions can be drawn about the mental states s; and s;11 if
r*(t)s; = siy1. With these conclusions, a transition s; —; s;11 can be derived. This is the
computation run CR;(s;). The last mental state of this computation run is s;;1. End of proof.

Case 1 (@ = applyRule(g))
g:p—omgel

= 020,77:7177:E7 <O'7777T>):(P7 7T,:7Tg
= (U’ Y, 7T> —7applyRule(g) <0Ja ’Y', 7T,>
= last (CRapplyRule(g) ((U’ Y, 7T>)) = <0Ja ’yl’ 7T,>

r*(applyRule(g))(o,v,m) = (o', 7')

Case 2 (0 = applyRule(p))
p:7p | B—mpEA

4

U_J, Y= fylawzwhoﬂ-ra ﬂ-,:ﬂ-boﬂ-ra

0,7, H:B

r*(applyRule(p))(o,v,m) = (o',¥',7')

0,7%,Th © 7T7'> _>applyRule(p) <0J’ ’yla Ty © 7T7'>
0,7, T > applyRule(p) <UI,’YI, 7T,>
last (CRapplyRule(p) ((U’ Y, 7T>)) = (U,’ ’yl’ 7T,>

(
(o,
(U Y, 7Th> applyRule(p) <0J’ ’YI, 7Tb>
(
(

L

In cases two, three and four the transition rule ezecution of sequential composition of section
3.2.5 is used to derive a transition (o,y,wom,) = (¢/,+', 7" o) from (o, v, 7) = (o', 7, 7).

Furthermore, the second derivation step of case 2 needs some explaining. The truth of a belief
formula 8 in a mental state depends on the belief base ¢ in that state. It does not depend
on the plan. If a belief formula is true in a mental state, it is therefore true in any state with
the same belief base, regardless of the plan.

Case 3 (0 = execute(a))
r*(execute(a))(o,v,m) = (¢',Y,7") = T(a,0) =0, yY\{$p €7 T(a,0) Ev} =",
T=aom, ™ =m,
(Jv 7> a) ?execute(a) <Ula 717 E)
(0,7,a0m) ?execute(a) (o, 9", mr)
(Jv 7> 7T> execute(a) (Jla 7,7 7TI>
Last (CRexecuse(a) ({77, ™)) = (0,7, 7)

Lo

52

Case 4 (0 = execute(if [then m else my fi))
Let ite be if [then m; else mo fi.

r*(execute(ite))(o,y,m) = (o', 7'),
(o,7,m) E B oc=0,vy=+" m=iteon,, ' =m om,
(0,7, ite) |= 8

(U’ Y, Zte) _>execute(ite) (U,? 7,’ 7T1>

(U’ 7, ite o 7T7"> —7execute(ite) <0J’ ’yl’ T © 7Tr>
(U’ 7> 7T> ~7execute(ite) (U,a 7,v 7TI>

last (CRexecute(ite) (<Ua s 7T>)) = (Ula 7,a 7TI>

4

Ly

r*(execute(ite))(o,y,m) = (o', 7'),
(oy7,m) E -8

4

o=0,y=79, n=iteom, 7 =mom,
<0777 ite)): —p

(U’ s ite) “7execute(ite) (Ula 7,’ 7T2>
(U’ v,iteo 7T7"> “7execute(ite) <0Ja ’yl’ 2 © 7T7">
(U’ s 7T> ~7execute(ite) (Ula 7,a 7TI>

= 1ast(CRoxecure(ite) (0,7:7))) = (0,7, ")

L4y

Case 4 is split up into two parts: one for the case that the belief condition of the if-then-else
construct is true and one for the case that it is false.
Case 5 (0 =1t;0")

r*(t) S0 = S1
*(0') 51 = s,

last(CR:(sp)) = s1 (induction hypothesis)
last(CRy(s1)) = s

4y

t*(t;0") so =35, = r*(@)(c*(t) s0) = sn
= r*(0') s1 = s, and s; = *(¢) so
= last(CRy(s1)) = sp and last(CR.(sg)) = s1
= CR¢(S0) = So,t,51 and CRyr(s1) = $1,%2,592,...,1n, Sn
where 0’ = to;...:t,
= CRt;gl(SU) = S80,t,81,12,52,-..,tn, Sp
= last(CReyp(s0)) = sp

In case 5, the theorem is proven for arbitrary sequences of transition actions. First, the
induction hypothesis is stated. Then the left part of the theorem is instantiated for sequences
of transition actions ¢ ;#’. This is rewritten in the first derivation step using the definition
of r* of section 5.2.3. This is rewritten again in the second derivation step, introducing
the state s1. In the next step, the induction hypothesis is used. The computation runs of
t and @' introduced in this step, are specified in the fourth step. In the fifth step, these
computation runs are combined, yielding the computation run of ¢ ;6’. The last mental state
of this computation run is specified in the last derivation step. End of proof.

93

Right to left

Case 1 (@ = applyRule(g))
g:p—omgel

last (CRapplyRule(g)(<07777T>)) = <0177177T,> = <07777T> ~?applyRule(g) <0177177T,>
= o=0, 7:71’ m=FE, <U,")/,7T>):(,0,
=7

= r*(applyRule(g))(o,7,m) = (0o',7',7)
The proof of the theorem from left to right for application of a goal rule can be reversed,
yielding the proof from right to left. First the right part of the theorem is instantiated for
the transition action applyRule(g). From this, a transition can be derived in the first step,
using the definition of computation run of applyRule(g). In section 3.2, it was stated that
the relation —; defined by a transition system, is the smallest relation which contains all the
axioms of the system and all conclusions which are derivable by using these axioms. Thus a
transition s; —app1yRule(g) Si+1 must have been derived with the transition rule for application
of a goal rule of section 3.2.1. Using this transition rule reversed, conclusions can be drawn
about the belief base, goal base and plans of mental states s; and s; 1. With these conclusions
and the definition of r*(applyRule(g))(s;) of section 5.2.3, the last derivation step can be
made.

Case 2 (0 = applyRule(p))
p:mh | B—mEA

= <07777T> —7applyRule(p) <0177177T,>
= ... (see text)
= (U’ Y, 7Th> _>applyRule(p) <0J’ ’yl’ 7Tb>a

T =mp0m,, T =mpom,
= 0= U,’ 7:’71’ <0—77a7rh>): B
= (o,7,m) B
= r*(applyR.ule(p))(o,*y,w) = <0,77177T,>
The proof of the theorem from left to right for cases two, three and four cannot be reversed.
I will explain the proof from right to left of case two, but the same kind of argument can be
constructed for cases three and four.

last (CRapplyRule(p) ((Ja Y, 7T>)) = (le 717 7T,>

First, the right part of the theorem is instantiated with the meta-action applyRule(p). From
this, the transition (0,7, T) —>app1yrute(p) (/s> ') can be derived in the first step, using the
definition of computation run of applyRule(p). From this transition we want to derive the
transition (0,7, Th) —>appiyrute(p) (0'>7's 7). Using this transition and the transition rule for
application of a PR rule of section 3.2.2, we could then conclude that (0,7,) = 5. If we can
also conclude that 7 = 7, o . and 7’ = 7, o 7w, we can derive r*(applyRule(p)){o,v,7) =
(o', ~', 7).

I will now explain why it can be concluded that the transition (o, y, Th) —appryrute(p) (0757 Tb)
(named 1) must be a transition in the transition system if the transition
(0,7, T) —>appiyrute(p) (0'57's7') (named n) is a transition. The reason is, that transition

o4

n can only be derived in a transition system if transition 1 can be derived. Transition n is
a transition describing a PR rule application (specified by the subscript of the transition).
Such a transition can only be derived in the transition system by applying the transition
rule for application of a PR rule or by applying the transition rule for ezecution of sequential
composition. This last transition rule can be applied to a PR rule transition and the result
is a new PR rule transition. This rule thus can only be applied if a PR rule transition has
been derived using the transition rule for application of a PR rule. Now the assumption is
that PR rule transition n can be derived in the transition system. This transition must have
been derived using one of the two transition rules that were mentioned above. Regardless
however of whether transition n was derived with one or the other transition rule, we can
conclude that transition 1 must have been derived in the first derivation step of the derivation
of n: without transition 1, the transition rule for sequential composition cannot be applied to
yield a PR rule transition. Thus, from the assumption that transition n is a transition in the
transition system, we can conclude that transition 1 must be a transition. A derivation of n
from 1 exists in the transition system and this derivation can be reversed if we assume that
n is a transition. This can be done because the relation —; defined by a transition system,
is the smallest relation which contains all the axioms of the system and all conclusions which
are derivable by using these axioms.

If n is derived from 1, 7 must be of the form 7, o m, and 7’ must be of the form 7, o m,.. The
maximum length of the derivation of n from 1 depends on the length of m,. If 7, = E, then
n = 1 and the length of the derivation is zero. If the length of 7, is k, the maximum length
of the derivation is k: the rule for sequential composition can be applied k£ times, eventually
yielding transition n. Instead of applying the rule for sequential composition & times, it could
be applied only once. In that case, transition n is derived directly from 1. As was explained
above, the derivation of n from 1 can be reversed, deriving 1 from n. This is indicated by the
dots (...) in case 2 above: a derivation of 1 from n exists, but the length of the derivation is
unknown.

In summary, the transition (o,7,75) —appiyrute(p) (057, m) can be derived from
(0,7, T) —applyrute(p) (0',7's7'). m must be of the form m, o m and ' must be of the
form 7 o .. The maximum length of the derivation depends on the length of ;.

Case 3 (0 = execute(a))

last (CRexecute(a) (<Ua s 7T>)) = (Ula 7,a 7TI> <Ua 7 7T> —7execute(a) <0Ja ’Y', 7T,>

=
= ... (see text)

= <0—773 Cl> execute(a) (U,’7,7E>’

T=qom, " =FEom. =m,

T(a,0) = a, Y\{Y €y | T(a,0) B9} = o4

r*(execute(a))(o,v,7) = (o', 7, 7')

Ly

95

Case 4 (0 = execute(if [then m else my fi))
Let ite be if [then m; else mo fi.

= (U’ 7> 7T> ~7execute(ite) (U,a 7,v 7TI>
= ... (see text)

= (U’ s Zte) —7execute(ite) (U,? 7,’ 7T1>a
T =1iteom,, ™ =m om,

o= OJ? Y= 717 <O’,’}’,it6> |: p
(07,m) E B

r*(execute(ite))(o, v, 7) = (o', 7,)

last (CRexecute(ite) ((U’ s 7T>)) = <0Ja ’yl’ 7T,>

LUy

(Ja g 7T> —execute(ite) (0,7 7,7 7TI>
. (see text)
(07 7> ite) ?execute(ite) (0,7 7,7 7T2>7
T =iteom,, ™ =myom,
= o=0d,vy=9, (o,v,ite) = -8
= (0,77 B
= r*(execute(ite)){o,y,m) = (¢',7', 7'}

last (CRexecute(ite) ((Ja g 7T>)) = <OJv 717 7T,>

R

Case 4 is split up into two parts: one for the case that the belief condition of the if-then-else
construct is true and one for the case that it is false.

Case 5 (0 =1t;0")

last(CR¢(s0)) = $1 = r*(t) s = 1 (induction hypothesis)
last(CRy(s1)) = sn = T*(0') 51 =3sp
1last(CRyp(S0)) = sn = CRup(S0) = 50,1, 51,12,82, .., tn, Sn
= CR¢(s0) = So,t,51 and CRyr(s1) = $1,t2,892,...,tn,Sn
where 0’ = ty;...;t,

last(CRy(s1)) = s, and last(CRi(sp)) = $1
r*(#') s1 = s, and s; = r*(t) sp
(0')((t) so) = sn

*(t;0") so = sp

L4l

The proof of the theorem from left to right for arbitrary sequences of transition actions can
be reversed, yielding the proof from right to left.

o6

Chapter 7

Conclusion

In this paper, I defined the agent programming language Dribble. The language combines
features from the languages GOAL and 3APL. It incorporates beliefs and goals, as well as
planning features. A Dribble agent selects a plan to get to a goal with its goal rules. PR rules
are used to create or modify the plan of the agent. The operational semantics of Dribble was
defined using a transition system. Furthermore, I defined a dynamic logic to specify and verify
properties of Dribble agents. The logic uses meta-actions to reason about rule application
and action execution. Finally, it was proven that mental state transitions defined by the
transition system, correspond to transitions defined by meta-actions in the logic. Properties
of actions in the logic are thus properties of a Dribble agent.

In the introduction, I mentioned three characteristics of agent behaviour: autonomy, reactivity
and pro-activity. A Dribble agent can exhibit each of these kinds of behaviour. A Dribble
agent is autonomous because it determines what actions it is going to take. The programmer
does not tell the agent what to do; he tells the agent what its goals are and the agent figures
out how to get there. The programmer does not specify the order in which the goals of the
agent should be reached. A Dribble agent thus has control over its own actions. This is in
contrast with a 3APL agent, whom the programmer tells which plans it should execute and
in which order. Reactive behaviour can be modelled using reactive PR rules. A Dribble agent
can also exhibit pro-active behaviour because it can be programmed to go after its goals. The
agent takes the initiative to do something, because it has certain goals. A 3APL agent on the
contrary does not have goals and therefore cannot exhibit truly pro-active behaviour. The
main difference between a GOAL agent and a Dribble agent is that the GOAL agent cannot
adopt and modify plans. As was shown in the example in this paper, this lack of planning
features can lead to undesirable behaviour.

One line of research to extend the language Dribble concerns incorporating first order lan-
guages. As was shown in the example in chapter 4, this extension is necessary to make the
language suitable for practical use. Another extension that has already been mentioned in
chapter 4, is the addition of actions to adopt and drop goals. The benefit has been explained
in the chapter mentioned. Yet another extension could be the selection of a goal from a wish
base. Instead of reasoning with the entire goal base to select a new plan for execution, the
agent would reason only with the selected goal. Selection of plans with goal rules would only
concern plans aimed at reaching this goal. One could argue that this would lead to more

o7

persistent behaviour. The reason is, that it may take more than one goal rule application to
reach a certain goal. If the agent would have only one goal to go after, it could only apply
goal rules to select a plan to get towards this specific goal. In the current version of Dribble,
the agent could first apply a goal rule to get towards goal A and, assuming that this goal
is not reached after execution of the adopted plan, apply another rule to go after goal B.
This behaviour does not seem very persistent. A third possibility to extend Dribble concerns
the commitment strategy. In the current version of Dribble, the agent drops a goal only
if it believes it has achieved this goal. A goal that is unachievable will thus remain in the
goal base forever. One could try to extend the commitment strategy in such a way that the
agent would also drop a goal if it believes that the goal will never be reached. Determining
whether a goal is unachievable is however not trivial. One way to determine this, could be
to keep track of all rule applications for this goal. If all possiblities for rule application have
been tried and the goal is not reached, one could argue that the goal is not achievable, or
at least not in those circumstances. If the environment is somehow changed by for instance
another agent, it could be that the goal becomes achievable. A second way to modify the
commitment strategy is to introduce the concept of maintenance goals. A maintenance goal
describes a state of the world which should remain that way after it is achieved. These goals
should not be removed from the goal base if achieved. Extending Dribble with these features
would result in a programming language with which agents can be programmed that even
more closely approximate the intuitive concept of an intelligent agent.

o8

Bibliography

1]

2]

[9]

[10]

[11]

[12]

P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial Intel-
ligence, 42:213-261, 1990.

D. Harel. First-Order Dynamic Logic. Lectures Notes in Computer Science 68. Springer,
Berlin, 1979.

D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philo-
sophical Logic, volume II, pages 497-604. Reidel, Dordrecht/Boston, 1984.

K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent programming
in 3BAPL. Int. J. of Autonomous Agents and Multi-Agent Systems, 2(4):357-401, 1999.

K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent programming
with declarative goals. In Intelligent Agents VI - Proceedings of the 7th International
Workshop on Agent Theories, Architectures, and Languages (ATAL’2000), Lecture Notes
in Al. Springer, Berlin, 2001.

D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B: Formal Models and Semantics, pages 789-840.
Elsevier, Amsterdam, 1990.

R. Moore. A formal theory of knowledge and action. In J. Hobbs and R. Moore, editors,
Formal Theories of the Commonsense World, pages 319-358. Ablex, Norwood NJ, 1985.

G. Plotkin. A structural approach to operational semantics. Technical report, Aarhus
University, Computer Science Department, 1981.

V. Pratt. Semantical considerations on floyd-hoare logic. In Proceedings of the 17th IEEE
Symp. on Foundations of Computer Science, pages 109-121, 1976.

A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In
J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reasoning (KR’91), pages
473-484. Morgan Kaufmann, 1991.

W. van der Hoek, B. van Linder, and J.-J. Ch. Meyer. An integrated modal approach
to rational agents. In M. Wooldridge and A. S. Rao, editors, Foundations of Rational
Agency, Applied Logic Series 14, pages 133-168. Kluwer, Dordrecht, 1998.

M. Wooldridge. Intelligent agents. In G. Weiss, editor, Multi-Agent Systems, pages
27-77. The MIT Press, 1999.

99

